CN115124755B - 调节冻干果胶气凝胶多孔结构和质构的方法 - Google Patents

调节冻干果胶气凝胶多孔结构和质构的方法 Download PDF

Info

Publication number
CN115124755B
CN115124755B CN202210816339.3A CN202210816339A CN115124755B CN 115124755 B CN115124755 B CN 115124755B CN 202210816339 A CN202210816339 A CN 202210816339A CN 115124755 B CN115124755 B CN 115124755B
Authority
CN
China
Prior art keywords
pectin
starch
freeze
aerogel
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210816339.3A
Other languages
English (en)
Other versions
CN115124755A (zh
Inventor
毕金峰
易建勇
冯舒涵
金鑫
吴昕烨
马有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Food Science and Technology of CAAS
Original Assignee
Institute of Food Science and Technology of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Food Science and Technology of CAAS filed Critical Institute of Food Science and Technology of CAAS
Priority to CN202210816339.3A priority Critical patent/CN115124755B/zh
Publication of CN115124755A publication Critical patent/CN115124755A/zh
Priority to US18/336,627 priority patent/US11795242B1/en
Application granted granted Critical
Publication of CN115124755B publication Critical patent/CN115124755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/06Pectin; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本发明公开了调节冻干果胶气凝胶多孔结构和质构的方法,包括如下步骤:步骤一、淀粉‑果胶溶液制备:将糊化处理后的淀粉溶液与果胶混合,并形成果胶淀粉稳定混合溶胶溶液,其中果胶的用量为0.05~0.2%(w/v),步骤二、向果胶淀粉稳定混合溶胶溶液加入D‑(+)‑葡萄糖酸δ‑内酯和碳酸钙,进行凝胶反应,步骤三、将经过凝胶反应的淀粉‑果胶复合凝胶进行真空冷冻干燥,得到具有改善的质构特性的可调节多孔结构的冻干果胶气凝胶。本发明无需复杂预处理机理实现冻干果胶气凝胶的多孔结构的可控调节。本发明产品中所应有的原料成分低廉、易得并无毒。

Description

调节冻干果胶气凝胶多孔结构和质构的方法
技术领域
本发明属于亚硝酸盐检测技术领域,涉及一种调节冻干果胶气凝胶多孔结构和质构的方法。
背景技术
食品级气凝胶因其超低密度、纳米多孔结构、高比表面积、优异的机械和隔热性能等独特性能,在食品工业中引起了越来越多的研究兴趣。近年来已成功生产出具有公认安全(GRAS)状态的多糖、蛋白质和种子粘液衍生的食品级气凝胶,其中多糖气凝胶是食品级气凝胶中最重要的一类,因为它们易于获得且成本低。尽管多种多糖如淀粉、藻酸盐、果胶、κ-角叉菜胶、纤维素和魔芋葡甘聚糖已经被广泛用于生产食品级气凝胶,但是果胶由于其优越的凝胶温度性已经引起了越来越多的关注。果胶是植物细胞壁的重要成分,其结构域主要包括同型半乳糖醛酸聚糖(HG),鼠李糖半乳糖醛酸聚糖(RG-I)和鼠李糖半乳糖醛酸聚糖II(RG-II)。其中,HG是含量最高的一种结构域,约占果胶的65%以上,是由α-1,4-葡萄糖苷键连接的GalA线性均聚物,通常在O-6羧基上被部分甲基酯化,并构成果胶结构中的“平滑区”。根据果胶的酯化度(DE),果胶可被分为低甲氧基果胶(DE<50%)和高甲氧基果胶(DE>50%)。在二价离子的存在下,低甲氧基果胶可根据蛋盒模型的机制发生凝胶化。高甲氧基果胶在糖和酸存在下也可以通过果胶分子部分脱水的机制形成稳定的凝胶结构。
通常,有不同的方法来制造气凝胶多孔材料,其中一种是通过干燥聚合物水凝胶系统以去除其溶剂。为了保持高开孔率并避免孔隙塌陷,真空冷冻干燥(或冻干)和超临界干燥被认为是制备多孔材料常用的先进干燥方法。与超临界干燥相比,冷冻干燥技术具有环境友好、安全性高、成本效益高等优点,是未来实现食品级气凝胶大规模商业生产干燥方法之一。冷冻是冻干过程中的必要程序,在冰的生长过程中,有一种挤压作用,将多糖网络推挤并聚集到生长的冰晶所包围的空隙中,升华后形成冷冻凝胶的孔壁。因此,气凝胶的孔形态主要由凝胶溶液的冰晶生长行为决定。与其他多孔材料相比,冻干气凝胶往往具有更大的大孔结构(微米尺寸)、更厚的片状壁和更低的比表面积,这意味着果胶冻干气凝胶作为载体的释放时间很短。此外,由于大孔与抗压强度之间存在明显的负相关关系,果胶冻干冻凝胶的抗压能力会弱于其他多孔材。这意味着果胶冻干气凝胶作为食品级生物载体的局限性。因此,实现果胶冻干气凝胶孔结构的可控调控是有必要的。
近年来,大量的研究表明控制冻干气凝胶孔结构的方法包括:调节制作气凝的多聚物浓度、调节冻干气凝胶的冷冻速率以及加入其他多聚物改变冰晶生长这三个途径。聚合物浓度和冷冻速率对冷冻气凝胶孔结构影响已经大量研究。但是,鉴于多糖类型和结构的多样性,其他多糖对果胶冷冻凝胶孔结构的影响仍然是悬而未决的问题,但也给利用其他多糖调节果胶冻干气凝胶孔洞结构带来了更多的可能性。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
淀粉作为另一种资源丰富、可生物降解且无毒的多糖资源,已经被证实可以用于气凝胶的制作中。天然淀粉以颗粒形式存在于植物中,通常由α-葡聚糖聚合物的两种成分组成,即直链淀粉和支链淀粉。当淀粉颗粒在水中加热时,颗粒会不断吸水、膨胀、塌陷,最终失去其可识别的形状,即发生“糊化”。随着糊化程度的增加,淀粉颗粒的物理化学和结构特性发生了显着的不可逆变化,产生了高度表观的粘度和水结合能力。随着糊化程度的增加,淀粉颗粒的物理化学和结构特性发生了显着的不可逆变化,产生了高度表观的粘度和水结合能力。随着糊化程度的增加,淀粉颗粒的物理化学和结构特性发生了显着的不可逆变化,产生了高度表观的粘度和水结合能力。
目前,关于淀粉糊化过程对果胶冻干气凝胶多孔结构的影响仍鲜有报道,相关果胶冻干气凝胶仍存在孔直径过大机械强度不强的现象,此外,也没有相关研究表明物料的糊化淀粉可以实现对果胶冻干气凝胶载体微观结构的有效调节。
为此,本发明还有一个目的是提供一种调节冻干果胶气凝胶多孔结构和质构的方法,本发明提供的技术方案为:
一种调节冻干果胶气凝胶多孔结构和质构的方法,包括如下步骤:
步骤一、淀粉-果胶溶液制备:将糊化处理后的淀粉溶液与果胶混合,并形成果胶淀粉稳定混合溶胶溶液,其中果胶的浓度为0.05~2.0%(w/v),
步骤二、向所述果胶淀粉稳定混合溶胶溶液加入D-(+)-葡萄糖酸δ-内酯和碳酸钙,进行凝胶反应,
步骤三、将经过凝胶反应的淀粉-果胶复合凝胶进行真空冷冻干燥,得到具有改善的质构特性的可调节多孔结构的冻干果胶气凝胶。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤二中,所述果胶淀粉稳定混合溶胶溶液中,D-(+)-葡萄糖酸δ-内酯的浓度为30mM,碳酸钙的浓度为25mM。钙离子是导致低酯果胶发生交联并形成凝胶网络的重要因素,采用(+)-葡萄糖酸δ-内酯改变溶液的pH值使钙离子的缓慢释放,以实现低酯果胶的缓慢凝胶过程,得到结构均匀的凝胶体系。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤二中,凝胶反应中,反应温度为25℃,反应时间为12h。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤三中,所述真空冷冻干燥的具体方法包括:在真空度80Pa压力下,加热板和冷阱的温度分别设定为-20℃和-40℃,进行真空冷冻干燥3天。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤三中,进行所述真空冷冻干燥之前,还将所述淀粉-果胶复合凝胶于-60℃条件下冻结12h形成淀粉-果胶复合凝胶。低温预冻,获得冷冻后的淀粉-果胶复合凝胶体系;凝胶体系在金属模具下进行冷冻的,勿直接接触冷冻板,以实现均匀生长的冰晶。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤一中,将淀粉以固液比1:10加入水中,于恒温60℃条件下进行糊化处理0-30min。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤一中,所述果胶为低脂果胶。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,所述淀粉为马铃薯淀粉。也可采用玉米淀粉、甘蔗淀粉等。
优选的是,所述的调节冻干果胶气凝胶多孔结构和质构的方法中,步骤一中,利用旋转式混合器将果胶与糊化后的淀粉溶液充分混合12h,得到充分水合的所述果胶淀粉稳定混合溶胶溶液。
本发明至少包括以下有益效果:
本发明通过将果胶与糊化的淀粉通过冷冻干燥技术形成冻干气凝胶,降低了冻干果胶气凝胶的孔直径,增加了气凝胶孔壁厚,提高了气凝胶的比表面积,提高了冻干果胶气凝胶的机械强度。通过控制淀粉的糊化程度,实现气凝胶孔径大小以及形态的可控调节,同时优化了果胶气凝胶的机械强度。
本发明无需复杂预处理机理实现冻干果胶气凝胶的多孔结构调节。
本发明产品中所应有的原料成分低廉、易得并无毒。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明其中一些技术方案中的调节冻干果胶气凝胶多孔结构和质构的方法的流程图。
图2为本发明其中一些技术方案中不同糊化度淀粉对冻干果胶气凝胶微观结构的影响图。
图3为本发明其中一些技术方案中不同糊化度淀粉对冻干果胶气凝胶孔径和孔壁的影响图。
图4为本发明其中一些技术方案中的不同糊化度淀粉对冻干果胶气凝胶机械强度的影响图。
具体实施方式
下面对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
为使本领域技术人员更好地理解本申请的技术方案,现提供如下的实施例进行说明:
一种调节冻干果胶气凝胶多孔结构和质构的方法,包括如下步骤:
第一步:淀粉糊化预处理,马铃薯淀粉于60℃恒温水浴条件下糊化处理0min,2min,8min,30min。也可采用如玉米、甘蔗淀粉等。淀粉糊化时,马铃薯淀粉与水的固液比为1:10。
第二步:淀粉-果胶溶液制备,将糊化处理后的淀粉溶液与低酯果胶混合,低酯果胶的用量一般为0.05~2.0%(w/v)。
第三步:充分混合,在室温下,利用旋转式混合器将果胶与淀粉溶液充分混合12h,得到充分水合的果胶淀粉稳定混合溶胶溶液。
第四步:向果胶淀粉稳定混合溶胶溶液加入D-(+)-葡萄糖酸δ-内酯和碳酸钙,反应12h;钙离子是导致低酯果胶发生交联并形成凝胶网络的重要因素,采用D-(+)-葡萄糖酸δ-内酯改变溶液的pH值使钙离子的缓慢释放,以实现低酯果胶的缓慢凝胶过程,得到结构均匀的凝胶体系。D-(+)-葡萄糖酸δ-内酯用量一般为30mM,碳酸钙用量一般为25mM,凝胶时间为12h。凝胶的温度为25℃。
第五步:低温预冻,于-60℃条件下冻结淀粉-果胶复合凝胶,获得冷冻后的淀粉-果胶复合凝胶体系;凝胶体系是在金属模具下进行冷冻的,勿直接接触冷冻板,以实现均匀生长的冰晶。冷冻时间控制在12h。
第六步:冻干,将得到的冷冻后的淀粉-果胶复合凝胶进行真空冷冻干燥,以去除凝胶体系中的水分。在真空度80Pa压力下冻干3天,加热板和冷阱的温度分别设定在-20℃和-40℃。干燥时间控制在3d。
第七步:包装,将冻干后的气凝胶从模具中取出后,贮存在干燥器中。
以下为采用低酯果胶浓度为2.0%(w/v)与不同浓度糊化度淀粉的制备得到的冻干果胶气凝胶的观察结果:
微观结构测量方法:
通过扫描电镜(SU8010,Hitachi Co.,Ltd,Tokyo,Japan)在10kV加速电压下捕获冻干气凝胶的横截面,样品的断裂截面是通过用刀片切割获得的。在使用离子溅射装置(MCI000,Hitachi Co.,Ltd,Tokyo,Japan)成像之前,所有样品都涂有金钯。结果如图2所示。
比表面积、孔径和孔壁厚度的测量方法
为了研究冷冻凝胶的微观结构特性,使用具有100kV和100μA穿透性X射线的三维(3D)X射线显微镜(SkyScan 1272,Bruker,USA)进行μCT成像。在高分辨率模式下,像素大小为10μm,曝光时间为700ms。使用滤波反投影进行断层重建,重建的切片堆叠在NRecon软件中进行3D可视化。该软件允许二维(2D)横截面的可视化,并提供完整的3D结构重建,而不会破坏任何样品。孔径分布被确定为空气孔洞与圆面积相当的直径。孔壁厚度被定义为体积内的二值化的空间厚度来表征。比表面积是根据所有固体物体的二维面积之和以及占样品总质量的百分比计算的。结果如图3和下表所示。
Figure BDA0003742560750000061
物料硬脆度测量方法:
使用装有球形探头TA/0.5S的TA-XT2i质构分析仪(Stable Micro Systems,Godalming,UK)通过压缩试验测量所有冷冻凝胶的机械性能。样品在室温下以1.0mm/s的恒定速率压缩,直到最大变形为60%。每个样品八次重复的力(N)-距离(mm)曲线来确定气凝胶的机械性能。硬度定义为最大力(N)的量,断裂峰的数量用于表征脆度。结果如图4所示。
这里说明的模块数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。

Claims (9)

1.调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,包括如下步骤:
步骤一、淀粉-果胶溶液制备:将糊化处理后的淀粉溶液与果胶混合,并形成果胶淀粉稳定混合溶胶溶液,其中果胶的用量为0.05~2.0%(w/v),
步骤二、向所述果胶淀粉稳定混合溶胶溶液加入D-(+)-葡萄糖酸δ-内酯和碳酸钙,进行凝胶反应,
步骤三、将经过凝胶反应的淀粉-果胶复合凝胶进行真空冷冻干燥,得到具有改善的质构特性的可调节孔洞结构的冻干果胶气凝胶。
2.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤二中,所述果胶淀粉稳定混合溶胶溶液中,D- (+)-葡萄糖酸δ-内酯的浓度为30 mM,碳酸钙的浓度为25 mM。
3.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤二中,凝胶反应中,反应温度为25℃,反应时间为12 h。
4.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤三中,所述真空冷冻干燥的具体方法包括:在真空度 80 Pa 压力下,加热板和冷阱的温度分别设定为-20℃和-40℃,进行真空冷冻干燥3天。
5.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤三中,进行所述真空冷冻干燥之前,还将所述淀粉-果胶复合凝胶于-60℃条件下冻结12 h形成淀粉-果胶复合凝胶体系。
6.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤一中,将淀粉以固液比1:10加入水中,于恒温60℃条件下进行糊化处理2-30 min。
7.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤一中,所述果胶为低脂果胶。
8.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,所述淀粉为马铃薯淀粉。
9.如权利要求1所述的调节冻干果胶气凝胶多孔结构和质构的方法,其特征在于,步骤一中,利用旋转式混合器将果胶与糊化后的淀粉溶液充分混合12 h,得到充分水合的所述果胶淀粉稳定混合溶胶溶液。
CN202210816339.3A 2022-07-12 2022-07-12 调节冻干果胶气凝胶多孔结构和质构的方法 Active CN115124755B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210816339.3A CN115124755B (zh) 2022-07-12 2022-07-12 调节冻干果胶气凝胶多孔结构和质构的方法
US18/336,627 US11795242B1 (en) 2022-07-12 2023-06-16 Method for adjusting porous structure and texture of freeze-dried pectin aerogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210816339.3A CN115124755B (zh) 2022-07-12 2022-07-12 调节冻干果胶气凝胶多孔结构和质构的方法

Publications (2)

Publication Number Publication Date
CN115124755A CN115124755A (zh) 2022-09-30
CN115124755B true CN115124755B (zh) 2023-06-20

Family

ID=83384833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210816339.3A Active CN115124755B (zh) 2022-07-12 2022-07-12 调节冻干果胶气凝胶多孔结构和质构的方法

Country Status (2)

Country Link
US (1) US11795242B1 (zh)
CN (1) CN115124755B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624715B (zh) * 2023-12-01 2024-08-20 中国农业科学院农产品加工研究所 食品级超高比表面积果胶冻干气凝胶多孔材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015107235A1 (de) * 2015-05-08 2016-11-10 Elringklinger Ag Verfahren zum Herstellen von Formkörpern aus Aerogelen oder enthaltend Aerogele
CN108314798A (zh) * 2017-01-17 2018-07-24 武汉力诚生物科技有限公司 一种植物多糖气凝胶空气净化材料及制备方法
CN109046190A (zh) * 2018-09-27 2018-12-21 广东工业大学 一种果胶复合二氧化硅气凝胶及其制备方法与应用
CN113477193A (zh) * 2021-07-30 2021-10-08 中国海洋大学 一种海藻酸钠基气凝胶的制备及应用
CN114016322A (zh) * 2021-11-19 2022-02-08 徐州金之泰包装新材料科技有限公司 一种食品级保温隔热材料的制备方法及产品应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502082A (en) * 1991-12-20 1996-03-26 Alliedsignal Inc. Low density materials having good compression strength and articles formed therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015107235A1 (de) * 2015-05-08 2016-11-10 Elringklinger Ag Verfahren zum Herstellen von Formkörpern aus Aerogelen oder enthaltend Aerogele
CN108314798A (zh) * 2017-01-17 2018-07-24 武汉力诚生物科技有限公司 一种植物多糖气凝胶空气净化材料及制备方法
CN109046190A (zh) * 2018-09-27 2018-12-21 广东工业大学 一种果胶复合二氧化硅气凝胶及其制备方法与应用
CN113477193A (zh) * 2021-07-30 2021-10-08 中国海洋大学 一种海藻酸钠基气凝胶的制备及应用
CN114016322A (zh) * 2021-11-19 2022-02-08 徐州金之泰包装新材料科技有限公司 一种食品级保温隔热材料的制备方法及产品应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria;Alireza Dafe et al.;《International Journal of Biological Macromolecules》(第97期);第536-543页 *

Also Published As

Publication number Publication date
US11795242B1 (en) 2023-10-24
CN115124755A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Wahid et al. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties
Zhao et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation
Guan et al. High strength of hemicelluloses based hydrogels by freeze/thaw technique
Chang et al. Fabrication and characterization of novel macroporous cellulose–alginate hydrogels
Sun et al. Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly (N-isopropyl acrylamide)
Pang et al. Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors
Hu et al. Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study
Guan et al. Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment
Srivastava et al. Recent advances in composite hydrogels prepared solely from polysaccharides
Huang et al. Biomimetic composite scaffold from an in situ hydroxyapatite coating on cellulose nanocrystals
He et al. Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose
Chen et al. Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment
Tang et al. Application of chitin hydrogels for seed germination, seedling growth of rapeseed
Edlund et al. A microspheric system: hemicellulose-based hydrogels
CN109293982B (zh) 一种具有高机械强度的复合气凝胶的制备方法
Chen et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment
US20110183380A1 (en) Porous, carbohydrate-based foam structures and associated methods
Teotia et al. Structural characterization of chitosan and oxidized carboxymethyl cellulose based freeze-dried films
Lin et al. Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking semi‐interpenetrating network
CN115124755B (zh) 调节冻干果胶气凝胶多孔结构和质构的方法
CN112957525B (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
Guan et al. Physically crosslinked composite hydrogels of hemicelluloses with poly (vinyl alcohol phosphate) and chitin nanowhiskers
Feng et al. Modulation of ice crystal formation behavior in pectin cryogel by xyloglucan: Effect on microstructural and mechanical properties
Tuan Mohamood et al. Preparation, optimization and swelling study of carboxymethyl sago starch (CMSS)–acid hydrogel
Feng et al. Influence of starch with different degrees and order of gelatinization on the microstructural and mechanical properties of pectin cryogels: A potential pore morphology regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant