CN115090251A - 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用 - Google Patents

一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用 Download PDF

Info

Publication number
CN115090251A
CN115090251A CN202210754756.XA CN202210754756A CN115090251A CN 115090251 A CN115090251 A CN 115090251A CN 202210754756 A CN202210754756 A CN 202210754756A CN 115090251 A CN115090251 A CN 115090251A
Authority
CN
China
Prior art keywords
plastic
limestone
pollutants
steps
limestone particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210754756.XA
Other languages
English (en)
Inventor
李宵慧
王号
王雨
张彤宇
张媛媛
王在峰
徐红霞
吴吉春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210754756.XA priority Critical patent/CN115090251A/zh
Publication of CN115090251A publication Critical patent/CN115090251A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用。该方法先将石灰石和微塑料进行处理成不同的粒径和浓度,采用固定床装置模拟快速砂滤器(RSF)过程,将不同质量和不同粒径的石灰石颗粒采用湿装法装填于柱装置中,向柱中注入微塑料溶液,收集样品,进行浓度测定,绘制标准化出水浓度与孔隙体积的关系图,获得纳米塑料的穿透曲线,根据质量回收率计算去除效率,去除率达到70%,去除效果好。

Description

一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及 应用
技术领域
本发明涉及污染物处理技术及应用,特别涉及一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用。
背景技术
微塑料一般指粒径小于5mm的塑料碎片和颗粒,作为一种新型污染物已经在世界范围内水体环境中(淡水、海水、地下水)被广泛检出。
环境中微塑料来源广泛,污水处理厂是防止生活、工业微塑料排入环境中的重要途径,但是由于处理工艺等限制导致截留不够完全导致污水处理厂成为自然环境中微塑料污染的重要来源之一。针对自然水体、生活及工业废水中微塑料污染严峻及现有处理技术有待提高的现状,研究高效环保的水环境微塑料污染去除方法具有重要的现实意义。
快速砂滤器(RSF)是污水处理厂三级处理中的重要环节之一,主要利用天然砂和其他颗粒介质作为过滤材料去除污染物,具有高效、运行和维护成本低等优点。随着微塑料污染的加剧,RSF技术的不断优化也成为MPs污染与修复领域的重要研究方向(Funck,M.;A1-Azzawi,M.;Yildirim,A.;Knoop,O.;Tuerk,J.,Release of microplastic particlesto the aquatic environment via wastewater treatment plants:The impact of sandfilters as tertiary treatment.Chemical Engineering Journal 2021,(1526),130933.)。值得注意的是,纳米微塑料粒径很小,由于分离检测技术的限制导致通过污水处理厂被排放到环境中的微塑料的量可能被大大低估,因此选择环保高效的填充材料提升RSF系统对微塑料尤其是纳米塑料的去除能力对于控制环境中微塑料污染非常迫切。
石灰石是渗透性反应屏障技术中最常见的低成本材料之一,小粒径天然和改性石灰石颗粒对重金属、磷酸盐、氟化物、染料等多种污染物表现出极大的吸附能力,其特殊的化学成分、不规则的形状、较粗糙的表面和较少的负表面使其具有去除微塑料颗粒的潜力,而石灰石去除微塑料这方面的研究尚属空白。
已有相关文献报道了利用生物炭、改性沸石等作为填充材料进行微塑料滤除材料,尚未有使用天然石灰石滤除石灰石的报道(10.Wang,z.;Sedighi,M.;Lea-Langton,A.,Filtration of Microplastic Spheres by Biochar:Removal Efficiency andImmobilisation Mechanisms.Water Research 2020,184,(1),116165.11.Shen,M.;Hu,T.;Huang,W.;Song,B.;Zeng,G.;Zhang,Y.,Removal of microplastics from wastewaterwith aluminosilicate flter media and their surfactant-modified products:Performance,mechanism and utilization.Chemical Engineering Journal 2021,421,129918.)。现有文献报道中针对的微塑料多为微米级微塑料,对于纳米塑料的关注度尚不足,所用材料包括生物炭、改性材料等均需要一定的物理化学处理,相对会耗时或产生一定费用。
发明内容
发明目的:本发明目的是提供一种高去除率的采用天然石灰石颗粒去除水体中纳米塑料污染物方法。
本发明的另一目的是提供所述方法的应用。
技术方案:所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,包括如下步骤:
(1)石灰石处理:将石灰石原石破碎成小粒径石灰石颗粒,过筛获得需要粒径的颗粒;
(2)微塑料处理:取聚苯乙烯(PS)、羧基改性聚苯乙烯(PS-COOH)和氨基改性聚苯乙烯(PS-NH2)纳米塑料微球加水制成母液,分别使用去离子水将母液稀释备用;
(3)固定床装置去除污染物:使用固定床装置模拟快速砂滤器(RSF)过程,将不同质量和不同粒径的石灰石颗粒采用湿装法装填于柱装置中,向柱中注入微塑料溶液,收集样品,进行浓度测定,绘制标准化出水浓度与孔隙体积的关系图,获得纳米塑料的穿透曲线,根据质量回收率计算去除效率。
进一步地,步骤(1)需要的粒径为20-26目或26-45目。
进一步地,步骤(2)分隔时避免石英砂和石灰石混合。
进一步地,所述步骤(1)不同质量包括0g、35g和70g。
进一步地,所述步骤(3)石灰石两端分别装有石英砂进行分隔,柱子两端均使用不锈钢网筛密封砂石并分散水流,使用蠕动泵链接在柱子下端,控制水流方向为上升流和速度。
进一步地,所述步骤(3)中使用紫外分光光度计在200nm波长下进行浓度测定。
进一步地,所述去除率=100%-质量回收率,
回收率计算公式为:
Figure BDA0003720937110000021
式中:C0为进样溶液的初始浓度,V为进样溶液体积,Cn为流出液第n个样品的浓度,Vn是流出液第n个样品的体积。
所述的方法在去除水体中纳米塑料污染物中的应用。
有益效果:本发明与现有技术相比,具有如下优势:本发明首次将天然石灰石用于微塑料污染物的处理,同时,采用特定的固定床装置模拟快速砂滤器(RSF)过程,获得了较好的去除效果,去除率达到70%,不同颗粒的石灰石也实现了不同的去除效果。
附图说明
图1为固定床装置示意图;
图2为纳米塑料在石英砂-石灰石柱中的穿透曲线(石灰石颗粒粒径20-26mesh);
图3为纳米塑料在石英砂-石灰石柱中的穿透曲线(石灰石颗粒粒径26-45mesh)。
具体实施方式
本实施例的微塑料处理方法如下:
1.材料准备
石灰石:使用破碎机将石灰石原石破碎成小粒径石灰石颗粒,使用不锈钢筛筛至理想粒径,本实验中设定两组粒径,20-26目和26-45目。分别使用自来水和去离子水清洗石灰石颗粒以去除表面的灰尘,于烘箱中45℃条件下烘干备用。
微塑料:购买粒径为100nm的聚苯乙烯(PS)、羧基改性聚苯乙烯(PS-COOH)、氨基改性聚苯乙烯(PS-NH2)纳米塑料微球,使用去离子水将母液稀释至5mg/L备用。
2.实验步骤
使用固定床柱实验装置模拟快速砂滤器(RSF)过程,将石灰石采用湿装法装填于柱装置中,石灰石两端分别装有石英砂进行分隔,装填过程尽量小心以避免石英砂和石灰石之间的混合。柱子两端均使用不锈钢网筛密封砂石并分散水流。使用蠕动泵链接在柱子下端,控制水流方向(上升流)和速度(本实验中速度为7mL/min),向砂柱中注入一定量(5个孔隙体积)的微塑料溶液,通过自动收集器收集样品(每隔1min收集一个样品),及时使用紫外分光光度计在200nm波长下进行浓度测定。通过绘制标准化出水浓度(C/C0,C为每个样品的浓度,C0为进样溶液的初始浓度)与孔隙体积的关系图,获得纳米塑料的穿透曲线(如图2,3所示)。然后根据质量回收率计算去除效率。
根据微塑料在不同砂柱中的穿透曲线计算出不同实验条件下石灰石对微塑料的回收率。
回收率计算公式为:
Figure BDA0003720937110000031
式中:C0为进样溶液的初始浓度,V为进样溶液体积,Cn为流出液第n个样品的浓度,Vn是流出液第n个样品的体积。
去除率=100%-质量回收率。
3、技术效果
两种粒径的石灰石对PS、PS-COOH、PS-NH2均表现出较好的去除效果,且去除率随石灰石粒径减小而增大。对两种粒径的石灰石颗粒,对纳米塑料颗粒的去除率均随装填石灰石质量的增加而显著增大。相同条件下,对三种纳米塑料的去除率没有明显的差异。装填20-26目石灰石,随装填质量由0g增大到35g,70g,该装置对纳米塑料的去除效率由<10%逐渐增大到~20%和~50%。装填26-45目石灰石,装填量由0g增大到70g时,对三种纳米的塑料的去除率由<10%增大到~70%,也就是说去除率约变为原来的10倍。

Claims (8)

1.一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:包括如下步骤:
(1)石灰石处理:将石灰石原石破碎成小粒径石灰石颗粒,过筛获得需要粒径的颗粒;
(2)微塑料处理:取聚苯乙烯、羧基改性聚苯乙烯和氨基改性聚苯乙烯纳米塑料微球加水制成母液,分别使用去离子水将母液稀释备用;
(3)固定床装置去除污染物:使用固定床装置模拟快速砂滤器过程,将不同质量和不同粒径的石灰石颗粒采用湿装法装填于柱装置中,向柱中注入微塑料溶液,收集样品,进行浓度测定,绘制标准化出水浓度与孔隙体积的关系图,获得纳米塑料的穿透曲线,根据质量回收率计算去除效率。
2.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:步骤(1)需要的粒径为20-26目或26-45目。
3.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:步骤(2)分隔时避免石英砂和石灰石混合。
4.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:所述步骤(1)不同质量包括0g、35g和70g。
5.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:所述步骤(3)石灰石两端分别装有石英砂进行分隔,柱子两端均使用不锈钢网筛密封砂石并分散水流,使用蠕动泵链接在柱子下端,控制水流方向为上升流和速度。
6.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:所述步骤(3)中使用紫外分光光度计在200nm波长下进行浓度测定。
7.根据权利要求1所述的采用天然石灰石颗粒去除水体中纳米塑料污染物方法,其特征在于:所述去除率=100%-质量回收率,
回收率计算公式为:
Figure FDA0003720937100000011
式中:C0为进样溶液的初始浓度,V为进样溶液体积,Cn为流出液第n个样品的浓度,Vn是流出液第n个样品的体积。
8.权利要求1-7任一项所述的方法在去除水体中纳米塑料污染物中的应用。
CN202210754756.XA 2022-06-29 2022-06-29 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用 Pending CN115090251A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210754756.XA CN115090251A (zh) 2022-06-29 2022-06-29 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210754756.XA CN115090251A (zh) 2022-06-29 2022-06-29 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用

Publications (1)

Publication Number Publication Date
CN115090251A true CN115090251A (zh) 2022-09-23

Family

ID=83295635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210754756.XA Pending CN115090251A (zh) 2022-06-29 2022-06-29 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用

Country Status (1)

Country Link
CN (1) CN115090251A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011686A1 (en) * 2006-07-13 2008-01-17 Rajiv Manohar Banavalie Method and composition for removing contaminants from an aqueous solution
CN113998757A (zh) * 2021-11-08 2022-02-01 暨南大学 一种快速高效去除水体中纳米塑料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011686A1 (en) * 2006-07-13 2008-01-17 Rajiv Manohar Banavalie Method and composition for removing contaminants from an aqueous solution
CN113998757A (zh) * 2021-11-08 2022-02-01 暨南大学 一种快速高效去除水体中纳米塑料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAOTAO LU等: "Effects of clay minerals on the transport of nanoplastics through water-saturated porous media", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 796, 12 July 2021 (2021-07-12), pages 1 - 7, XP086770900, DOI: 10.1016/j.scitotenv.2021.148982 *

Similar Documents

Publication Publication Date Title
Shen et al. Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant
Li et al. Analytical methods and environmental processes of nanoplastics
Cheung et al. Improving phosphate removal of sand infiltration system using alkaline fly ash
Wang et al. Chitosan membrane adsorber for low concentration copper ion removal
CN102190345B (zh) 一种可循环再生的氢氧化镁吸附剂富集水中低浓度重金属的方法
Zhao et al. Adsorption of methyl orange from aqueous solution using chitosan/diatomite composite
CN104289185A (zh) 一种吸附去除水中重金属的颗粒滤料及其制备方法
DK2010457T3 (da) Fremgangsmåde til fjernelse af materialer fra en væskestrøm
CN205270326U (zh) 一种污染土壤淋洗修复系统
Malakootian et al. The efficiency of lead biosorption from industrial wastewater by micro-alga Spirulina platensis
Khan et al. Evaluation of coal as adsorbent for phosphate removal
Guechi et al. Removal of cadmium and copper from aqueous media by biosorption on cattail (Typha angustifolia) leaves: Kinetic and isotherm studies
CN104014303A (zh) 一种应用于悬浮污染处理的复合材料及其制备方法
CN107175065A (zh) 一种有机无机复合污染黄土淋洗液的处理及再利用方法
CN110614265A (zh) 一种适用于污染土壤异位修复的干湿两段筛分设备与方法
CN115090251A (zh) 一种采用天然石灰石颗粒去除水体中纳米塑料污染物方法及应用
Qiu et al. Experiments and mechanisms for leaching remediation of lead-contaminated soil by enhancing permeability
CN212652174U (zh) 一种用于活性炭的筛分除尘系统
KR100599222B1 (ko) 유류오염토양 복원공법
Novais et al. Alkali-activated materials as adsorbents for water and wastewater treatment
Thanhmingliana et al. Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies
Ali et al. Limestone residues of sculpting factories utilization as sorbent for removing Pb (II) ion from Aqueous Solution
Li et al. Effect of thermal regeneration on the breakthrough performance of ceramsite saturated with methylene blue
Sweidan et al. A framework for the investigation of biowaste materials as potential adsorbents for water treatment
Aisien et al. Potential Application of Recycled Rubber from Scrap Tire in the Removal of Phenol from Aqueous Solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination