CN115108819A - 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法 - Google Patents

一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法 Download PDF

Info

Publication number
CN115108819A
CN115108819A CN202210162363.XA CN202210162363A CN115108819A CN 115108819 A CN115108819 A CN 115108819A CN 202210162363 A CN202210162363 A CN 202210162363A CN 115108819 A CN115108819 A CN 115108819A
Authority
CN
China
Prior art keywords
wall
honeycomb ceramic
size
catalyst carrier
flow honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210162363.XA
Other languages
English (en)
Inventor
潘吉庆
黄妃慧
刘洪月
张兆合
程国园
邢延岭
郝立苗
焦雪艳
齐晓亮
陈一韬
关洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Aofu Environmental Protection Science & Technology Co ltd
Original Assignee
Shandong Aofu Environmental Protection Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Aofu Environmental Protection Science & Technology Co ltd filed Critical Shandong Aofu Environmental Protection Science & Technology Co ltd
Priority to CN202210162363.XA priority Critical patent/CN115108819A/zh
Publication of CN115108819A publication Critical patent/CN115108819A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于蜂窝陶瓷材料技术领域,具体涉及一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法。该方法包括以下步骤:1)取选定量的氧化铝、氧化镁、球形熔融石英、针状生高岭土、羟丙基甲基纤维素和高温粘结剂,充分干混;2)将混合粉料加聚醚多元醇分散剂、基础油和水进行捏合,并经过真空练泥处理,挤制成所需尺寸的壁流式蜂窝陶瓷载体,经干燥处理,制得坯体;3)将步坯体进行烧制,即得所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体。本发明所提供的产品为大规格薄壁300cpsi/5‑7mil堇青石质壁流式蜂窝陶瓷载体,可应用于欧七、国七柴油车PN捕集器,特别适合国七、欧七要求控制PN尺寸到达>10nm的特殊要求。

Description

一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及 其制备方法
技术领域
本发明属于蜂窝陶瓷材料技术领域,具体涉及一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法。
背景技术
未来,国七、欧七法规对柴油机的NOx、PN要求进一步加严,NOx排放可能会在国六基础上降低50-70%,PN粒径控制可能由国六的>23nm提高到>10nm,PN的排放限制可能由WHTC测试循环的6×1011#(kW.h)提高到1×1011#(kW.h),为满足超低排放,后处理系统会进一步复杂,带来系统背压增加,而DPF是系统背压贡献最大的部件。
因此,为降低系统背压,DPF的壁厚会由国六9mil降低到5-7mil。随着DPF壁厚降低,会带来以下问题:
1、坯体强度低,比9mil壁厚产品坯体强度低很多,当大量有机粘结剂分解后(200-800℃),蜂窝陶瓷载体坯体没有发生烧结,坯体的强度只能依靠颗粒堆积形成的强度,强度非常低,烧成过程温度波动、窑炉内气体流动会造成坯体变形、开裂。采用传统蜂窝陶瓷载体烧制工艺,5-7mil产品合格率也很难达到80%以上,因此,需要开发一种可实现快速烧制的大规格薄壁壁流式蜂窝陶瓷载体,以确保产品的合格率和生产效率;
2、PN捕集效率的降低,随着壁厚降低,PN捕集效率降低比较厉害, 9mil的壁厚的DPF产品PN的WHTC测试循环,排放满足6×1011#,5-7mil 壁厚的DPF产品PN的WHTC测试循环,排放达到1012#,因此需要开发一种大规格薄壁、窄孔径分布(微孔分布系数K=(D90-D10)/D50≤1.7)壁流式蜂窝陶瓷载体,满足更严格的PN排放控制要求。
发明内容
现有技术中,壁流式蜂窝陶瓷载体(DPF)存在诸多问题,例如,壁厚降低到5-7mil带来的坯体强度降低,烧成合格率降低;壁厚降低,PN捕集效率降低等问题。为解决现有技术的不足,本发明提供了一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法。本发明所提供的产品为大规格薄壁300cpsi/5-7mil堇青石质壁流式蜂窝陶瓷载体,可应用于欧七、国七柴油车PN捕集器,特别适合国七、欧七要求控制PN尺寸到达>10nm的特殊要求。
本发明所提供的技术方案如下:
一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于,包括以下步骤:
1)按照制备原料的配比,取选定量的氧化铝、氧化镁、球形熔融石英、针状生高岭土、有机粘结剂和高温粘结剂,充分干混,得到混合粉料;
2)将步骤1)所得的混合粉料加聚醚多元醇分散剂、基础油和水进行捏合,并经过真空练泥处理,挤制成所需尺寸的壁流式蜂窝陶瓷载体,经干燥处理,制得坯体;
3)将步骤2)所得的坯体进行烧制,即得所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体;
所述制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量百分含量的各组分:
氧化铝29.2-34.5wt%;
氧化镁13.2-13.5wt%;
球形熔融石英42.4-49.0wt%;
针状生高岭土3.0-15.0wt%;
所述添加剂以所述无机主料的总量计,包括如下质量百分比的各组分:
高温粘结剂12-20wt%;
有机粘结剂7.0-8.0wt%;
聚醚多元醇分散剂0.5wt%;
基础油1.0-1.5wt%;
水30-34wt%。
本发明所述的蜂窝陶瓷催化剂载体以氧化铝、氧化镁、窄粒径分布球形熔融适应、针状生高岭土为无机主料,并添加有机粘结剂、窄粒径分布的高温粘结剂、复合成型助剂,高温粘结剂低温热塑流动时,可以包裹易燃的有机物(甲级羟丙基纤维素醚、复合成型助剂等),能够有效抑制蜂窝陶瓷载体中的有机物燃烧,避免载体内外温差,提高烧成合格率;同时其中温热固性,能够提供蜂窝陶瓷载体中温强度(有机粘结剂分解后蜂窝陶瓷载体坯体没有了强度),能够有效抵抗升温过程中由于温差产生的热应力。使用高温粘结剂可以使蜂窝陶瓷载体烧制过程中迅速升温,有助于提高生产效率,具有节能环保的优势。
具体的,所述高温粘结剂为耐热酚醛树脂、聚酰亚胺树脂等。耐热酚醛树脂、聚酰亚胺树脂等高温粘结剂,是一种低温(100-130℃)热塑性、中温(200-800℃)热固性、耐高温、难燃的高温粘结剂,可获得自现有技术。
具体的,有机粘结剂可选自羟丙基甲基纤维素、羟丙基甲基纤维素醚、甲基纤维素醚、乙基纤维素醚、聚乙烯醇、聚氧乙烯等,优选为羟丙基甲基纤维素醚。
具体的:
所述氧化铝为D50=1.0-6.0μm且径厚比为8:1-20:1的片状氧化铝(见图4);
所述氧化镁为D50=0.1-5.0μm的高活性氧化镁;
所述球形熔融石英的D50=26.0-32.0um;高纯度(SiO2≥99.5%,方石英相≤0.5%);低杂质(K2O+Na2O≤0.05%)。一般球形熔融石英 D50=26.0-32.0umμm之间,优选为D50=29-32μm,D10≥17μm,优选为 D10≥18μm,更优选为D10≥20μm,D90≤44μm优选为D90≤38μm,更优选为 D90≤37μm,粒度分布系数P=(D90-D10)/D50≤1.0,优选为P≤0.8,更优选为 P≤0.7;
所述针状生高岭土的D50为1.0-12μm且径厚比为60-100倍;
所述高温粘结剂所述的D50=18.0-30.0um;优选为D50=25-30μm, D10≥15μm,优选为D10≥17μm,更优选为D10≥20μm,D90≤48μm优选为 D90≤38μm,更优选为D90≤37μm,粒度分布系数P=(D90-D10)/D50≤1.5,优选为P≤1.0,更优选为P≤0.80。
具体的:所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体中:尺寸为Φ190.5-330.2×(152.4-304.8)mm;孔密度不低于200cpsi;壁厚为5-7mil。进一步的,孔密度不低于300cpsi。
基于该技术方案,可满足目前主要200-300cpsi的性能要求,也可以满足进一步提高cps值的性能要求。
具体的,步骤3)所述的烧制的温度控制过程包括依次进行的:吸附水脱附;高温粘结剂热塑流动;有机物分解、高温粘结剂固化;针状高岭土分解;莫来石化;堇青石形成;保温。
具体的,步骤3)所述的烧制的制度如下:
室温-130℃,升温速率为50℃/H,升温时间为2;
130-600℃,升温速率为100℃/H,升温时间为6.7;
600-1000℃,升温速率为80℃/H,升温时间为5;
1000-1100℃,升温速率为50℃/H,升温时间为2;
1100-1200℃,升温速率为100℃/H,升温时间为1;
1200-1415℃,升温速率为20℃/H,升温时间为10.75;
1415-1415℃,升温速率为0℃/H,升温时间为16。
现有技术中,为满足壁流式蜂窝陶瓷载体的多孔的结构,现有技术中通常采用容易燃烧的造孔剂(例如,有机造孔剂淀粉、PMMA、聚乙烯等)的用量一般为无机主料的10wt%以上,而普通容易燃烧的造孔剂用量的增加通常会导致坯体中有机物着火,造成内外温差,产生热应力,造成烧成开裂。另外,随着壁流式蜂窝陶瓷载体壁厚的降低,坯体强度随之低,烧成难度也显著增加。
本发明的上述技术方案,至少基于下述几个要点,实现了壁厚降低至 5-7mil,且同时满足窄孔径分布(微孔分布系数K=(D90-D10)/D50≤1.7)。
1)使用特定用量的低温(100-130℃)热塑性、中温(200-800℃)热固性、耐高温、难燃的高温粘结剂,提高烧成合格率;
2)窄粒径分布(粒度分布系数P=(D90-D10)/D50≤1.3)的大粒径球形熔融石英和窄粒径分布(粒度分布系数P=(D90-D10)/D50≤1.5)高温粘结剂的配合使用,并结合特定的烧成制度,获得窄微孔分布。
本发明还提供了上述制备方法制备得到的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体。
具体的,大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体中:尺寸为Φ190.5-330.2×(152.4-304.8)mm;孔密度不低于200cpsi;壁厚为5-7mil。进一步的,孔密度不低于300cpsi。
本发明所述的大规格、薄壁、窄微孔分布的壁流式蜂窝陶瓷载体以氧化铝、超细氧化镁、窄粒径分布熔融石英、针状生高岭土为无机主料,并添加有机粘结剂、高温粘结剂、复合成型助剂,尤其是使用大粒径(D50≥20μm),窄粒径分布(粒度分布系数P=(D90-D10)/D50≤1.3)的高纯球形熔融石英,这些大粒径的球形熔融石英形成窄分布的堆积孔,同时添加窄粒径分布的(粒度分布系数P=(D90-D10)/D50≤1.5)耐热酚醛树脂、聚酰亚胺树脂等高温粘结剂,它是一种低温(100-130℃)热塑性、中温(200-800℃)热固性(例如可选自具有图1差热曲线的材料)、耐高温、难燃的高温粘结剂。高温粘结剂低温热塑流动时,可以包裹易燃的有机物(甲级羟丙基纤维素醚、复合成型助剂等),能够有效抑制壁流式蜂窝陶瓷载体中的有机物燃烧,避免载体内外温差,提高烧成合格率;同时其中温热固性,能够提供壁流式蜂窝陶瓷载体中温强度(有机粘结剂分解后蜂窝陶瓷载体坯体没有了强度),能够有效抵抗升温过程中由于温差产生的热应力。使用高温粘结剂可以使壁流式蜂窝陶瓷载体烧制过程中迅速升温,有助于提高生产效率,具有节能环保的优势。
附图说明
图1为本发明所采用的高温粘结剂的差热曲线图;
图2为本发明所采用的片状氧化铝的SEM图;
图3为本发明所采用的针状生高岭土的SEM图;
图4为本发明实施例6所制备得到的DPF微孔分布图;
图5为本发明实施例6所制备得到的DPF扫面电镜图。
具体实施方式
以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=20μm且径厚比为8:1的片状氧化铝34.54wt%;
D50=5.0μm的高活性氧化镁13.46wt%;
粒度分布窄(D10=18.189μm,D50=29.262μm,D90=38.900μm,分布系数P=0.71)的球形熔融石英49.00wt%;
D50=1.0μm且径厚比为100:1的针状生高岭土3.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
粒度分布窄(D10=17.189μm,D50=25.264μm,D90=37.920μm,分布系数P=0.82)高温粘结剂耐热酚醛树脂12wt%;
羟丙基甲基纤维素8.0wt%;
聚醚多元醇0.5wt%;
基础油1.0wt%;
水30wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法包括如下步骤:
(1)按照选定的材料,取34.54kg氧化铝、13.46kg氧化镁、49.00kg 球形熔融石英、3.00kg针状生高岭土,以及8kg羟丙基甲基纤维素、12.0kg 耐热酚醛树脂,充分干混,得到混合粉料;
(2)将所得混合粉料加30kg水,0.5kg的聚醚多元醇和1kg基础油进行常规捏合,并经过真空练泥处理,挤制成Φ330.2×304.8mm、300cpsi、壁厚5mil的DPF载体,经常规干燥(100-130℃,≥12小时)处理,制得坯体;
(3)将所得坯体按照快速烧制曲线(表1)进行蜂窝陶瓷催化剂载体的烧制,即得成品。
实施例2
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=4.0μm且径厚比为20:1的片状氧化铝33.66wt%;
D50=0.1μm的高活性氧化镁13.43wt%;
粒度分布窄(粒度分布:D10=18.038μm,D50=26.329μm,D90=38.618μm,分布系数P=0.78)的球形熔融石英47.91wt%;
D50=3.0μm且径厚比为70:1的针状生高岭土5.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
粒度分布窄(D10=15.062μm,D50=22.264μm,D90=38.024μm,分布系数P=1.03)高温粘结剂耐热酚醛树脂13wt%;
羟丙基甲基纤维素8.0wt%;
聚醚多元醇0.5wt%;
基础油1.20wt%;
水31wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法包括如下步骤:
(1)按照选定的材料,取33.66kg氧化铝、13.43kg氧化镁、47.91kg 球形熔融石英、5.00g针状生高岭土,以及8.00kg羟丙基甲基纤维素、13.00kg 聚酰亚胺树脂,充分干混,得到混合粉料;
(2)将所得混合粉料加31kg水,0.5kg的聚醚多元醇和1.2kg基础油进行常规捏合,并经过真空练泥处理,挤制成Φ330.2×254mm、300cpsi、壁厚 6mil的蜂窝陶瓷催化剂载体,经常规干燥(100-130℃,≥12小时)处理,制得坯体;
(3)将所得坯体快速烧制曲线(表1)进行蜂窝陶瓷催化剂载体的烧制,即得成品。
实施例3
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=1.5μm且径厚比为8:1的片状氧化铝32.79wt%;
D50=0.8μm的高活性氧化镁13.38wt%;
窄粒径分布(粒度分布:D10=20.038μm,D50=29.329μm,D90=37.618μm,分布系数P=0.60)的球形熔融石英46.82wt%;
D50=7.0μm且径厚比为60:1的针状生高岭土7.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
窄粒径分布(粒度分布:D10=18.008μm,D50=29.329μm,D90=39.725μm,分布系数P=0.74)高温粘结剂耐热酚醛树脂15.00wt%;
羟丙基甲基纤维7.5wt%;
聚醚多元醇0.5wt%;
基础油1.30wt%;
水32.00wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法包括如下步骤:
(1)按照选定的材料,取32.79kg氧化铝、13.38kg氧化镁、46.82kg 球形熔融石英、7.00kg针状生高岭土,以及7.50kg甲基纤维素、15.00kg耐热酚醛树脂,充分干混,得到混合粉料;
(2)将所得混合粉料加32kg水,0.5kg的聚醚多元醇和1.30kg基础油进行常规捏合,并经过真空练泥处理,挤制成Φ330.2×228.6mm、300cpsi、壁厚5mil的蜂窝陶瓷催化剂载体,经常规干燥(100-130℃,≥12小时)处理,制得坯体;
(3)将所得坯体按照快速烧制曲线(表1)进行蜂窝陶瓷催化剂载体的烧制,即得成品。
实施例4
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=1.0μm且径厚比为12:1的片状氧化铝31.92wt%;
D50=3.0μm的高活性氧化镁13.34wt%;
窄粒度分布(粒度分布:D10=17.512μm,D50=26.169μm,D90=41.308μm,分布系数P=0.91)的球形熔融石英45.74wt%;
D50=12.0μm且径厚比为90:1的针状生高岭土9.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
窄粒径分布(粒度分布:D10=18.830μm,D50=30.426μm,D90=39.816μm,分布系数P=0.69)聚酰亚胺树脂16.00wt%;
羟丙基甲基纤维素7.50wt%;
聚醚多元醇0.50wt%;
基础油1.40wt%;
水33.0wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法同实施例1。
实施例5
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=2.5μm且径厚比为8:1的片状氧化铝31.48wt%;
D50=3.5μm的高活性氧化镁13.32wt%;
窄粒径分布(粒度分布:D10=17.462μm,D50=26.880μm,D90=44.164μm,分布系数P=0.99)的球形熔融石英45.19wt%;
D50=10.0μm且径厚比为85:1的针状生高岭土10wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
窄粒径分布(粒度分布:D10=17.728μm,D50=23.426μm,D90=48.714μm,分布系数P=1.32)聚酰亚胺树脂17.0wt%;
羟丙基甲基纤维素7.0wt%;
聚醚多元醇0.5wt%;
基础油1.40wt%;
水33wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法同实施例1。
实施例6
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=3.5μm且径厚比为15:1的片状氧化铝31.04wt%;
D50=0.5μm的高活性氧化镁13.30wt%;
窄粒径分布(微球粒度分布:D10=24.324μm,D50=31.894μm, D90=34.164μm,分布系数P=0.31)的球形熔融石英44.65wt%;
D50=7.5μm且径厚比为85:1的针状生高岭土11.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
窄粒径分布(粒度分布:D10=20.826μm,D50=26.324μm,D90=30.732μm,分布系数P=0.40)耐热酚醛树脂17.00wt%;
羟丙基甲基纤维素7.00wt%;
聚醚多元醇0.5wt%;
基础油1.50wt%;
水34wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法同实施例1。
实施例7
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=2.5μm且径厚比为15:1的片状氧化铝29.29wt%;
D50=2.5μm的高活性氧化镁13.22wt%;
窄粒径分布(粒度分布:D10=21.784m,D50=30.368μm,D90=39.024μm,分布系数P=0.57)的球形电熔石英42.48wt%;
D50=7.0μm且径厚比为75:1的针状生高岭土15wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
窄粒径分布(粒度分布:D10=20.847m,D50=29.852μm,D90=38.426μm,分布系数P=0.59)耐热酚醛树脂18.0wt%;
羟丙基甲基纤维素7.0wt%;
聚醚多元醇0.5wt%;
基础油1.50wt%;
水34wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法同实施例1。
对比例1
本实施例所述的蜂窝陶瓷催化剂载体,其制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量含量的组分:
D50=4.0μm且径厚比为6:1的片状氧化铝34.54wt%;
D50=4.0μm的高活性氧化镁13.46wt%;
宽粒度分布(粒度分布:D10=8.189μm,D50=28.262μm,D90=94.32μm,分布系数P=3.05)的角形熔融石英48.99wt%;
D50=1.0μm且径厚比为60:1的针状生高岭土3.00wt%;
以所述无机主料的总量计,所述添加剂包括如下质量含量比例的组分:
宽粒度分布(D10=7.189μm,D50=25.264μm,D90=87.920μm,分布系数P=3.19)的PMMA有机玻璃12wt%;
羟丙基甲基纤维素8.0wt%;
聚醚多元醇0.5wt%;
基础油1.0wt%;
水30wt%。
本实施例所述的蜂窝陶瓷催化剂载体,其制备方法包括如下步骤:
(1)按照选定的材料,取34.54kg氧化铝、13.46kg氧化镁、48.99kg 角形熔融石英、3.00kg针状生高岭土,12.00kg的PMMA有机玻璃,以及 8.0kg甲基纤维素和充分干混,得到混合粉料;
(2)将所得混合粉料加聚醚多元醇0.5kg,1.0kg基础油和30kg水进行常规捏合,并经过真空练泥处理,挤制成Φ330.2×152.4mm、300cpsi、壁厚 5mil的DPF载体,经常规干燥(100-130℃,≥12小时)处理,制得坯体;
(3)将所得坯体传统烧成曲线(表2)进行蜂窝陶瓷催化剂载体的烧制,即得成品。
表1:快速烧制曲线
Figure BDA0003515342400000141
表2:传统烧成曲线
Figure BDA0003515342400000142
实验例
1、烧制过程参数测试
分别对上述实施例1-7及对比例1中所述蜂窝陶瓷烧制过程的产品合格率等数据进行测定,具体测定结果见下表3。
表3烧制过程参数测试结果比较
Figure BDA0003515342400000151
由表3中数据可知,本发明所述大规格超薄壁蜂窝陶瓷催化剂载体中,添加18.0%的高温粘结剂,即使是高的生高岭土含量(实施例7已经达到15%) 或者高的有机物添加量(实施例7达到27%),对蜂窝陶瓷烧成过程中生坯强度保持、有机物分解阶段升温速率、总烧成时间、产品合格率有非常显著的影响;通过根据有机物含量增多,相应增加高温粘结剂的用量,可以使蜂窝陶瓷载体瓷烧成过程中有机物分解阶段升温速率从4℃/h提高到100℃/h,总烧成时间从172.25h降低至42.45h,产品合格率从84.6%提升至超过99%,具有显著的效果。
2、蜂窝陶瓷催化剂载体产品性能测试
分别对上述实施例1-7及对比例1中制得蜂窝陶瓷催化剂载体产品的性能进行测试,测试指标包括热膨胀系数(室温-800℃)、孔隙率、微孔分布系数,记录于下表4。
表4蜂窝陶瓷产品性能测试结果
Figure BDA0003515342400000152
Figure BDA0003515342400000161
表5蜂窝陶瓷产品PN性能测试结果
备注:PN粒径≥10nm
Figure BDA0003515342400000162
Figure BDA0003515342400000171
从表4数据可知,本发明所述方法制得DPF载体的热膨胀系数都比较低,都小于等于0.4×10-6/℃,从实施例1到实施例7可以看出,随着针状生高岭土用量的增加,产品热膨胀系数呈下降的趋势,甚至达到0.08×10-6/℃;从表4数据可知,本发明所述方法制得DPF载体微孔分布系数K都满足 K≤1.7,甚至实施例6可以达到K=1.12(图4、图5),分析对比球形熔融石英、高温粘结剂粒度分布系数对DPF微孔分布系数影响规律,可以得出,随着球形熔融石英、高温粘结剂粒度分布系数的降低,DPF微孔分布系数K也在降低,DPF微孔分布系数是球形熔融石英和高温粘结剂的粒度分布共同作用的结果。
从表5数据可知,本发明所述方法制得DPF载进行台架实验,在 PN>10nm条件下,无论WHTC、WHSC测试,PN排放都满足<1×1012#,而且随着DPF微孔孔分布系数降低,PN排放越低。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于,包括以下步骤:
1)按照制备原料的配比,取选定量的氧化铝、氧化镁、球形熔融石英、针状生高岭土、有机粘结剂和高温粘结剂,充分干混,得到混合粉料;
2)将步骤1)所得的混合粉料加聚醚多元醇分散剂、基础油和水进行捏合,并经过真空练泥处理,挤制成所需尺寸的壁流式蜂窝陶瓷载体,经干燥处理,制得坯体;
3)将步骤2)所得的坯体进行烧制,即得所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体;
所述制备原料包括无机主料及添加剂;
所述无机主料以其总量计,包括如下质量百分含量的各组分:
氧化铝29.2-34.5wt%;
氧化镁13.2-13.5wt%;
球形熔融石英42.4-49.0wt%;
针状生高岭土3.0-15.0wt%;
所述添加剂以所述无机主料的总量计,包括如下质量百分比的各组分:
高温粘结剂12-20Wt%;
有机粘结剂7.0-8.0wt%;
聚醚多元醇分散剂0.5wt%;
基础油1.0-1.5wt%;
水30-34wt%。
2.根据权利要求1所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于:所述高温粘结剂选自耐热酚醛树脂或聚酰亚胺树脂。
3.根据权利要求1所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于:
所述氧化铝为D50=1.0-6.0μm且径厚比为8:1-20:1的片状氧化铝;
所述氧化镁为D50=0.1-5.0μm的高活性氧化镁;
所述球形熔融石英中:D50=26.0-32.0um;SiO2≥99.5%,方石英相≤0.5%;K2O+Na2O≤0.05%;D10≥17μm;D90≤44μm;粒度分布系数P=(D90-D10)/D50≤1.0;
所述针状生高岭土的D50为1.0-12μm且径厚比为60-100倍;
所述高温粘结剂中:D50=18.0-30.0um;D10≥20μm;D90≤48μm;粒度分布系数P=(D90-D10)/D50≤1.5。
4.根据权利要求1所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于:所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体中:尺寸为Φ190.5-330.2×(152.4-304.8)mm;孔密度不低于200cpsi;壁厚为5-7mil。
5.根据权利要求1所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于:所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体中,孔密度不低于300cpsi。
6.根据权利要求1至5任一所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于,步骤3)所述的烧制的温度控制过程包括依次进行的:吸附水脱附;高温粘结剂热塑流动;有机物分解、高温粘结剂固化;针状高岭土分解;莫来石化;堇青石形成;保温。
7.根据权利要求6所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体的制备方法,其特征在于,步骤3)所述的烧制的制度如下:
室温-130℃,升温速率为50℃/H,升温时间为2;
130-600℃,升温速率为100℃/H,升温时间为6.7;
600-1000℃,升温速率为80℃/H,升温时间为5;
1000-1100℃,升温速率为50℃/H,升温时间为2;
1100-1200℃,升温速率为100℃/H,升温时间为1;
1200-1415℃,升温速率为20℃/H,升温时间为10.75;
1415-1415℃,升温速率为0℃/H,升温时间为16。
8.一种根据权利要求1至7任一所述的制备方法制备得到的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体。
9.根据权利要求8所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体,其特征在于:尺寸为Φ190.5-330.2×(152.4-304.8)mm;孔密度不低于200cpsi;壁厚为5-7mil。
10.根据权利要求9所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体,其特征在于:所述的大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体中,孔密度不低于300cpsi。
CN202210162363.XA 2022-02-22 2022-02-22 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法 Pending CN115108819A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210162363.XA CN115108819A (zh) 2022-02-22 2022-02-22 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210162363.XA CN115108819A (zh) 2022-02-22 2022-02-22 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法

Publications (1)

Publication Number Publication Date
CN115108819A true CN115108819A (zh) 2022-09-27

Family

ID=83325240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210162363.XA Pending CN115108819A (zh) 2022-02-22 2022-02-22 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法

Country Status (1)

Country Link
CN (1) CN115108819A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063095A (zh) * 2023-03-06 2023-05-05 山东奥福环保科技股份有限公司 薄壁、大中值孔径堇青石蜂窝陶瓷过滤器及其制备方法和应用
CN116104612A (zh) * 2023-03-06 2023-05-12 山东奥福环保科技股份有限公司 薄壁、窄微孔分布堇青石柴油颗粒过滤器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250084A (zh) * 2015-03-24 2017-10-13 日立金属株式会社 陶瓷蜂窝结构体
CN113786689A (zh) * 2021-09-22 2021-12-14 重庆奥福精细陶瓷有限公司 一种窄微孔分布堇青石蜂窝陶瓷过滤器及其制备方法和应用
CN114057474A (zh) * 2021-11-16 2022-02-18 重庆奥福精细陶瓷有限公司 一种大规格超薄壁蜂窝陶瓷催化剂载体及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250084A (zh) * 2015-03-24 2017-10-13 日立金属株式会社 陶瓷蜂窝结构体
