CN115090125A - Method, device and product for preparing polyamide thin-layer composite film by transfer printing - Google Patents
Method, device and product for preparing polyamide thin-layer composite film by transfer printing Download PDFInfo
- Publication number
- CN115090125A CN115090125A CN202210797728.6A CN202210797728A CN115090125A CN 115090125 A CN115090125 A CN 115090125A CN 202210797728 A CN202210797728 A CN 202210797728A CN 115090125 A CN115090125 A CN 115090125A
- Authority
- CN
- China
- Prior art keywords
- film
- polyamide
- layer composite
- polyamine
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004952 Polyamide Substances 0.000 title claims abstract description 118
- 229920002647 polyamide Polymers 0.000 title claims abstract description 118
- 239000002131 composite material Substances 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000010023 transfer printing Methods 0.000 title claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 94
- 239000002120 nanofilm Substances 0.000 claims abstract description 37
- 229920000768 polyamine Polymers 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 238000007731 hot pressing Methods 0.000 claims abstract description 22
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000013329 compounding Methods 0.000 claims abstract description 18
- 150000007519 polyprotic acids Polymers 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 16
- 238000000926 separation method Methods 0.000 claims abstract description 16
- 239000011248 coating agent Substances 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 9
- 238000003825 pressing Methods 0.000 claims abstract 2
- 239000012528 membrane Substances 0.000 claims description 84
- 239000000243 solution Substances 0.000 claims description 52
- 239000000178 monomer Substances 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 33
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 14
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims description 13
- 229940018564 m-phenylenediamine Drugs 0.000 claims description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 claims description 8
- -1 diformyl chlorides Chemical class 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 claims description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical group NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 claims description 2
- FYXKZNLBZKRYSS-UHFFFAOYSA-N benzene-1,2-dicarbonyl chloride Chemical group ClC(=O)C1=CC=CC=C1C(Cl)=O FYXKZNLBZKRYSS-UHFFFAOYSA-N 0.000 claims description 2
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 description 82
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 56
- 238000001728 nano-filtration Methods 0.000 description 45
- 239000002585 base Substances 0.000 description 33
- 230000004907 flux Effects 0.000 description 31
- 238000012695 Interfacial polymerization Methods 0.000 description 17
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 9
- 229940043267 rhodamine b Drugs 0.000 description 9
- 238000010998 test method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 241000237536 Mytilus edulis Species 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000003592 biomimetic effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 235000020638 mussel Nutrition 0.000 description 3
- 229920006284 nylon film Polymers 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000012621 metal-organic framework Substances 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920006264 polyurethane film Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003849 solvent resist ant nanofiltration Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 229920006130 high-performance polyamide Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种转移印花制备聚酰胺薄层复合膜的方法、装置及产品,方法包括:将多元胺溶液通过涂布机构均匀涂布在传送机构的表面,形成多元胺液膜;将表面具有液膜的传送机构浸入多元酰氯溶液中,多元胺与多元酰氯在界面处发生聚合反应,生成聚酰胺纳米薄膜;通过复合机构多孔基膜从聚酰胺纳米薄膜上侧与其进行复合,得到聚酰胺薄层复合膜;通过热压机构施加压力与温度,增强多孔基膜与聚酰胺纳米薄膜的复合强度;聚酰胺薄层复合膜经过脱离机构之后进行干燥和收卷。本发明的制备方法操作简便,可以连续化、规模化地将自由界面合成的聚酰胺纳米薄膜与各种多孔基膜进行复合。
The invention discloses a method, a device and a product for preparing a polyamide thin-layer composite film by transfer printing. The method comprises: uniformly coating a polyamine solution on the surface of a conveying mechanism through a coating mechanism to form a polyamine liquid film; The conveying mechanism with the liquid film is immersed in the polybasic acid chloride solution, and the polyamine and the polybasic acid chloride undergo a polymerization reaction at the interface to form a polyamide nano-film; the porous base film of the compounding mechanism is compounded with it from the upper side of the polyamide nano-film to obtain a polyamide Thin-layer composite film; applying pressure and temperature through a hot pressing mechanism to enhance the composite strength of the porous base film and the polyamide nano-film; the polyamide thin-layer composite film is dried and rolled after the separation mechanism. The preparation method of the invention is easy to operate, and the polyamide nano-film synthesized at the free interface can be composited with various porous base films continuously and on a large scale.
Description
技术领域technical field
本发明涉及膜分离技术领域,尤其涉及一种转移印花制备聚酰胺薄层复合膜的方法、装置及产品。The invention relates to the technical field of membrane separation, in particular to a method, a device and a product for preparing a polyamide thin-layer composite membrane by transfer printing.
背景技术Background technique
聚酰胺薄层复合膜因其多孔基膜和选择分离层可选范围广以及选择分离层表面性质易于精确调控而被广泛应用于分离纯化等领域,在海水淡化、废水处理、药物浓缩、食品脱色等方面具有重要应用。界面聚合法由于操作条件温和、工艺简单、合成效率高、制备成本低廉而成为制备聚酰胺薄层复合膜的主要方法。但是,由于界面聚合反应速率过快,加大了对界面聚合调控的难度,使复合膜性能的提升成为挑战与难题。因此增加对界面聚合反应过程的可控性是制备结构可控高性能复合膜的充分条件。Polyamide thin-layer composite membranes are widely used in separation and purification and other fields because of their wide selection of porous base membranes and selective separation layers, and easy and precise control of the surface properties of selective separation layers. and other important applications. The interfacial polymerization method has become the main method for preparing polyamide thin-layer composite films due to its mild operating conditions, simple process, high synthesis efficiency and low preparation cost. However, due to the excessively fast rate of interfacial polymerization, it is more difficult to control the interfacial polymerization, which makes the improvement of the performance of composite membranes a challenge and a difficult problem. Therefore, increasing the controllability of the interfacial polymerization process is a sufficient condition for the preparation of structurally controllable high-performance composite membranes.
例如,公开号为CN111420566B的中国专利文献公开了一种含氟化有机纳米粒子聚酰胺耐溶剂纳滤膜的制备方法,以多元胺、多巴胺以及氟烷基硫醇化合物为反应性单体,通过迈克尔加成和席夫碱反应形成氟化有机纳米粒子,而后与多元酰氯通过界面聚合反应在多孔支撑膜表面形成含氟化有机纳米粒子的聚酰胺膜。利用氟化有机纳米粒子的低表面能特性,调控界面聚合过程,优化聚酰胺分离层的化学组成、微观结构以及亲疏水性,获得具有独特孔道结构的聚酰胺耐溶剂纳滤膜,所制备的膜具有高的分离选择性和溶剂渗透通量,膜制备方法简便、易于调控,具有良好的工业化应用前景。但是该种方法无法避免多孔基膜性质对其界面聚合过程的影响。For example, the Chinese patent document with publication number CN111420566B discloses a preparation method of a polyamide solvent-resistant nanofiltration membrane containing fluorinated organic nanoparticles. Fluorinated organic nanoparticles were formed by Michael addition and Schiff base reaction, and then a polyamide film containing fluorinated organic nanoparticles was formed on the surface of the porous support film through interfacial polymerization with polybasic acid chloride. Using the low surface energy characteristics of fluorinated organic nanoparticles, the interfacial polymerization process is regulated, and the chemical composition, microstructure, and hydrophilicity and hydrophobicity of the polyamide separation layer are optimized to obtain a polyamide solvent-resistant nanofiltration membrane with a unique pore structure. The prepared membrane It has high separation selectivity and solvent permeation flux, and the membrane preparation method is simple and easy to control, and has a good industrial application prospect. However, this method cannot avoid the influence of the properties of the porous base film on the interfacial polymerization process.
公开号为CN112755813B的中国专利文献公开了一种制备含有中间层的薄膜复合膜的方法,在支撑层表面使金属离子和有机磷酸络合制得若干层络合物中间层,然后在络合物中间层表面原位聚合固化后形成聚合物选择层,即可获得薄膜复合膜。该发明选择了具有络合作用的材料作为中间层,制备了含有中间层的中空纤维薄膜复合膜。通过简单的浸泡法引入中间层,避免了多孔基膜结构对界面聚合反应的影响,优化了选择层结构的均匀性,提高了聚酰胺中空纤维薄膜复合膜中有机溶剂(乙醇)脱水的性能,相比不含有中间层的聚酰胺薄膜复合膜,含有中间层的聚酰胺薄膜复合膜的分离因子得到了较大提高。但是中间层的引入导致复合膜制备步骤繁琐,也会削弱选择分离层与多孔基膜之间的结合力。The Chinese patent document whose publication number is CN112755813B discloses a method for preparing a thin-film composite film containing an intermediate layer, wherein metal ions and organic phosphoric acid are complexed on the surface of the supporting layer to obtain several complex intermediate layers, and then the complex intermediate layers are prepared. After in-situ polymerization and curing on the surface of the intermediate layer, a polymer selection layer is formed, and a thin film composite film can be obtained. In this invention, a material with complexation effect is selected as the intermediate layer, and a hollow fiber membrane composite membrane containing the intermediate layer is prepared. The introduction of the intermediate layer by a simple soaking method avoids the influence of the porous base membrane structure on the interfacial polymerization reaction, optimizes the uniformity of the selected layer structure, and improves the dehydration performance of the organic solvent (ethanol) in the polyamide hollow fiber membrane composite membrane. Compared with the polyamide thin film composite membrane without the intermediate layer, the separation factor of the polyamide thin film composite membrane with the intermediate layer is greatly improved. However, the introduction of the intermediate layer leads to complicated preparation steps of the composite membrane, and also weakens the bonding force between the selective separation layer and the porous base membrane.
公开号为CN112657352B的中国专利文献公开了一种聚酰胺薄膜复合反渗透膜的制备方法,首先制备具有两亲性性质的超薄金属有机框架CuBDC纳米片,并将其置于水/油两相界面上,其中,水相为间苯二胺水溶液,油相为正己烷,待正己烷完全挥发后,向界面处缓慢加入含有均苯三甲酰氯的正己烷溶液,反应形成改性后的聚酰胺纳米薄膜。将薄膜小心置于超滤膜基体上,制得聚酰胺薄层复合反渗透膜。CuBDC辅助自由界面上形成的聚酰胺薄膜内在厚度约为5nm左右,超薄金属有机框架纳米片为界面聚合反应热扩散提供方向性,加强界面聚合反应的剧烈程度,同时提高间苯二胺向油相方向扩散的速率,在形成超薄聚酰胺薄膜的同时提高了其表面积和交联度,大幅提高膜的通量和截盐率。自由界面聚合可以有效避免多孔基膜性质对反应的影响、提升反应可控性,但是该方法操作复杂,在转移聚酰胺薄膜时易引入缺陷,难以实现大面积制备。The Chinese patent document with publication number CN112657352B discloses a method for preparing a polyamide thin film composite reverse osmosis membrane. First, an ultra-thin metal-organic framework CuBDC nanosheet with amphiphilic properties is prepared and placed in a water/oil two-phase On the interface, the water phase is an aqueous solution of m-phenylenediamine, and the oil phase is n-hexane. After the n-hexane is completely volatilized, a n-hexane solution containing trimesoyl chloride is slowly added to the interface to react to form a modified polyamide. nanofilm. The membrane was carefully placed on the ultrafiltration membrane substrate to obtain a polyamide thin-layer composite reverse osmosis membrane. The intrinsic thickness of the polyamide film formed on the CuBDC-assisted free interface is about 5 nm. The ultra-thin metal organic framework nanosheets provide directionality for the thermal diffusion of the interfacial polymerization reaction, enhance the intensity of the interfacial polymerization reaction, and improve the transfer of m-phenylenediamine to oil. The rate of diffusion in the phase direction increases the surface area and cross-linking degree of the ultra-thin polyamide film while forming the ultra-thin polyamide film, and greatly improves the flux and salt rejection rate of the membrane. Free interfacial polymerization can effectively avoid the influence of the properties of the porous base film on the reaction and improve the controllability of the reaction. However, this method is complicated to operate, and it is easy to introduce defects during the transfer of polyamide films, making it difficult to achieve large-area preparation.
转移印花,是根据花纹图案将分散染料或涂料印在纸上,制成转印纸,而后在一定条件下使转印纸上的染料或涂料转移到纺织品上去的印花方法。Transfer printing is a printing method in which disperse dyes or coatings are printed on paper according to the pattern to make transfer paper, and then the dyes or coatings on the transfer paper are transferred to textiles under certain conditions.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种转移印花制备聚酰胺薄层复合膜的方法及装置,目的是将界面聚合生成的聚酰胺纳米薄膜转移贴合到多孔基膜表面,实现两者的高效、稳定的复合,制得聚酰胺薄层复合膜。该制备方法操作简单、适用多孔基膜种类丰富,还可以通过热压过程以及调控多孔基膜表面性质提升聚酰胺纳米薄膜与多孔基膜之间的作用力和复合强度,而且多孔基膜在聚酰胺纳米薄膜上侧与其复合避免了高粘度胺类溶液不易除去的问题,可以实现大面积连续制备结构可控高性能聚酰胺薄层复合膜。The invention provides a method and a device for preparing a polyamide thin-layer composite film by transfer printing, the purpose of which is to transfer the polyamide nano-film generated by interfacial polymerization to the surface of a porous base film and realize the efficient and stable composite of the two. The polyamide thin-layer composite film was obtained. The preparation method is simple to operate, suitable for a wide variety of porous base films, and can also improve the force and composite strength between the polyamide nano-film and the porous base film through a hot pressing process and regulating the surface properties of the porous base film. The upper side of the amide nano-film is compounded with it to avoid the problem that the high-viscosity amine solution is not easy to remove, and can realize the continuous preparation of a large-area structure-controllable high-performance polyamide thin-layer composite film.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
一种转移印花制备聚酰胺薄层复合膜的装置,包括传送机构、涂布机构、反应机构、复合机构、热压机构、脱离机构、烘干机构和卷绕机构;A device for preparing a polyamide thin-layer composite film by transfer printing, comprising a conveying mechanism, a coating mechanism, a reaction mechanism, a compounding mechanism, a hot pressing mechanism, a separation mechanism, a drying mechanism and a winding mechanism;
涂布机构设置在传送机构上方,用于将第一反应单体溶液涂布至传送机构表面,形成第一反应单体液膜;The coating mechanism is arranged above the conveying mechanism, and is used for coating the first reaction monomer solution on the surface of the conveying mechanism to form the first reaction monomer liquid film;
反应机构设置在涂布机构的下游、复合机构的上游,用于提供第二单体的溶液与第一单体的液膜形成稳定的液-液界面,承载有第一反应单体液膜的传送机构经过反应机构时,第一反应单体与第二反应单体在界面处发生聚合反应,生成聚酰胺纳米薄膜;The reaction mechanism is arranged downstream of the coating mechanism and upstream of the compounding mechanism, and is used to provide the solution of the second monomer and the liquid film of the first monomer to form a stable liquid-liquid interface, carrying the transmission of the liquid film of the first reaction monomer. When the mechanism passes through the reaction mechanism, the first reaction monomer and the second reaction monomer undergo a polymerization reaction at the interface to form a polyamide nano-film;
复合机构设置在反应机构的下游,用于完成多孔基膜与所述的聚酰胺纳米薄膜的复合,制备聚酰胺薄层复合膜;The compounding mechanism is arranged downstream of the reaction mechanism, and is used to complete the compounding of the porous base film and the polyamide nano-film to prepare the polyamide thin-layer compound film;
热压机构设置在复合机构的下游、脱离机构的上游,用于增强聚酰胺纳米薄膜与多孔基膜的复合强度;The hot-pressing mechanism is arranged downstream of the compounding mechanism and upstream of the disengaging mechanism, and is used to enhance the compounding strength of the polyamide nano-film and the porous base film;
脱离机构设置在热压机构下游,用于将聚酰胺薄层复合膜与传送机构分离;The disengagement mechanism is arranged downstream of the hot pressing mechanism, and is used for separating the polyamide thin-layer composite film from the conveying mechanism;
烘干机构和卷绕机构依次设置在脱离机构的下游,用于对聚酰胺薄层复合膜进行干燥和收卷。The drying mechanism and the winding mechanism are sequentially arranged downstream of the separation mechanism, and are used for drying and winding the polyamide thin-layer composite film.
优选的,多孔基膜在聚酰胺纳米薄膜上侧与聚酰胺纳米薄膜复合。Preferably, the porous base film is compounded with the polyamide nanofilm on the upper side of the polyamide nanofilm.
优选的,所述的传送机构为辊筒或传送带。Preferably, the conveying mechanism is a roller or a conveying belt.
优选的,所述的传送机构材质为铝膜、钢带、尼龙膜、聚氨酯或聚酯膜;传送机构的宽度为0.01~20米。Preferably, the material of the conveying mechanism is aluminum film, steel belt, nylon film, polyurethane or polyester film; the width of the conveying mechanism is 0.01-20 meters.
优选的,所述的涂布机构的刮刀与传送机构之间的间距可调。Preferably, the distance between the blade of the coating mechanism and the conveying mechanism is adjustable.
优选的,所述的复合机构由转辊组成。Preferably, the compounding mechanism is composed of rotating rollers.
所述的热压机构对聚酰胺复合膜施加压力与温度,用于增强聚酰胺纳米薄膜与多孔基膜的复合强度。The hot pressing mechanism applies pressure and temperature to the polyamide composite membrane to enhance the composite strength of the polyamide nano-film and the porous base membrane.
本发明还提供了一种转移印花制备聚酰胺薄层复合膜的方法,包括以下步骤:The invention also provides a method for preparing the polyamide thin-layer composite film by transfer printing, comprising the following steps:
(1)将第一反应单体多元胺的溶液通过涂布机构均匀涂布在传送机构的表面,形成多元胺溶液液膜;(1) the solution of the first reaction monomer polyamine is evenly coated on the surface of the conveying mechanism through the coating mechanism to form a polyamine solution liquid film;
(2)将表面具有多元胺溶液液膜的传送机构浸入第二反应单体多元酰氯的溶液中,多元胺与多元酰氯在界面处发生聚合反应,生成聚酰胺纳米薄膜;(2) immersing the conveying mechanism with the liquid film of the polyamine solution on the surface into the solution of the second reaction monomer polybasic acid chloride, and the polyamine and the polybasic acid chloride undergo a polymerization reaction at the interface to generate a polyamide nano-film;
(3)通过复合机构将多孔基膜从聚酰胺纳米薄膜上侧与其进行复合,得到聚酰胺薄层复合膜;(3) compounding the porous base film from the upper side of the polyamide nano-film with the compounding mechanism to obtain a polyamide thin-layer composite film;
(4)通过热压机构施加一定的压力与温度,增强多孔基膜与聚酰胺纳米薄膜的复合强度;(4) Apply a certain pressure and temperature through the hot pressing mechanism to enhance the composite strength of the porous base film and the polyamide nanofilm;
(5)将附着有聚酰胺薄层复合膜的传送机构浸入含有恒温水的脱离机构中,聚酰胺薄层复合膜脱离传送机构,之后进行干燥和收卷。(5) The conveying mechanism with the polyamide thin-layer composite film attached thereto is immersed in a release mechanism containing constant temperature water, and the polyamide thin-layer composite film is released from the conveying mechanism, followed by drying and winding.
在本发明的方法中,将在致密基材上形成自由界面进行聚合制备的聚酰胺纳米薄膜以转移印花的方式与多孔基膜进行复合,既保证界面聚合过程不受多孔基膜的影响、拓宽了适用多孔基膜的种类,又能通过热压操作或优化多孔基膜性质增加多孔基膜与选择分离层之间的结合力,保持聚酰胺薄层复合膜在长期使用过程中的分离性能。In the method of the present invention, the polyamide nano-film prepared by forming a free interface on the dense substrate for polymerization is compounded with the porous base film by means of transfer printing, which not only ensures that the interfacial polymerization process is not affected by the porous base film, but also widens the It can increase the bonding force between the porous base membrane and the selective separation layer through hot pressing operation or optimize the properties of the porous base membrane, and maintain the separation performance of the polyamide thin-layer composite membrane during long-term use.
步骤(1)中:In step (1):
优选的,所述的多元胺溶液为多元胺甘油水溶液。Preferably, the polyamine solution is an aqueous polyamine glycerol solution.
进一步优选的,所述的多元胺甘油水溶液的粘度范围为10~300mPa·s。Further preferably, the viscosity range of the polyamine glycerol aqueous solution is 10-300 mPa·s.
该粘度范围下的多元胺溶液能稳定分散在传送带表面。溶液粘度过低,不利于形成稳定均匀的液膜;溶液粘度过高,使参与反应的胺类单体量减少,不利于制备具有高交联度的聚酰胺薄膜。The polyamine solution in this viscosity range can be stably dispersed on the surface of the conveyor belt. If the solution viscosity is too low, it is not conducive to the formation of a stable and uniform liquid film; if the solution viscosity is too high, the amount of amine monomers participating in the reaction is reduced, which is not conducive to the preparation of polyamide films with high cross-linking degree.
多元胺液膜的厚度可通过调节涂布机构的刮刀与传送机构间的距离进行控制。The thickness of the polyamine liquid film can be controlled by adjusting the distance between the doctor blade of the coating mechanism and the conveying mechanism.
优选的,所述的多元胺液膜的厚度为1~500μm。Preferably, the thickness of the polyamine liquid film is 1-500 μm.
多元胺液膜过薄时,多元胺单体总量的不足,容易造成聚酰胺纳米薄膜的破损和缺陷;多元胺液膜过厚时,液膜在传递过程中容易发生流动,造成界面扰动和界面的不均匀性。When the polyamine liquid film is too thin, the total amount of polyamine monomers is insufficient, which will easily cause damage and defects of the polyamide nanofilm; when the polyamine liquid film is too thick, the liquid film is prone to flow during the transfer process, resulting in interfacial disturbances and defects. Inhomogeneity of the interface.
进一步优选的,所述的多元胺液膜的厚度为20~300μm。Further preferably, the thickness of the polyamine liquid film is 20-300 μm.
所述的多元胺为1,3-环己二甲胺、二乙烯三胺、对苯二胺、哌嗪、邻苯二胺和间苯二胺中的至少一种;多元胺溶液的浓度为0.01~100g/L。The polyamine is at least one selected from 1,3-cyclohexanedimethylamine, diethylenetriamine, p-phenylenediamine, piperazine, o-phenylenediamine and m-phenylenediamine; the concentration of the polyamine solution is 0.01~100g/L.
单体浓度是影响聚合动力学关键因素之一。当单体浓度低时,制备的聚酰胺薄膜较为疏松且容易产生缺陷;当单体浓度适中时,此时单体扩散能力与反应能力相匹配,制备的聚酰胺薄膜具有较高的渗透选择性;而当单体浓度过高时,单体扩散过快,制备的聚酰胺薄膜较厚,造成其渗透性较低。Monomer concentration is one of the key factors affecting polymerization kinetics. When the monomer concentration is low, the prepared polyamide film is loose and prone to defects; when the monomer concentration is moderate, the monomer diffusion ability matches the reaction ability, and the prepared polyamide film has high permeability selectivity When the monomer concentration is too high, the monomer diffuses too fast, and the prepared polyamide film is thicker, resulting in lower permeability.
进一步优选的,所述的多元胺为间苯二胺;间苯二胺溶液的浓度为1~50g/L。Further preferably, the polyamine is m-phenylenediamine; the concentration of the m-phenylenediamine solution is 1-50 g/L.
步骤(2)中:In step (2):
所述的多元酰氯为邻苯二甲酰氯、均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯中的至少一种;多元酰氯溶液的溶剂为庚烷、正己烷、环己烷、三氟三氯乙烷、异构烷烃中的至少一种;多元酰氯溶液的单体浓度为0.1~10g/L。The polybasic acid chloride is at least one of phthaloyl chloride, trimesoyl chloride, terephthaloyl chloride and isophthaloyl chloride; the solvent of the polybasic acid chloride solution is heptane, n-hexane, cyclohexane, At least one of trifluorotrichloroethane and isoparaffin; the monomer concentration of the polybasic acid chloride solution is 0.1-10 g/L.
进一步优选的,所述的多元酰氯为均苯三甲酰氯;溶剂为异构烷烃;所述的多元酰氯溶液的单体浓度为0.3~5g/L。Further preferably, the polybasic acid chloride is trimesic acid chloride; the solvent is isoparaffin; the monomer concentration of the polybasic acid chloride solution is 0.3-5 g/L.
多元酰氯溶液的单体浓度也是影响聚合动力学关键因素之一。酰氯单体浓度过高以及过低都无法形成渗透选择性高的聚酰胺薄膜。The monomer concentration of the polybasic acid chloride solution is also one of the key factors affecting the polymerization kinetics. Both too high and too low concentrations of acid chloride monomers cannot form polyamide films with high permeation selectivity.
优选的,所述的界面聚合反应的时间为5~900s。Preferably, the time of the interfacial polymerization reaction is 5-900 s.
反应时间较短无法形成致密聚酰胺薄膜;过长则导致效率下降以及渗透性降低。Shorter reaction times fail to form dense polyamide films; too long results in reduced efficiency and reduced permeability.
进一步优选的,所述的界面聚合反应时间为30~450s。Further preferably, the interfacial polymerization reaction time is 30-450s.
步骤(3)中:In step (3):
在传送机构表面的聚酰胺纳米薄膜与各种多孔基膜进行复合。The polyamide nanofilm on the surface of the conveying mechanism is compounded with various porous base films.
作为优选,所述的多孔基膜为聚丙烯膜、聚乙烯膜、尼龙膜、聚偏氯乙烯膜、聚丙烯腈膜或对各种膜材料单面贻贝仿生改性所制备的表面性质迥异非对称膜。Preferably, the porous base film is a polypropylene film, a polyethylene film, a nylon film, a polyvinylidene chloride film, a polyacrylonitrile film, or a single-sided mussel biomimetic modification of various film materials with different surface properties. Asymmetric membrane.
步骤(4)中:In step (4):
通过热压机构增强多孔基膜与聚酰胺纳米薄膜的复合强度。The composite strength of the porous base film and the polyamide nano film is enhanced by the hot pressing mechanism.
作为优选,热压的温度为50~100℃;热压压力为10-100000Pa。Preferably, the temperature of the hot pressing is 50-100°C; the hot pressing pressure is 10-100000Pa.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明开发了一种转移印花制备聚酰胺薄层复合膜的方法及装置,可大规模、连续化制备;(1) The present invention has developed a method and device for preparing polyamide thin-layer composite film by transfer printing, which can be prepared in a large scale and continuously;
(2)多孔基膜是在聚酰胺纳米薄膜上侧即第二单体溶液侧与纳米薄膜复合,第二单体溶液的溶剂低极性可以浸润具有耐溶剂性、低表面能的多孔基膜,有利于该类多孔基膜与纳米薄膜贴合,从而扩展了多孔基膜的种类;(2) The porous base film is composited with the nano film on the upper side of the polyamide nano film, that is, the second monomer solution side. The low polarity of the solvent of the second monomer solution can infiltrate the porous base film with solvent resistance and low surface energy. , which is conducive to the bonding of this type of porous base film and nano-film, thus expanding the types of porous base films;
(3)高粘度的第一单体溶液位于纳米薄膜外表面,更易被清洗除尽;(3) The first monomer solution with high viscosity is located on the outer surface of the nano-film, which is easier to be cleaned and removed;
(4)通过调节热压滚轮的压力与温度可以有效增强聚酰胺纳米薄膜与多孔基膜的复合强度;(4) The composite strength of the polyamide nano-film and the porous base film can be effectively enhanced by adjusting the pressure and temperature of the hot-pressing roller;
(5)可以通过优化多孔基膜性质来增强选择分离层与基膜之间的结合力,从而保证聚酰胺薄层复合膜的长期使用性;(5) The bonding force between the selective separation layer and the base membrane can be enhanced by optimizing the properties of the porous base membrane, thereby ensuring the long-term usability of the polyamide thin-layer composite membrane;
(6)该方法对各种聚酰胺薄膜和各种多孔基膜具有普适性,制备的聚酰胺薄层复合膜可以应用于有机纳滤、有机反渗透、气体分离等领域。(6) The method has universal applicability to various polyamide films and various porous base films, and the prepared polyamide thin-layer composite membrane can be applied to fields such as organic nanofiltration, organic reverse osmosis, and gas separation.
