CN115089557A - 促进菌体在肠道产生gaba的层层自主药物、制备方法及应用 - Google Patents

促进菌体在肠道产生gaba的层层自主药物、制备方法及应用 Download PDF

Info

Publication number
CN115089557A
CN115089557A CN202210494477.4A CN202210494477A CN115089557A CN 115089557 A CN115089557 A CN 115089557A CN 202210494477 A CN202210494477 A CN 202210494477A CN 115089557 A CN115089557 A CN 115089557A
Authority
CN
China
Prior art keywords
layer
mice
gaba
intestinal tract
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210494477.4A
Other languages
English (en)
Inventor
王志云
苏鑫
郭明明
郑斌
王涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202210494477.4A priority Critical patent/CN115089557A/zh
Publication of CN115089557A publication Critical patent/CN115089557A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开促进菌体在肠道产生GABA的层层自主药物、制备方法及应用。利用唾液乳杆菌与壳聚糖、纤维素钠层层自主药物,将益生菌与材料结合,通过层层自主装后口服可以治疗小鼠帕金森病的方法,其中包括将壳聚糖与纤维素钠层层自主装纳米盔甲来包裹唾液乳杆菌的具体技术方法,以及可以增强细胞工厂在体内连续生产治疗帕金森病的神经递质药物的最佳包裹层数。提供了验证PD小鼠中脑GABA受体被激活后对内质网应激反应所诱导的神经元细胞凋亡的影响的具体方案及结果以及GABA受体所介导的信号网络对内质网应激反应所介导的信号网络的影响实验方法和结果,在缓解内质网应激层面阐述内质网反应与神经退行性疾病发生的关联性,提供一些理论基础和新的研究思路。

Description

促进菌体在肠道产生GABA的层层自主药物、制备方法及应用
技术领域
本发明应用生物学技术与材料学技术,涉及到肠道微生物治疗退行性神经疾病相关生物学技术和材料制备技术领域,具体涉及促进菌体在肠道产生GABA的层层自主药物、制备方法及应用。
背景技术
与其他主要的神经退行性疾病类似,帕金森病也没有治疗方法。虽然大多数治疗策略旨在防止神经元丢失或保护脆弱的神经元回路,但一种潜在的替代方法是替换丢失的神经元以重建中断的回路。Hao Qian等人报告了通过去除RNA结合蛋白PTB(也称为PTBP1),将分离的小鼠和人类星形胶质细胞有效地一步转化为功能性神经元,这些神经元支配并重新填充内源性神经回路。再生医学在治疗以细胞丢失为特征的疾病方面虽然大有可为,但是此方法操作复杂,且成本高。目前最常见的帕金森缓解方式依然是药物治疗,常用的治疗药物是左旋多巴和“多巴胺激动剂”。前者在脑内变成多巴胺,药效强,效果快,但是很容易产生依赖性和耐药性,长期使用会有运动并发症。随着病情的进展,药效时间变短,如果和以前一样服用会出现“开关”现象。另外,如果服药量过大,容易出现“异动症”。因此,探究一种可以替代药物的帕金森治疗方式意义非凡。肠道神经系统和免疫系统受到肠道微生物区系的紧密联系和影响,由于其对帕金森病的影响,它们共同构成了一个深入研究的领域。肠道-脑相互作用的失调可能解释了帕金森病早期的肠道功能障碍,黑质多巴胺能神经元在肠道炎症条件下表现出更多的脆弱性。由此我们想到通过益生菌调节肠道菌群,维持肠道菌群稳定并利用菌体发酵产生的GABA减少帕金森病模型黑质炎症反应的激活,从而减轻黑质多巴胺能神经元的炎症损伤,保护神经。此外,脑中GABA受体被激活,诱导糖调节蛋白等内质网分子伴侣表达产生保护效应以缓解内质网应激,减少多巴胺能神经元凋亡,治疗帕金森病。
近年来,益生菌被广泛用作口服制剂和食品添加剂。它们通过合成和释放神经递质并调节产生SCFA的细菌的数量而使宿主受益。它们被认为是公认安全的神经系统疾病的替代疗法。然而,由于胃液的强酸性和活性酶环境,益生菌会被严重破坏,导致结构破坏和生物活性丧失。因此,到达肠道后,大部分细菌死亡或严重受伤,代谢能力严重受损,导致GABA产生能力有限,对神经元的功能恢复不理想。粪便细菌移植和抗生素主要通过提高GABA产生菌的丰度来提高GABA的产量。然而,粪便细菌移植也存在一些问题,如操作复杂、供体要求严格、来源有限、不稳定、患者接受性差。抗生素的使用有许多副作用,还可能引发抗生素耐药性和微生物区系紊乱。因此,有必要开发一种更安全、更方便、更稳定的方法来实现GABA产生菌的高效输送。
发明内容
本发明的目的是针对GABA产生菌的高效输送,解决帕金森病人因用药过多产生的“异动症”问题。利用唾液乳杆菌与壳聚糖、纤维素钠层层自主装得到材料LS@CCMC,其可以高效保护益生菌免受胃肠液破坏并延长益生菌在肠道定殖时间,促进菌体在肠道产生GABA。
本发明的第一个目的是促进菌体在肠道产生GABA的层层自主药物,利用唾液乳杆菌与壳聚糖、纤维素钠层层自主装得到材料LS@CCMV,高效保护益生菌免受胃肠液破坏并延长益生菌在肠道定殖时间,促进菌体在肠道产生GABA;
所述材料够共制备六组,按照包裹顺序分别为:
第一组:唾液乳杆菌(LS)-壳聚糖(C);
第二组:LS-纤维素钠(CMC);
第三组:LS-C-CMC;
第四组:LS-CMC-C;
第五组:LS-C-CMC-C;
第六组:LS-C-CMC-C-CMC;
材料包裹前菌株先用EDN及NSN的乙酸活化,搅拌,分别加入壳聚糖或纤维素钠,每层包裹时搅拌;
这里纤维素钠也需要用EDN及NSN活化;
包裹顺序与菌株保护增殖效果无关,包裹层数为2-3时菌株增殖效果最佳且产GABA量最多,血管生成最佳。
本发明的第二个目的是前述促进菌体在肠道产生GABA的层层自主药物制备方法,包括如下步骤:
将菌液浓缩的大肠杆菌沉淀洗涤后,用PBS重悬,加入EDC及NHS活化后搅拌;
加入4mg/mL壳聚糖进行包裹,搅拌,离心洗涤后重悬至30ml,取出4ml为LS@C;
剩余的继续加入EDC及NHS活化的纤维素钠搅拌后,离心洗涤后重悬至26ml,再取出4ml此为LS@CCMC;
以此重复加入壳聚糖与纤维素钠包裹至第四层,顺序可以交换,先包裹纤维素钠再包裹壳聚糖,得到6组试样。
最佳包裹层数探究,包括如下步骤:
(1)将材料置于体外模拟胃肠液中,做CFU(s)计数,探究包裹层数在不同时间下对菌株的保护效果;
(2)体内实验:先将唾液乳杆菌用尼罗红染料标记,再按照包裹顺序制作材料。所得材料分别喂给小鼠;用小动物成像仪跟踪定位小鼠肠胃中LS的量,跟踪到9天及分布位置,跟踪到第2天;
(3)将上述步骤(2)小鼠肠道中内容物取出,CFU(s)计数再次评估肠道中LS的量;
(4)将上述步骤(2)中小鼠肠道切片,免疫荧光染色确定小鼠肠道中GABA受体及血管数量变化;
(5)将上述步骤(2)中小鼠眼眶取血30天,比色法确定小鼠血液中GABA含量变化。
通过行为学实验验证喂食材料后治疗效果,包括如下步骤:
(1)转棒实验评估小鼠运动障碍,小鼠分组分别为:正常鼠、帕金森小鼠、喂食LS的帕金森治疗小鼠、喂食LS@CCMC1的帕金森治疗小鼠,每组5只重复;
(2)爬杆实验评估小鼠运动障碍,分组情况同步骤(1);
(3)旷场实验评估小鼠运动障碍,分组情况同步骤(1);
(4)游泳实验评估小鼠运动障碍,分组情况同步骤(1)。
通过多巴胺神经元凋亡恢复情况评估,包括如下步骤:
(1)ELISA试剂盒验证四组小鼠中脑中IL-6、IL-1β含量变化;
(2)q-PCR验证四组小鼠中脑中Cas3、Bax、p53凋亡基因变化;
(3)WB实验探究四组小鼠中脑中Bax、Bcl2、Gabrb1、TH蛋白表达量变化;
(4)免疫荧光TUNEL、TH、Iba1染色探究四组小鼠中脑中细胞凋亡情况及验证因子变化。
q-PCR及ELISA法从机制方面验证内质网应激缓解,包括如下步骤:
(1)、q-PCR验证四组小鼠中脑中GABA受体gabrb2 gabrb3 gabbr2 gabrg2 elF2α含量变化;
(2)、ELISA试剂盒检测四组小鼠中脑中PI3K AKT ATF4 CHOP含量变化。
本发明从微生物多样性角度分析治疗效果,步骤如下:
取权利要求4中(1)中每组3只小鼠肠道内容物进行了微生物多样性分析;
12个样品测序共获得807,722对Reads,双端Reads质控、拼接后共产生800,849条Clean Reads,每个样品至少产生48,442条Clean Reads,平均产生66,737条Clean Reads;分析样品物种分布及物种丰度。
本发明的第三个目的是前述促进菌体在肠道产生GABA的层层自主药物的应用,用于治疗退行性神经疾病。
本发明的第四个目的是前述促进菌体在肠道产生GABA的层层自主药物的应用,用于治疗帕金森病。
本发明的第五个目的是前述促进菌体在肠道产生GABA的层层自主药物的应用,用于物学中帕金森病内质网应激机制研究。
原理作用如下:
PD小鼠脑中GABA受体被激活后,诱导糖调节蛋白等内质网分子伴侣表达而产生保护效应。PI3K-Akt-mTOR信号通路被激活,Perk通路激活被抑制,抑制pPerk磷酸化下游elF2α对转录因子ATF4的翻译。缓解了由于内质网应激过于严重启动的chop转录,减少chop启动促凋亡程序引发的神经元凋亡,以此实现了对帕金森病的治疗。
与现有技术相比,本发明具有的优点:因GABA是菌体产生的次生代谢物,当环境中存在浓度过高时,菌株可自动将GABA含量调节在适量范围,从而从根源上解决退行性疾病,如帕金森患者的“异动症”问题。
1、本发明利用双层材料包裹LS可以使益生菌不受酸性及酶环境的破坏,依然发挥其生物功能。
2、本发明利用双层材料包裹后的LS可以在肠道长时间定殖,稳定增殖。
3、因GABA是菌体产生的次生代谢物,当环境中存在浓度过高时,菌株可自动将GABA含量调节在适量范围,从而从根源上解决帕金森患者的“异动症”问题。
4、本发明首次从内质网应激层面公开帕金森致病机理,为帕金森治疗提供理论研究基础与治疗新思路。
5、本发明工艺简单,设计巧妙、安全可控、成本低廉、治疗效果明显。
附图说明
图1为体外材料包裹层数随时间梯度对菌株在模拟胃肠液中保护情况:
A.实验前不同层数材料内菌株存活率表征;
B.不同层数及不同包裹顺序菌株破壳时间;
C.唾液乳杆菌在模拟胃肠液中随时间梯度菌株存活率评估;
D-I.在模拟胃肠液中材料的不同层数及不同包裹顺序随时间梯度对菌株保护情况。
图2为体内材料包裹层数探究:
A.喂食健康小鼠不同包裹层数材料示意图;
B.喂食材料后1-9天小鼠体外成像图;
C.喂食材料后1-2天小鼠肠道体外成像图;
D.喂食材料第10天小鼠肠道切片GABRB1免疫荧光染色;
E.喂食材料第10天小鼠肠道切片CD31免疫荧光染色;
F.小鼠肠道中LS CFUs定量结果;
G.小鼠粪便中LS CFUs定量结果;
H.鼠眼眶取血时间示意图;
I.小鼠血液中GABA含量结果图。
图3为行为学实验:
A.小鼠转棒实验;
B.小鼠爬杆实验;
C.小鼠转棒时间定量;
D.小鼠爬杆转身时间;
E.小鼠爬杆总时间(上杆—转身—下杆);
F.小鼠旷场实验;
G-H.小鼠游泳实验及游泳实验评分;
I-K.旷场实验经过格子数定量;旷场实验小鼠站立次数定量;旷场实验小鼠路径图;
L.小鼠游泳路线图。
图4为多巴胺神经元凋亡恢复情况评估:
A.喂食小鼠材料示意图;
B.IL-6定量结果;
C.IL-1β定量结果;
D.p53定量;
E.Cas3定量;
F.Bax定量;
G.WB结果;
H.TUNEL荧光染色;
I.TH染色;
J.Iba1染色。
图5为内质网应激缓解图:
(A-D)qPCR定量结果图;
(E)PI3K定量结果图;
(F)AKT定量结果图;
(G)QPCR检测EIF2Α定量结果图;
(H)ATF4定量结果图;
(I)CHOP定量结果图;
(J)PERK通路内质网应激缓解机制图。
图6为微生物多样性分析
A.肠道菌群丰度聚类热图;
B.样品丰度热图。
具体实施方式
下面通过具体实施例和附图对本发明作进一步的说明。本发明的实施例是为了更好地使本领域的技术人员更好地理解本发明,并不对本发明作任何的限制。
本发明所用原料均为市售产品。
一、一种唾液乳杆菌、壳聚糖、纤维素钠层层自主装材料的制备。
所述材料制备六组,包裹顺序分别为一组:唾液乳杆菌(LS)-壳聚糖(C);第二组:LS-纤维素钠(CMC);第三组:LS-C-CMC;第四组:LS-CMC-C;第五组:LS-C-CMC-C;第六组:LS-C-CMC-C-CMC。材料包裹前菌株需要先用pH=5.5加有EDN及NSN的乙酸活化,搅拌15min,分别加入浓度为4mg/mL壳聚糖或纤维素钠,每层包裹时搅拌30min。值得注意的是这里纤维素钠也需要用EDN及NSN活化。
二、最佳包裹层数探究,包括如下步骤:
(1)、将上述材料置于体外模拟胃肠液中,做CFU(s)计数,探究包裹层数在不同时间下对菌株的保护效果。
(2)、体内实验:先将唾液乳杆菌用尼罗红染料标记,再按照技术方案一的包裹顺序制作材料。所得材料分别喂给小鼠;用小动物成像仪跟踪定位小鼠肠胃中LS的量(跟踪到9天)及分布位置(跟踪到第2天)。
(3)、将上述步骤(2)小鼠肠道中内容物取出,CFU(s)计数再次评估肠道中LS的量。
(4)、将上述步骤(2)中小鼠肠道切片,免疫荧光染色确定小鼠肠道中GABA受体及血管数量变化。
(5)、将上述步骤(2)中小鼠眼眶取血30天,比色法确定小鼠血液中GABA含量变化。
施行后得到包裹顺序与菌株保护增殖效果无关,包裹层数为2-3时菌株增殖效果最佳且产GABA量最多,血管生成最佳。如图1,图2所示。
三、小动物行为学实验验证喂食材料后治疗效果,包括如下步骤:
(1)、转棒实验评估小鼠运动障碍,小鼠分组分别为:正常鼠、帕金森小鼠、喂食LS的帕金森治疗小鼠、喂食LS@CCMC1的帕金森治疗小鼠,每组5只重复,如图3所示。
(2)、爬杆实验评估小鼠运动障碍,分组情况同步骤(1)。
(3)、旷场实验评估小鼠运动障碍,分组情况同步骤(1)。
(4)、游泳实验评估小鼠运动障碍,分组情况同步骤(1)。
四、多巴胺神经元凋亡恢复情况评估,包括如下步骤:
(1)、ELISA试剂盒验证四组小鼠中脑中IL-6、IL-1β含量变化;
(2)、q-PCR验证四组小鼠中脑中Cas3、Bax、p53凋亡基因变化;
(3)、WB实验探究四组小鼠中脑中Bax、Bcl2、Gabrb1、TH蛋白表达量变化;
(4)、免疫荧光TUNEL、TH、Iba1染色探究四组小鼠中脑中细胞凋亡情况及验证因子变化,结果如图4所示。
五、q-PCR及ELISA法从机制方面验证内质网应激缓解,包括如下步骤:
(1)、q-PCR验证四组小鼠中脑中GABA受体gabrb2 gabrb3 gabbr2 gabrg2 elF2α含量变化;
(2)、ELISA试剂盒检测四组小鼠中脑中PI3K AKT ATF4 CHOP含量变化,如图5所示。六、从微生物多样性角度分析治疗效果,步骤如下:取第三个技术方案(1)中每组3只小鼠肠道内容物进行了微生物多样性分析。12个样品测序共获得807,722对Reads,双端Reads质控、拼接后共产生800,849条Clean Reads,每个样品至少产生48,442条Clean Reads,平均产生66,737条Clean Reads。分析样品物种分布及物种丰度等,如图6所示。
实施例1:
将1L菌液浓缩的大肠杆菌沉淀洗涤后,用30ml的PBS重悬,加入EDC及NHS活化后搅拌15min。加入4mg/mL壳聚糖进行包裹,搅拌30min,离心洗涤后重悬至30ml,取出4ml为LS@C;剩余的继续加入EDC及NHS活化的纤维素钠搅拌30min后,离心洗涤后重悬至26ml,再取出4ml此为LS@CCMC,以此重复加入壳聚糖与纤维素钠包裹至第四层(顺序可以交换,先包裹纤维素钠再包裹壳聚糖)得到6组试样。
实施例2:
将包裹后的6组材料及LS组分别取出10ul进行CFUs计数,进行菌株归一化定量,然后将样品调整至相同的活菌浓度。将7组相同活菌数的沉淀分别用5ml模拟胃液重悬,处理3小时后用模拟肠液孵育3h,6h,9h,12h,24h,48h。取出10ul进行涂板CFUs计数(确定包裹层数对菌活性的保护)。
实施例3:
尼罗红标记菌株,将标记的菌株层层包裹后归一化定量,分别喂给小鼠,每只0.1mL,1-9d后进行小动物成像,评估菌株在小鼠肠道死活。24h后取出小鼠肠道,体外成像评估小鼠定殖情况。
实施例4:
将小鼠组织进行冷冻切片,用4%的多聚甲醛固定爬片15min,PBS浸洗玻片3次,每次3min;PBS浸洗玻片3次,每次3min,吸水纸吸干PBS,在玻片上滴加正常山羊血清,室温封闭30min;吸水纸吸掉封闭液,不洗,每张玻片滴加足够量的稀释好的一抗并放入湿盒,4℃孵育过夜;一抗过夜孵育后PBST冲洗,加荧光二抗:PBST浸洗爬片3次,每次3min,吸水纸吸干爬片上多余液体后滴加稀释好的荧光二抗,湿盒中20-37℃孵育1-2h,PBST浸洗切片3次,每次3min;复染核:滴加DAPI避光孵育5min,对标本进行染核,PBST 5min×3次洗去多余的DAPI;用吸水纸吸干爬片上的液体,用含抗荧光淬灭剂的封片液封片,然后在荧光显微镜下观察采集图像。注意:从加荧光二抗起,后面所有操作步骤都尽量在较暗处进行。
实施例5:
berthelot比色法是利用苯酚和次氯酸钠与GABA的游离氨发生显色反应来检测GABA的含量,检测的灵敏度较高,可快速检测大批GABA样品,简单易行。berthelot比色法:利用苯酚和次氯酸钠与游离氨反应显色。先做GABA标准曲线:取不同浓度的GABA标准液0.4ml,加0.2mol/L(pH9.0)硼酸盐缓冲液0.6mL,摇匀,加5%苯酚溶液2mL,摇匀,加质量分数6%次氯酸钠溶液1mL,摇匀,放人沸水浴加热10min,立即置冰浴中20min,待溶液出现蓝绿色后,加入2.0mL60%酒精,进行波谱扫描,在最大吸收峰处测定溶液的吸光度,以吸光度为纵坐标,GABA的含量为横坐标,绘制标准曲线。把处理的样品按以上方法测吸光度,求出样品中GABA的含量。
操作注意事项:
应当理解的是,这里所讨论的实施方案及实例只是为了说明,对本领域技术人员来说,可以加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.促进菌体在肠道产生GABA的层层自主药物,其特征在于,利用唾液乳杆菌与壳聚糖、纤维素钠层层自主装得到材料LS@CCMC,高效保护益生菌免受胃肠液破坏并延长益生菌在肠道定殖时间,促进菌体在肠道产生GABA;
所述材料够共制备六组,按照包裹顺序分别为:
第一组:唾液乳杆菌LS-壳聚糖C;
第二组:唾液乳杆菌LS-纤维素钠CMC;
第三组:LS-C-CMC;
第四组:LS-CMC-C;
第五组:LS-C-CMC-C;
第六组:LS-C-CMC-C-CMC;
材料包裹前菌株先用EDN及NSN的乙酸活化,搅拌,分别加入壳聚糖或纤维素钠,每层包裹时搅拌;
这里纤维素钠也需要用EDN及NSN活化;
包裹顺序与菌株保护增殖效果无关。
2.根据权利要求1所述的促进菌体在肠道产生GABA的层层自主药物制备方法,其特征在于,包括如下:
将菌液浓缩的大肠杆菌沉淀洗涤后,用PBS重悬,加入EDC及NHS活化后搅拌;
加入4mg/mL壳聚糖进行包裹,搅拌,离心洗涤后重悬至30ml,取出4ml为LS@C;
剩余的继续加入EDC及NHS活化的纤维素钠搅拌后,离心洗涤后重悬至26ml,再取出4ml此为LS@CCMC;
以此重复加入壳聚糖与纤维素钠包裹至第四层,顺序可以交换,先包裹纤维素钠再包裹壳聚糖,得到6组试样。
3.根据权利要求2所述的制备方法,其特征在于,最佳包裹层数探究,包括如下步骤:
(1)将材料置于体外模拟胃肠液中,做CFU(s)计数,探究包裹层数在不同时间下对菌株的保护效果;
(2)体内实验:先将唾液乳杆菌用尼罗红染料标记,再按照包裹顺序制作材料。所得材料分别喂给小鼠;用小动物成像仪跟踪定位小鼠肠胃中LS的量,跟踪到9天及分布位置,跟踪到第2天;
(3)将上述步骤(2)小鼠肠道中内容物取出,CFU(s)计数再次评估肠道中LS的量;
(4)将上述步骤(2)中小鼠肠道切片,免疫荧光染色确定小鼠肠道中GABA受体及血管数量变化;
(5)将上述步骤(2)中小鼠眼眶取血30天,比色法确定小鼠血液中GABA含量变化;包裹层数为2-3时菌株增殖效果较好,且产GABA量及血管生成量较多。
4.根据权利要求2所述的制备方法,其特征在于,通过行为学实验验证喂食材料后治疗效果,包括如下步骤:
(1)转棒实验评估小鼠运动障碍,小鼠分组分别为:正常鼠、帕金森小鼠、喂食LS的帕金森治疗小鼠、喂食LS@CCMC1的帕金森治疗小鼠,每组5只重复;
(2)爬杆实验评估小鼠运动障碍,分组情况同步骤(1);
(3)旷场实验评估小鼠运动障碍,分组情况同步骤(1);
(4)游泳实验评估小鼠运动障碍,分组情况同步骤(1)。
5.根据权利要求2所述的制备方法,其特征在于,通过多巴胺神经元凋亡恢复情况评估,包括如下步骤:
(1)ELISA试剂盒验证四组小鼠中脑中IL-6、IL-1β含量变化;
(2)q-PCR验证四组小鼠中脑中Cas3、Bax、p53凋亡基因变化;
(3)WB实验探究四组小鼠中脑中Bax、Bcl2、Gabrb1、TH蛋白表达量变化;
(4)免疫荧光TUNEL、TH、Iba1染色探究四组小鼠中脑中细胞凋亡情况及验证因子变化。
6.根据权利要求2所述的制备方法,其特征在于,q-PCR及ELISA法从机制方面验证内质网应激缓解,包括如下步骤:
(1)、q-PCR验证四组小鼠中脑中GABA受体gabrb2 gabrb3 gabbr2 gabrg2 elF2α含量变化;
(2)、ELISA试剂盒检测四组小鼠中脑中PI3K AKT ATF4 CHOP含量变化。
7.根据权利要求2所述的制备方法,其特征在于,从微生物多样性角度分析治疗效果,步骤如下:
取权利要求4中(1)中每组3只小鼠肠道内容物进行了微生物多样性分析;
12个样品测序共获得807,722对Reads,双端Reads质控、拼接后共产生800,849条CleanReads,每个样品至少产生48,442条Clean Reads,平均产生66,737条Clean Reads;分析样品物种分布及物种丰度。
8.根据权利要求1所述的促进菌体在肠道产生GABA的层层自主药物的应用,用于治疗退行性神经疾病。
9.根据权利要求1所述的促进菌体在肠道产生GABA的层层自主药物的应用,用于治疗帕金森病。
10.根据权利要求1所述的促进菌体在肠道产生GABA的层层自主药物的应用,用于生物学中帕金森病内质网应激机制研究。
CN202210494477.4A 2022-05-07 2022-05-07 促进菌体在肠道产生gaba的层层自主药物、制备方法及应用 Pending CN115089557A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210494477.4A CN115089557A (zh) 2022-05-07 2022-05-07 促进菌体在肠道产生gaba的层层自主药物、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210494477.4A CN115089557A (zh) 2022-05-07 2022-05-07 促进菌体在肠道产生gaba的层层自主药物、制备方法及应用

Publications (1)

Publication Number Publication Date
CN115089557A true CN115089557A (zh) 2022-09-23

Family

ID=83287435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210494477.4A Pending CN115089557A (zh) 2022-05-07 2022-05-07 促进菌体在肠道产生gaba的层层自主药物、制备方法及应用

Country Status (1)

Country Link
CN (1) CN115089557A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025638A (zh) * 2019-03-29 2019-07-19 华中科技大学 壳聚糖‐羧甲基纤维素钠层层自组装益生菌微囊及其制备
CN110891430A (zh) * 2017-06-19 2020-03-17 波比奥泰克股份公司 用于治疗帕金森病的包含属于唾液乳杆菌物种的细菌菌株的组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891430A (zh) * 2017-06-19 2020-03-17 波比奥泰克股份公司 用于治疗帕金森病的包含属于唾液乳杆菌物种的细菌菌株的组合物
CN110025638A (zh) * 2019-03-29 2019-07-19 华中科技大学 壳聚糖‐羧甲基纤维素钠层层自组装益生菌微囊及其制备

Similar Documents

Publication Publication Date Title
Feng et al. Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner
Zhang et al. Supplementation of probiotics in water beneficial growth performance, carcass traits, immune function, and antioxidant capacity in broiler chickens
Lyte et al. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions
Kumar et al. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells
Tao et al. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells
Freestone et al. Stress and microbial endocrinology: prospects for ruminant nutrition
Durant et al. Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of Leghorn hens
Hu et al. Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs
US20170087195A1 (en) Composition for treating or preventing metabolic disease, containing, as active ingredient, extracellular vesicles derived from akkermansia muciniphila bacteria
Chaudhari et al. Beneficial effects of dietary supplementation of Bacillus strains on growth performance and gut health in chickens with mixed coccidiosis infection
Wen et al. Evaluation the effect of thiamin deficiency on intestinal immunity of young grass carp (Ctenopharyngodon idella)
Lyte et al. Microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior
Xiong et al. Vi4-miR-185-5p-Igfbp3 network protects the brain from neonatal hypoxic ischemic injury via promoting neuron survival and suppressing the cell apoptosis
Feng et al. Effects of niacin on intestinal immunity, microbial community and intestinal barrier in weaned piglets during starvation
Byeon et al. New strains of Akkermansia muciniphila and Faecalibacterium prausnitzii are effective for improving the muscle strength of mice with immobilization-induced muscular atrophy
Xu et al. The effects of in ovo nicotinamide riboside dose on broiler myogenesis
Lescheva et al. Microecological approaches to the prophylactic correction of dysbacteriosis microbiota in the gastrointestinal tract of ducks
He et al. Oral L-theanine administration promotes fat browning and prevents obesity in mice fed high-fat diet associated with the modulation of gut microbiota
Bhanja et al. Treating the onset of diabetes using probiotics along with prebiotic from pachyrhizus erosus in high-fat diet fed drosophila melanogaster
Li et al. Effect of sheng‐jiang powder on gut microbiota in high‐fat diet‐induced nafld
Joya et al. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance, intestinal microbiota and morphology, and serum parameters in broiler chickens
Guma et al. The pathogenic characterization of Citrobacter freundii and its activation on immune related genes in Macrobrachium nipponense
Wu et al. A potential alternative to traditional antibiotics in aquaculture: Yeast glycoprotein exhibits antimicrobial effect in vivo and in vitro on Aeromonas caviae isolated from Carassius auratus gibelio
Yang et al. Effects of betaine on growth performance, intestinal health, and immune response of goslings challenged with lipopolysaccharide
Thomas et al. Diet effects on colonic health influence the efficacy of Bin1 mAb immunotherapy for ulcerative colitis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220923