CN113786689A (zh) * 2021-09-22 2021-12-14 重庆奥福精细陶瓷有限公司 一种窄微孔分布堇青石蜂窝陶瓷过滤器及其制备方法和应用
CN114057474A (zh) * 2021-11-16 2022-02-18 重庆奥福精细陶瓷有限公司 一种大规格超薄壁蜂窝陶瓷催化剂载体及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063095A (zh) * 2023-03-06 2023-05-05 山东奥福环保科技股份有限公司 薄壁、大中值孔径堇青石蜂窝陶瓷过滤器及其制备方法和应用
CN116104612A (zh) * 2023-03-06 2023-05-12 山东奥福环保科技股份有限公司 薄壁、窄微孔分布堇青石柴油颗粒过滤器及其制备方法
CN116104612B (zh) * 2023-03-06 2023-08-01 山东奥福环保科技股份有限公司 薄壁、窄微孔分布堇青石柴油颗粒过滤器及其制备方法

Similar Documents

Publication Publication Date Title
EP1890983B1 (en) Aluminum titanate ceramic forming batch mixtures and green bodies including pore former combinations and methods of manufacturing and firing same
CN115108819A (zh) 一种大规格薄壁窄孔径分布的壁流式蜂窝陶瓷催化剂载体及其制备方法
CN108367224B (zh) 多孔陶瓷材料、过滤器和制品
US6942713B2 (en) Ceramic body based on aluminum titanate
EP1979290B1 (en) Batch composition for the manufacture of a porous cordierite ceramic article and method for making a porous cordierite ceramic article
US7364689B2 (en) Method of producing cordierite honeycomb structure
EP2817274B1 (en) Honeycomb structure comprising a cement skin composition with crystalline inorganic fibrous material
US8729436B2 (en) Drying process and apparatus for ceramic greenware
CN108017409B (zh) 一种低温烧结的碳化硅蜂窝陶瓷材料及制备方法
EP2607336A1 (en) Manufacturing method for ceramic honeycomb structure
CN102503533A (zh) 碳化硅蜂窝陶瓷的制备方法
US20110171099A1 (en) Process for manufacturing a porous sic material
CN109133860B (zh) 一种蜂窝陶瓷催化剂载体及其制备方法
CN110143825B (zh) 一种窄孔径分布的堇青石陶瓷蜂窝过滤体及其制备方法
JP5442630B2 (ja) セラミックを形成する結晶化可能なガラスを有するハニカムセメントおよびそのための方法
CA2766653A1 (en) Process for producing cemented and skinned acicular mullite honeycomb structures
CN114057474B (zh) 一种大规格超薄壁蜂窝陶瓷催化剂载体及其制备方法和应用
CN108997007B (zh) 一种柴油机排气后处理用蜂窝陶瓷过滤体及其制备方法
CN116669830B (zh) 碳化硅陶瓷蜂窝状结构体及其制造方法
CN109305796B (zh) 一种汽油机排气后处理用蜂窝陶瓷过滤体及其制备方法
CN116685386B (zh) 碳化硅陶瓷蜂窝状结构体及其制造方法
KR102024115B1 (ko) 열팽창 계수가 개선된 디젤 입자 필터 제조 방법 및 이를 포함하는 디젤 입자 필터
JP4699885B2 (ja) ハニカム構造体の製造方法
CN117645468A (zh) 一种蜂窝陶瓷载体材料及其制备方法和应用
Nie et al. Effect of starch pore formers with different particle sizes on cordierite porous ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220927