我们通过转移印花方法可以将聚酰胺纳米薄膜完整、大面积地转移到多孔基膜表面,拓展了制备聚酰胺复合膜的方法。We can transfer the polyamide nanofilm to the surface of the porous base film in a complete and large area by the transfer printing method, and expand the method of preparing the polyamide composite film.
附图说明Description of drawings
图1为转移印花制备聚酰胺薄层复合膜的装置的结构示意图。Figure 1 is a schematic structural diagram of an apparatus for preparing a polyamide thin-layer composite film by transfer printing.
具体实施方式Detailed ways
聚酰胺薄层复合有机纳滤膜可以采用图1所示结构装置制备。The polyamide thin-layer composite organic nanofiltration membrane can be prepared using the structural device shown in FIG. 1 .
首先含有多元胺的溶液通过刮刀在传送带表面涂覆一定厚度的多元胺甘油水溶液,在电机驱动下浸入到含有多元酰氯的溶液中,反应一定时间。在自由界面生成的聚酰胺纳米薄膜随后与聚丙烯膜进行复合,再浸入到脱离槽中,聚酰胺薄层复合膜自动漂浮在水面上,进入烘干装置,再经卷绕机构收集聚酰胺薄层复合膜。传送带则随后循环重复使用。First, the solution containing polyamine is coated with a certain thickness of polyamine glycerin aqueous solution on the surface of the conveyor belt through a scraper, and is immersed in the solution containing polybasic acid chloride under the driving of a motor, and reacts for a certain period of time. The polyamide nano-film generated at the free interface is then compounded with the polypropylene film, and then immersed in the detachment tank. The polyamide thin-layer composite film automatically floats on the water surface, enters the drying device, and is collected by the winding mechanism. layer composite film. The conveyor belt is then cycled and reused.
实施例中,截留率和渗透通量是评价有机纳滤膜的两个重要参数。其中,截留率定义为:In the examples, rejection rate and permeation flux are two important parameters for evaluating organic nanofiltration membranes. where the retention rate is defined as:
其中,Cf表示处理前料液中溶质的浓度;Cp表示处理后滤液中溶质的浓度。Among them, C f represents the concentration of the solute in the feed solution before treatment; C p represents the concentration of the solute in the filtrate after the treatment.
渗透通量的定义为:在一定操作压力条件下,单位压强单位时间内透过单位膜面积的有机溶剂的体积,其单位为L/m2·h·bar,公式为:The permeation flux is defined as: under certain operating pressure conditions, the volume of organic solvent permeating unit membrane area per unit pressure and unit time, its unit is L/m 2 h bar, and the formula is:
其中,V表示透过有机纳滤膜的滤液的体积,单位为L;A表示有效膜面积,单位为m2;t表示时间,单位为h;P表示测试所用压强,单位为bar。Among them, V represents the volume of the filtrate passing through the organic nanofiltration membrane, in L; A represents the effective membrane area, in m 2 ; t represents time, in h; P represents the pressure used in the test, in bar.
通过以下实施例对本发明做更详细的描述,但所述实施例不构成对本发明的限制。The present invention is described in more detail by the following examples, but the examples do not constitute a limitation of the present invention.
实施例1Example 1
选用间苯二胺作为多元胺单体,将间苯二胺溶于甘油的水溶液,间苯二胺的浓度为30g/L,胺类单体溶液粘度控制在200~250mPa·s。选用均苯三甲酰氯为多元酰氯单体,将均苯三甲酰氯溶于己烷,均苯三甲酰氯的浓度为1.5g/L。m-phenylenediamine is selected as the polyamine monomer, m-phenylenediamine is dissolved in an aqueous solution of glycerin, the concentration of m-phenylenediamine is 30 g/L, and the viscosity of the amine monomer solution is controlled at 200-250 mPa·s. Select trimesic acid chloride as polybasic acid chloride monomer, dissolve trimesic acid chloride in hexane, and the concentration of trimesic acid chloride is 1.5g/L.
装有间苯二胺溶液的容器通过刮刀在宽度为3米的光滑材质为铝的输送带表面涂覆一层200μm厚的间苯二胺溶液液膜。再进入反应机构,间苯二胺溶液液膜与均苯三甲酰氯溶液接触触发界面聚合,反应300s后,随后经过复合机构,生成的聚酰胺纳米薄膜与聚丙烯膜复合。在热压机构温度为60℃、压力为100Pa的作用下,聚酰胺纳米薄膜与多孔基膜的复合强度得到增强。随后复合膜与输送带一起进入脱离槽,将自动脱落的聚酰胺薄层复合膜在60℃下干燥、热处理5min,经卷绕即得聚酰胺薄层复合膜。有机纳滤测试结果见表1。The container containing the m-phenylenediamine solution was coated with a 200-μm-thick m-phenylenediamine solution liquid film on the surface of the conveyor belt with a width of 3 meters and a smooth material made of aluminum through a scraper. Then enter the reaction mechanism, the liquid film of m-phenylenediamine solution contacts with the solution of trimesoyl chloride to trigger interfacial polymerization, and after 300s of reaction, then through the compounding mechanism, the resulting polyamide nano-film is compounded with the polypropylene film. When the temperature of the hot pressing mechanism is 60°C and the pressure is 100Pa, the composite strength of the polyamide nanofilm and the porous base film is enhanced. Then the composite film and the conveyor belt enter the release tank together, and the polyamide thin-layer composite film that falls off automatically is dried at 60° C., heat-treated for 5 minutes, and wound to obtain the polyamide thin-layer composite film. The organic nanofiltration test results are shown in Table 1.
实施例2~6Examples 2 to 6
调节多元胺溶液的粘度分别为10~50mPa·s、50~100mPa·s、100~150mPa·s、150~200mPa·s、250~300mPa·s,其余条件同实施例1。The viscosity of the polyamine solution is adjusted to be 10-50 mPa·s, 50-100 mPa·s, 100-150 mPa·s, 150-200 mPa·s, and 250-300 mPa·s, respectively, and other conditions are the same as those in Example 1.
测试例1Test Example 1
对实施例1~6制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表1所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 1-6 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 1.
表1实施例1~6制备的聚酰胺薄层复合有机纳滤膜的截留率和渗透通量Table 1 Retention rate and permeation flux of polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 1-6
实施例7~10Examples 7-10
调节均匀涂布在输送带上的多元胺溶液液膜的厚度分别为20μm、50μm、100μm、300μm,其余条件同实施例1。The thickness of the polyamine solution liquid film uniformly coated on the conveyor belt was adjusted to be 20 μm, 50 μm, 100 μm, and 300 μm, respectively, and other conditions were the same as in Example 1.
测试例2
对实施例7~10制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表2所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 7-10 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 2.
表2实施例7~10制备的聚酰胺薄层复合有机纳滤膜的截留率和渗透通量Table 2 Retention rate and permeation flux of polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 7-10
实施例11~14Examples 11 to 14
调节输送带材料分别为钢、聚氨酯、尼龙、聚酯薄膜,其余条件同实施例1。The materials of the adjustment conveyor belt are steel, polyurethane, nylon, and polyester film respectively, and other conditions are the same as those in Example 1.
测试例3
对实施例11~14制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表3所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 11-14 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 3.
表3实施例11~14制备的聚酰胺薄层复合有机纳滤膜的截留率和渗透通量Table 3 Retention rate and permeation flux of polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 11-14
实施例15~18Examples 15 to 18
调节输送带宽度分别为0.2米、1米、5米、10米,其余条件同实施例1。Adjust the width of the conveyor belt to be 0.2 m, 1 m, 5 m, and 10 m respectively, and the remaining conditions are the same as in Example 1.
测试例4Test Example 4
对实施例15~18制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表4所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 15-18 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 4.
表4实施例15~18制备的聚酰胺薄层复合有机纳滤膜的截留率和渗透通量Table 4 Retention rate and permeation flux of polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 15-18
实施例19~22Examples 19 to 22
调节间苯二胺溶液浓度分别为5g/L、10g/L、20g/L、50g/L,其余条件同实施例1。The concentration of the m-phenylenediamine solution was adjusted to be 5g/L, 10g/L, 20g/L and 50g/L respectively, and the remaining conditions were the same as those in Example 1.
测试例5Test Example 5
对实施例19~22制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表5所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 19-22 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 5.
表5实施例19~22制备的聚酰胺薄层复合膜的截留率和渗透通量Table 5 Rejection rate and permeation flux of polyamide thin-layer composite membranes prepared in Examples 19-22
实施例23~26Examples 23 to 26
调节界面聚合反应时间分别为30s、120s、240s、450s,其余条件同实施例1。The interfacial polymerization reaction times were adjusted to be 30s, 120s, 240s, and 450s, respectively, and the remaining conditions were the same as those in Example 1.
测试例6Test Example 6
对实施例23~26制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表6所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 23-26 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 6.
表6实施例23~26制备的聚酰胺薄层复合膜的脱率和渗透通量Table 6 Removal rate and permeation flux of polyamide thin-layer composite membranes prepared in Examples 23-26
实施例27~33Examples 27 to 33
调节多孔基膜分别为聚乙烯、尼龙、聚偏氯乙烯、聚砜、聚丙烯腈、对聚丙烯膜单面贻贝仿生改性制备的表面性质迥异非对称膜、对聚乙烯膜单面贻贝仿生改性制备的表面性质迥异非对称膜,其余条件同实施例1。The porous base membranes were adjusted to polyethylene, nylon, polyvinylidene chloride, polysulfone, polyacrylonitrile, asymmetric membranes with different surface properties prepared by biomimetic modification of single-sided mussels of polypropylene membranes, and single-sided mussels of polyethylene membranes. The surface properties of the asymmetric membranes prepared by biomimetic modification are very different, and other conditions are the same as those in Example 1.
测试例7Test Example 7
对实施例27~33制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表7所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 27-33 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 7.
表7实施例27~33制备的聚酰胺薄层复合膜的截留率和渗透通量Table 7 Rejection rate and permeation flux of the polyamide thin-layer composite membranes prepared in Examples 27-33
实施例34~37Examples 34 to 37
调节热压机构温度分别为70℃、80℃、90℃、100℃,其余条件同实施例1。The temperature of the hot-pressing mechanism was adjusted to be 70°C, 80°C, 90°C, and 100°C, respectively, and the remaining conditions were the same as those in Example 1.
测试例8Test Example 8
对实施例34~37制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表8所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 34-37 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 8.
表8实施例34~37制备的聚酰胺薄层复合膜的脱率和渗透通量Table 8 Removal rate and permeation flux of polyamide thin-layer composite membranes prepared in Examples 34-37
实施例38~41Examples 38 to 41
调节热压机构压力分别为500Pa、3000Pa、6000Pa、10000Pa,其余条件同实施例1。Adjust the pressure of the hot pressing mechanism to be 500Pa, 3000Pa, 6000Pa, and 10000Pa respectively, and the remaining conditions are the same as those in Example 1.
测试例9Test Example 9
对实施例38~41制备的聚酰胺薄层复合有机纳滤膜进行截留率和乙醇通量的测试。测试方法为:将制备的有机纳滤膜置于标准有机纳滤测试装置中,在25℃,压力为6bar条件下,测试有机纳滤膜对50ppm罗丹明B乙醇溶液的截留率和乙醇通量。结果如表9所示。The polyamide thin-layer composite organic nanofiltration membranes prepared in Examples 38-41 were tested for rejection rate and ethanol flux. The test method is: place the prepared organic nanofiltration membrane in a standard organic nanofiltration test device, and test the rejection rate and ethanol flux of the organic nanofiltration membrane to 50ppm Rhodamine B ethanol solution at 25°C and a pressure of 6 bar. . The results are shown in Table 9.
表9实施例38~41制备的聚酰胺薄层复合膜的脱率和渗透通量Table 9 Removal rate and permeation flux of polyamide thin-layer composite membranes prepared in Examples 38-41
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The above-mentioned embodiments describe the technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned embodiments are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, additions and equivalent replacements made should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210797728.6A CN115090125B (en) | 2022-07-06 | 2022-07-06 | Method and device for preparing polyamide thin-layer composite film through transfer printing and product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210797728.6A CN115090125B (en) | 2022-07-06 | 2022-07-06 | Method and device for preparing polyamide thin-layer composite film through transfer printing and product |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115090125A true CN115090125A (en) | 2022-09-23 |
CN115090125B CN115090125B (en) | 2023-03-24 |
Family
ID=83297048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210797728.6A Active CN115090125B (en) | 2022-07-06 | 2022-07-06 | Method and device for preparing polyamide thin-layer composite film through transfer printing and product |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115090125B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2581277A (en) * | 1976-06-24 | 1978-12-07 | Basf Ag | Transfer printing of cellulose fibers and of union fabrics containing cellulose fibers |
CN103657430A (en) * | 2014-01-02 | 2014-03-26 | 北京碧水源膜科技有限公司 | Method for online preparing high-throughput composite reverse osmosis membrane |
CN105080367A (en) * | 2014-04-24 | 2015-11-25 | 中国石油化工股份有限公司 | Composite nano-filtration membrane containing composite nanoparticles, and preparation method thereof |
CN106731873A (en) * | 2017-02-15 | 2017-05-31 | 北京新源国能科技集团股份有限公司 | The preparation method and device of a kind of hollow fiber composite membrane |
CN108421420A (en) * | 2018-05-16 | 2018-08-21 | 南京帝膜净水材料开发有限公司 | A kind of complex reverse osmosis membrane preparation facilities |
CN113457459A (en) * | 2021-05-28 | 2021-10-01 | 浙江大学 | Continuous preparation method and device of polyamide functional composite membrane |
-
2022
- 2022-07-06 CN CN202210797728.6A patent/CN115090125B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2581277A (en) * | 1976-06-24 | 1978-12-07 | Basf Ag | Transfer printing of cellulose fibers and of union fabrics containing cellulose fibers |
CN103657430A (en) * | 2014-01-02 | 2014-03-26 | 北京碧水源膜科技有限公司 | Method for online preparing high-throughput composite reverse osmosis membrane |
CN105080367A (en) * | 2014-04-24 | 2015-11-25 | 中国石油化工股份有限公司 | Composite nano-filtration membrane containing composite nanoparticles, and preparation method thereof |
CN106731873A (en) * | 2017-02-15 | 2017-05-31 | 北京新源国能科技集团股份有限公司 | The preparation method and device of a kind of hollow fiber composite membrane |
CN108421420A (en) * | 2018-05-16 | 2018-08-21 | 南京帝膜净水材料开发有限公司 | A kind of complex reverse osmosis membrane preparation facilities |
CN113457459A (en) * | 2021-05-28 | 2021-10-01 | 浙江大学 | Continuous preparation method and device of polyamide functional composite membrane |
Also Published As
Publication number | Publication date |
---|---|
CN115090125B (en) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Organic solvent nanofiltration membrane with improved permeability by in-situ growth of metal-organic frameworks interlayer on the surface of polyimide substrate | |
Pérez-Manríquez et al. | Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration | |
US9463422B2 (en) | Forward osmosis membranes | |
Trivedi et al. | Multifunctional amines enable the formation of polyamide nanofilm composite ultrafiltration and nanofiltration membranes with modulated charge and performance | |
JP2019500212A (en) | Permselective graphene oxide membrane | |
CN108176241B (en) | Composite nanofiltration membrane containing aquaporin and preparation method thereof | |
KR102497473B1 (en) | composite semi-permeable membrane | |
CN109603573A (en) | Preparation method of zeolite imidazolate framework polyamine nanoparticle composite membrane | |
KR102068656B1 (en) | Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby | |
CN110585931B (en) | High-flux organic solvent-resistant composite nanofiltration membrane containing metal skeleton compound intermediate layer and preparation method thereof | |
CN113457459B (en) | Continuous preparation method and device of polyamide functional composite membrane | |
CN112870989B (en) | Anti-pollution composite reverse osmosis membrane and preparation method thereof | |
US20100176052A1 (en) | Process for producing composite semipermeable membrane | |
WO2018221684A1 (en) | Gas separation membrane, gas separation membrane element, gas separator, and gas separation method | |
WO2016052427A1 (en) | Composite semipermeable membrane and method for producing same, and spiral separation membrane element | |
CN115090125B (en) | Method and device for preparing polyamide thin-layer composite film through transfer printing and product | |
CN111888943B (en) | Preparation method of reverse osmosis membrane containing buffer layer free interface polymerization | |
WO2006038409A1 (en) | Process for producing semipermeable composite membrane | |
CN106823826A (en) | A kind of continuous preparation method of the compound forward osmosis membrane of high flux | |
WO2023276483A1 (en) | Forward osmosis membrane and forward osmosis membrane module including same | |
CN112755814B (en) | A kind of polyamide composite nanofiltration membrane modified by black talc nanoparticles | |
CN111821865B (en) | Composite membrane with separation function and vapor deposition preparation method thereof | |
CN115532086A (en) | Polyamide composite membrane for nanofiltration of organic solvent | |
CN114405291A (en) | A kind of preparation method of nanofiber forward osmosis composite membrane | |
CN113226527A (en) | Composite semipermeable membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |