CN115111150B - Water pump operation prediction method - Google Patents

Water pump operation prediction method Download PDF

Info

Publication number
CN115111150B
CN115111150B CN202210861992.1A CN202210861992A CN115111150B CN 115111150 B CN115111150 B CN 115111150B CN 202210861992 A CN202210861992 A CN 202210861992A CN 115111150 B CN115111150 B CN 115111150B
Authority
CN
China
Prior art keywords
water pump
frequency
curve
flow
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210861992.1A
Other languages
Chinese (zh)
Other versions
CN115111150A (en
Inventor
王朝晖
旷金国
罗曙光
陈盛阶
叶圳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianhai Energy Technology Development Co ltd
Original Assignee
Shenzhen Qianhai Energy Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianhai Energy Technology Development Co ltd filed Critical Shenzhen Qianhai Energy Technology Development Co ltd
Priority to CN202210861992.1A priority Critical patent/CN115111150B/en
Publication of CN115111150A publication Critical patent/CN115111150A/en
Application granted granted Critical
Publication of CN115111150B publication Critical patent/CN115111150B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

The invention discloses a water pump operation prediction method. The water pump operation prediction method comprises the following steps: and drawing a maximum lift curve and a minimum lift curve of the water pump, and determining the working area of the water pump through the maximum lift curve and the minimum lift curve. And drawing a frequency conversion characteristic curve of the water pump. And setting the flow of a target branch in the pipe network system as a target flow, and determining the maximum frequency and the minimum frequency according to the intersection points of the maximum lift curve and the minimum lift curve and the frequency conversion characteristic curve. After the working area of the water pump is obtained, two intersection points are formed by the frequency conversion characteristic curve, the maximum lift curve and the minimum lift curve respectively, the maximum frequency of the water pump and the minimum frequency of the water pump can be determined after the flow of the branch circuit is determined, the frequency of the water pump on the target branch circuit is adjusted between the two frequencies, the operation frequency of the water pump can be accurately controlled, the flow control is accurate, and the problem of unbalanced water supply in the circuit is solved.

Description

Water pump operation prediction method
Technical Field
The invention relates to the technical field of water pump operation control, in particular to a water pump operation prediction method.
Background
In a pipe network system that has a plurality of parallelly connected branches, and each parallelly connected branch has a water pump, can lead to water imbalance when unable accurate control water pump operating frequency, it is inhomogeneous to supply water between each module to appear, often can be through closing the water supply flow of little valve come balanced each branch road, causes the mechanical energy loss.
Disclosure of Invention
The present invention is directed to solving at least one of the problems of the prior art. Therefore, the invention provides a water pump operation prediction method which can reduce the control regulation range of a water pump, improve the control stability and accurately control the operation frequency of the water pump.
According to the water pump operation prediction method of the embodiment of the first aspect of the invention, the method comprises the following steps:
drawing a maximum lift curve and a minimum lift curve of the water pump, and determining a working area of the water pump according to the maximum lift curve and the minimum lift curve;
drawing a frequency conversion characteristic curve of the water pump;
setting the flow of a target branch in the pipe network system as a target flow, and determining the maximum frequency and the minimum frequency of the water pump in the target branch under the target flow according to the intersection point of the maximum lift curve and the minimum lift curve and the frequency conversion characteristic curve.
The water pump operation prediction method provided by the embodiment of the invention at least has the following beneficial effects: after a working area of the water pump is obtained by drawing a maximum lift curve and a minimum lift curve of the water pump, a frequency conversion characteristic curve of the water pump is drawn according to parameters of the water pump, the frequency conversion characteristic curve, the maximum lift curve and the minimum lift curve form two intersection points respectively, after the flow of a branch is determined, the maximum frequency of the water pump, namely the frequency conversion characteristic curve intersected with the maximum lift curve, and the minimum frequency of the water pump, namely the frequency conversion characteristic curve intersected with the minimum lift curve can be determined, the frequency of the water pump on a target branch is adjusted between the maximum frequency and the minimum frequency, the running frequency of the water pump can be accurately controlled, the flow control is accurate, and the problem of unbalanced water supply in a line is solved.
According to some embodiments of the invention, said plotting the maximum head curve of the water pump comprises the steps of:
starting the water pumps of the other branches to run at rated flow;
and gradually increasing the frequency of the water pump in the target branch circuit from 0 to a rated frequency, marking the flow corresponding to each frequency and the lift to form marking points, and sequentially connecting the marking points.
According to some embodiments of the invention, said plotting the minimum head curve of the water pump comprises the steps of:
closing the water pumps of the remaining branches;
and gradually increasing the frequency of the water pump of the target branch circuit from 0 to a rated frequency, marking the flow corresponding to each frequency and the lift to form marking points, and sequentially connecting the marking points.
According to some embodiments of the invention, the method further comprises adjusting the frequency of the water pump between the maximum frequency and the minimum frequency to bring the water pump to the target flow rate.
According to some embodiments of the invention, drawing a maximum head curve and a minimum head curve of the water pump comprises the steps of:
establishing a physical model and a flow chart of the pipe network system;
establishing a hydraulic calculation model;
calculating to obtain a model of the lift and the flow of the target branch through the hydraulic calculation model;
and drawing a maximum lift curve and a minimum lift curve of the target branch according to the model of the lift and the flow of the water pump in the target branch.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The invention is further described with reference to the following figures and examples, in which:
FIG. 1 is a schematic view of a piping system of the present invention;
FIG. 2 is a schematic diagram of a working area and a frequency conversion characteristic curve according to an embodiment of the present invention;
FIG. 3 is a flow chart of a water pump operation prediction method according to an embodiment of the present invention;
FIG. 4 is a flow chart of a theoretical calculation method according to an embodiment of the present invention;
FIG. 5 is a diagram illustrating a working region, a frequency conversion characteristic curve, and a high efficiency region according to an embodiment of the present invention.
Reference numerals:
the system comprises a pipe network system 100, a refrigeration tower 110, a main line 120, a branch 130, a water pump 131, a refrigerator 132 and a target branch 140;
frequency conversion characteristic curve 210, minimum head curve 220, maximum head curve 230, high efficiency region 240 and working region 250.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.
In the description of the present invention, it should be understood that the orientation or positional relationship referred to in the description of the orientation, such as the upper, lower, front, rear, left, right, etc., is based on the orientation or positional relationship shown in the drawings, and is only for convenience of description and simplification of description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus, should not be construed as limiting the present invention.
In the description of the present invention, the meaning of a plurality is one or more, the meaning of a plurality is two or more, and larger, smaller, larger, etc. are understood as excluding the present numbers, and larger, smaller, inner, etc. are understood as including the present numbers. If the first and second are described for the purpose of distinguishing technical features, they are not to be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated or implicitly indicating the precedence of the technical features indicated.
In the description of the present invention, unless otherwise specifically limited, terms such as set, installation, connection and the like should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above terms in the present invention by combining the specific contents of the technical solutions.
In the description of the present invention, reference to the description of the terms "one embodiment," "some embodiments," "an illustrative embodiment," "an example," "a specific example," or "some examples," etc., means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
Referring to fig. 1 to 4, a first embodiment of the present invention provides a method for predicting operation of a water pump 131, which is applied to a pipe network system 100, where the pipe network system 100 includes a plurality of parallel branches 130, and each of the parallel branches 130 has one water pump 131, including the following steps:
s100, drawing a maximum lift curve 230 and a minimum lift curve 220 of the water pump 131, and determining a working area 250 of the water pump 131 through the maximum lift curve 230 and the minimum lift curve 220;
s200, drawing a frequency conversion characteristic curve 210 of the water pump 131;
s300, setting the flow of the target branch 140 in the pipe network system 100 as a target flow, and determining the maximum frequency and the minimum frequency of the water pump 131 in the target branch 140 under the target flow according to the intersection point of the maximum lift curve 230 and the minimum lift curve 220 and the frequency conversion characteristic curve 210.
The operating region 250 of the water pump 131 is determined by the hydraulic characteristics of the pipeline. After the working area 250 of the water pump 131 is obtained, the frequency conversion characteristic curve 210 of the water pump 131 is drawn according to the rated flow and the rated lift of the water pump 131, the frequency conversion characteristic curve 210, the maximum lift curve 230 and the minimum lift curve 220 form two intersection points, after the flow of the target branch 140 is determined, the maximum frequency of the water pump 131, namely the frequency of the frequency conversion characteristic curve 210 intersected with the maximum lift curve 230, and the minimum frequency of the water pump 131, namely the frequency of the frequency conversion characteristic curve 210 intersected with the minimum lift curve 220 can be determined, the frequency of the water pump 131 on the target branch 140 is adjusted between the maximum frequency and the minimum frequency, the running frequency of the water pump 131 can be accurately controlled, the flow control is accurate, and the problem of unbalanced water supply in the loop is solved.
For example, referring to fig. 1, in the refrigeration system, the cooling system includes a refrigeration tower 110, a refrigerator 132 and a water pump 131, the refrigerator 132 and the water pump 131 are connected in series to form a branch 130, the refrigeration tower 110 is provided with a main circuit 120, a plurality of branches 130 are connected in parallel to the main circuit 120 to form a loop, and the flow rate through the refrigerator 132 is individually controlled by the water pump 131 on the branch 130. The flow rate of the branch 130 is determined by the capacity and the load factor of the refrigerator 132 and the set temperature difference between the supplied water and the returned water to meet the refrigeration requirement of the refrigerator 132. After the flow rate is determined, the position of the flow rate corresponding to the working area 250 has the corresponding maximum frequency and minimum frequency, and the water pump 131 in the branch 130 is finely adjusted between the maximum frequency and the minimum frequency, so that the set flow rate can be achieved. When the flow rate of any branch 130 needs to be adjusted, the frequency of the water pump 131 of each of the other branches 130 can be quickly adjusted according to the method, so that the water supply in the whole loop can be quickly balanced.
Since there are several branches 130 connected in parallel to the main line 120, the flow rate of the main line 120 is equal to the sum of the flow rates of the lines, and the pressure drop experienced by each water pump 131 is equal to the shared pressure drop of the main line 120 and the independent pressure drop of the branch 130. For one branch 130, the lift of the water pump 131 is equal to the sum of the shared pressure drop and the independent pressure drop, the change of the shared pressure drop affects the main factors affecting the frequency of the water pump 131 on the branch 130 when the branch 130 reaches the set flow, and the maximum frequency of the water pump 131 corresponds to the maximum shared pressure drop, that is, when the water pumps 131 of the branches 130 except the water pump 131 of the branch 130 operate at the power frequency and the flow of the main line 120 is maximum, the minimum frequency of the water pump 131 corresponds to the minimum shared pressure drop, that is, the water pumps 131 of the branches 130 except the water pump 131 of the branch 130 do not operate, and the flow of the main line 120 is equal to the flow of the target branch 140.
In some embodiments, plotting the maximum head curve 230 of the water pump 131 comprises the steps of:
s111, starting the water pumps 131 of the rest branches 130 to run at rated flow;
and S112, gradually increasing the frequency of the water pump 131 of the target branch 140 from 0 to a rated frequency, marking the flow corresponding to each frequency and the lift to form marking points, and sequentially connecting the marking points.
When the structure of the pipe network system 100 determines that the remaining branches 130 operate at the rated flow, the shared pressure drop of the water pump 131 of the target branch 140 is the largest, the lift and the flow are increased synchronously in the process that the frequency of the water pump 131 is gradually increased from 0 to the rated frequency, the flow corresponding to each frequency is labeled to form a labeling point with the lift, and each labeling point is connected by a smooth curve, so that the maximum lift curve 230 of the water pump 131 can be formed. It can be understood that the number of the marked points can determine the accuracy of the lift curve, so that the lift curve can be drawn by adopting more sampling points under the condition of high precision requirement.
In some embodiments, plotting the minimum head curve 220 for the water pump 131 comprises the steps of:
the water pumps 131 of the remaining branches 130 are turned off;
the frequency of the water pump 131 of the target branch 140 is gradually increased from 0 to a rated frequency, and the flow and the lift corresponding to each frequency are marked to form a marking point and are sequentially connected.
When the structure of the pipe network system 100 is determined and the remaining branches 130 are closed, the shared pressure drop of the water pump 131 of the target branch 140 is the minimum, and the drawing method of the minimum head curve 220 is the same as the drawing method of the maximum head curve 230, which is not described herein again.
Referring to fig. 4, in addition, the maximum head curve 230 and the minimum head curve 220 may also be obtained by a theoretical calculation method, and the theoretical calculation method includes the following steps:
s1000, establishing a physical model and a flow chart of a pipe network system;
s2000, establishing a hydraulic calculation model;
s3000, calculating to obtain a model of the lift and the flow of the target branch water pump through a hydraulic calculation model;
and S4000, drawing a maximum lift curve 230 and a minimum lift curve 220 of the target branch according to the lift and flow model of the water pump in the target branch.
The hydraulic model is established according to the resistance of each component in the pipe network system to water flow (a hydraulic calculation model corresponding to the flow and the resistance of each component). After the flow rates of the other branches 130 are determined, a model of the lift and the flow rate of the water pump 131 of the target branch 140 can be obtained through calculation of a hydraulic calculation model, and a corresponding lift curve of the target branch 140 can be drawn according to the model. The maximum head curve 230 is obtained when the water pumps 131 of the remaining branches 130 are all at the rated flow, and the minimum head curve 220 is obtained when the water pumps 131 of the remaining branches 130 are turned off. The lift curve obtained through theoretical calculation can be mutually verified with the lift curve obtained through experiments so as to ensure the accuracy of the lift curve. The calculated working area 250 may be used for design selection of the water pump 131, and the experimentally obtained working area 250 may be used for operation control and design verification.
In some embodiments, the water pump 131 operation prediction method further comprises adjusting the frequency of the water pump 131 between a maximum frequency and a minimum frequency to achieve the set flow rate. For example, in a refrigeration system, the frequency of the water pump 131 is further adjusted according to the capacity and load factor of the refrigerator 132 and the set temperature difference between the supply water and the return water, so that the flow rate through the target branch 140 reaches the set requirement.
Referring to fig. 5, a second embodiment of the present invention provides a model selection method for a water pump 131, including the following steps:
s400, determining the rated flow and the rated lift of the water pump 131;
s500, drawing a maximum lift curve 230 and a minimum lift curve 220 of the water pump 131, and determining a working area 250 of the water pump 131 according to the maximum lift curve 230 and the minimum lift curve 220;
s600, drawing a high-efficiency area 240 of the water pump 131 according to the rated flow and the rated lift of the water pump 131;
s700, whether the high-efficiency area 240 comprises the working area 250 is checked.
After the rated flow and the rated lift of the water pump 131 are determined, namely, the frequency and the lift of the water pump 131 after frequency conversion are only lower than the rated flow and the rated lift, so that the water pump 131 can meet the requirements of the flow and the lift, after a working area 250 of the water pump 131 is obtained, a high-efficiency area 240 of the water pump 131 is drawn according to the rated flow and the rated lift of the water pump 131, the high-efficiency area 240 of the water pump 131 is an area with the efficiency of the water pump 131 being more than 75%, whether the high-efficiency area 240 comprises the working area 250 is checked, and if the working areas 250 are all in the high-efficiency area 240, it can be ensured that the type selection of the water pump 131 can meet all working conditions which can be operated in the water pump 131 at this time and the water pump can work at a high-efficiency point. The maximum lift curve 230 and the minimum lift curve 220 are drawn in the same way as in the first embodiment, and are not described herein again.
In some embodiments, checking whether the high-efficiency region 240 includes the work region 250 includes the steps of:
s710, selecting an upper lift limit, a lower lift limit and any lift between the upper lift limit and the lower lift limit of the water pump 131;
s720, measuring input power and output power corresponding to each head selected by the water pump 131;
and S730, calculating the working efficiency of the water pump 131 according to the input power and the output power.
It can be understood that when any lift between the upper and lower limits of the lift is selected for checking, a key node may be selected for checking, for example, when the flow rate is 50% of the rated flow rate, whether the working efficiency of the water pump 131 is in the high-efficiency area 240 is determined, so as to determine the rationality of model selection of the water pump 131.
The embodiments of the present invention have been described in detail with reference to the accompanying drawings, but the present invention is not limited to the above embodiments, and various changes can be made within the knowledge of those skilled in the art without departing from the gist of the present invention. Furthermore, the embodiments of the present invention and the features of the embodiments may be combined with each other without conflict.

Claims (5)

1. The water pump operation prediction method is applied to a pipe network system, the pipe network system comprises a plurality of parallel branches, each parallel branch is provided with a water pump, and the water pump operation prediction method is characterized by comprising the following steps:
drawing a maximum lift curve and a minimum lift curve of the water pump, and determining a working area of the water pump according to the maximum lift curve and the minimum lift curve;
drawing a frequency conversion characteristic curve of the water pump;
setting the flow of a target branch in the pipe network system as a target flow, and determining the maximum frequency and the minimum frequency of the water pump in the target branch under the target flow according to the intersection point of the maximum lift curve and the minimum lift curve and the frequency conversion characteristic curve.
2. The method for predicting the operation of the water pump according to claim 1, wherein the step of drawing the maximum lift curve of the water pump comprises the steps of:
starting the water pumps of the other branches to run at rated flow;
and gradually increasing the frequency of the water pump in the target branch circuit from 0 to a rated frequency, marking the flow corresponding to each frequency and the lift to form marking points, and sequentially connecting the marking points.
3. The method for predicting the operation of the water pump according to claim 1, wherein the step of drawing the minimum head curve of the water pump comprises the steps of:
closing the water pumps of the remaining branches;
and gradually increasing the frequency of the water pump of the target branch circuit from 0 to a rated frequency, marking the flow corresponding to each frequency and the lift to form marking points, and sequentially connecting the marking points.
4. The water pump operation prediction method of claim 1, further comprising adjusting a frequency of the water pump between the maximum frequency and the minimum frequency to bring the water pump to the target flow rate.
5. The method of predicting the operation of a water pump according to claim 1, wherein drawing a maximum head curve and a minimum head curve of the water pump comprises the steps of:
establishing a physical model and a flow chart of the pipe network system;
establishing a hydraulic calculation model;
calculating to obtain a model of the lift and the flow of the target branch through the hydraulic calculation model;
and drawing a maximum lift curve and a minimum lift curve of the target branch according to the model of the lift and the flow of the target branch.
CN202210861992.1A 2022-07-20 2022-07-20 Water pump operation prediction method Active CN115111150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210861992.1A CN115111150B (en) 2022-07-20 2022-07-20 Water pump operation prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210861992.1A CN115111150B (en) 2022-07-20 2022-07-20 Water pump operation prediction method

Publications (2)

Publication Number Publication Date
CN115111150A CN115111150A (en) 2022-09-27
CN115111150B true CN115111150B (en) 2023-03-24

Family

ID=83334961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210861992.1A Active CN115111150B (en) 2022-07-20 2022-07-20 Water pump operation prediction method

Country Status (1)

Country Link
CN (1) CN115111150B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852782B (en) * 2012-09-25 2014-12-17 扬州大学 Large-scale water pump unit and working condition adjusting mode accurate quantitative model-selection method
CN103195698B (en) * 2013-04-19 2015-09-09 哈尔滨工业大学 Become the energy-saving control method that in water level water intake pumping station, water pump synchronous speed change regulates
CN104612979A (en) * 2015-01-23 2015-05-13 深圳开蓝能源科技有限公司 Secondary model selection and energy conservation method for pumps
CN106704163A (en) * 2017-01-13 2017-05-24 湖南集森节能环保科技有限公司 Water pump frequency conversion speed regulation control method, device and system
CN109185972B (en) * 2018-09-11 2020-12-01 哈尔滨顺易天翔热力技术开发有限公司 Heat station circulating pump optimization adjusting method
CN110081016B (en) * 2019-05-27 2021-04-06 湘潭大学 Centrifugal pump model selection method capable of matching rotating speed of driving shaft

Also Published As

Publication number Publication date
CN115111150A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
CN110410942B (en) Energy-saving optimization control method and system for cold and heat source machine room
EP0851122B1 (en) Hydraulic pump control system
US12000608B2 (en) Central plant control system with setpoints modification based on physical constraints
US11085663B2 (en) Building management system with triggered feedback set-point signal for persistent excitation
CN109917646A (en) A kind of district cooling and heating equipment optimization operating system and method
CN108089440A (en) Energy-saving control method and device
CN106642535B (en) A kind of cold station control system of central air-conditioning and control method
RU2468409C2 (en) Method for functioning of hydrodynamic system of manifolds
CN115111150B (en) Water pump operation prediction method
KR20210102218A (en) Methods and systems for balancing mass flow during production failure or insufficient in district heating networks
CN113432348A (en) Refrigerant circulation quantity adjusting device and method and air conditioning system
CN117608232B (en) Industrial gas flow automatic control method and intelligent gas Internet of things system
KR20190124378A (en) Heat pump based automatic control geothermal system and the control method thereof
CN104884809B (en) Optimisation technique for the pump in multiple pump being classified and being gone classification
CN110486896A (en) A kind of tandem air-conditioning system optimal control method based on water cooler energy consumption model
CN114580801A (en) Vehicle thermal management control method and vehicle thermal management system
CN112727742B (en) Floor heating system water pump control method and device and floor heating system
CN215675948U (en) Refrigerant circulation volume adjusting device and air conditioning system
CN210244185U (en) Four-way reversing valve performance test system
CN111306695B (en) Compressor load data optimization method and device, computer equipment and storage medium
CN114518237A (en) Intelligent testing method and system for energy-saving performance of heat exchanger, electronic equipment and memory
CN114368279A (en) Vehicle thermal management control system and method
CN109241025A (en) A kind of HTM efficiency data base construction method, apparatus and system
CN109815754A (en) A kind of reader RFID transmission power adaptation control method
CN214149814U (en) Variable pump low-temperature test system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant