CN115078581A - 基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法 - Google Patents

基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法 Download PDF

Info

Publication number
CN115078581A
CN115078581A CN202210704618.0A CN202210704618A CN115078581A CN 115078581 A CN115078581 A CN 115078581A CN 202210704618 A CN202210704618 A CN 202210704618A CN 115078581 A CN115078581 A CN 115078581A
Authority
CN
China
Prior art keywords
decoction
tof
uhplc
analysis
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210704618.0A
Other languages
English (en)
Inventor
闻韬
陈勇
焦广洋
唐继贵
刘煊
岳小强
张凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Changzheng Hospital
Original Assignee
Shanghai Changzheng Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Changzheng Hospital filed Critical Shanghai Changzheng Hospital
Priority to CN202210704618.0A priority Critical patent/CN115078581A/zh
Publication of CN115078581A publication Critical patent/CN115078581A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3007Control of physical parameters of the fluid carrier of temperature same temperature for whole column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明提供了基于UHPLC‑Q‑TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,包括:组分提取:醇提取得免煎剂提取液;B样品前处理:取提取液以3000r/min的转速离心后,取上层溶液15000r/min转速离心,静置后再次取上清液15000r/min离心,而后取适量上清液于棕色进样小瓶中,待分析;C分析:色谱条件:选用WatersACQUITYUPLCBEHC18色谱柱,柱温30℃,流速0.3mL/min,进样量1μL,检测波长254nm,流动相:含0.1%甲酸的水溶液作为A相,乙腈作为B相,进行梯度洗脱;质谱条件:ESI离子源,分别在正、负离子模式下采集数据;数据采集范围m/z100~1700,离子源温度350℃,正离子模式下毛细管电压3.5kV、负离子模式下4.0kV,雾化气压力45Psi,干燥气流速11L/min,鞘气流速11L/min,鞘气温度350℃,碎片电压140V。

Description

基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法
技术领域
本发明属于成分分析技术领域,涉及中药配方化学成分的分析方法,尤其涉及基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂化学成分的分析方法。
背景技术
柴胡桂枝干姜汤出自《伤寒论·辨太阳病脉证并治下》第147条:“伤寒五六日,已发汗而复下之,胸胁满微结、小便不利、渴而不呕,但头汗出、往来寒热,心烦者,此为未解也,柴胡桂枝干姜汤主之。”本方由柴胡半斤、桂枝三两、干姜二两、瓜蒌根四两、黄芩三两、牡蛎二两和炙甘草二两组成。方中柴胡为少阳主药,畅气机,散郁火,有助于少阳气机外透;黄芩苦寒,能清解少阳郁热,二者相伍以枢转少阳,解半表半里之邪,为方中主药。干姜、桂枝配炙甘草辛甘化阳以温振脾气,合黄芩、天花粉又能辛开苦降,复脾胃健运;牡蛎咸寒,既可化饮散结,除邪下之痞结,又能合天花粉清热除烦止渴,兼以安神。诸药合用,既可疏利少阳,又能调和脾胃,兼能清热、化饮、散结、安神。临床治疗柴胡桂枝干姜汤运用广泛,涉及呼吸、消化、内分泌、妇科等多个系统疾病[1,2],能够治疗包括焦虑、失眠、痤疮、胆囊炎、功能性消化不良等四十多种不同的疾病[3]。研究表明,该方在消化系统疾病中的应用尤为广泛,在脾胃肝胆等诸多病症疗效确切[4]。但其汤剂的制备,尚不统一,药理功效缺乏统一规范。
目前对该方剂的研究集中在药理功效方面,尚无对该方剂化学成分、有效成分的相关研究报道。寻找中药复方的临床效应基础,是长期困扰中医人临床研究的难点。中药药效的发挥是多种化学成分协同作用的结果,明确中药中固有的化学成分及其含量(体外成分群)是药效物质研究的基础。
《中国药典》2020版仅仅只对柴胡桂枝干姜汤所含8种药材中的柴胡、黄芩、桂枝、半夏、干姜、天花粉、牡蛎、甘草的相关化合物进行含量检测,从而对药材进行质量鉴定:柴胡为柴胡皂苷a、柴胡皂苷d;黄芩为黄芩苷、黄芩素和汉黄芩素;桂枝为桂皮醛;干姜为6-姜辣素;天花粉为瓜氨酸;甘草为甘草苷、甘草酸铵。
中药方剂在中医临床实践中形成了以汤剂为主的口服给药方式,药材煎煮制备获得复方时是否会导致化学成分的改变,柴胡桂枝干姜汤免煎剂是否也需要对上述化合物进行检测来确定方剂的质量均未知。再有,中药方剂具有多成分、多靶点、多途径、整合调节的作用特点,因此,有必要对柴胡桂枝干姜汤方所含所有药材的化学成分群进行分析,初步确定其化学成分特征,为其质量控制提供数据参考。
近年来,UHPLC-Q-TOF/MS技术以其高灵敏度、准确性和高分离速率的优点,并结合其既能对化合物进行质谱高分辨分析又能对目标离子进行二级质谱碎片分析的特点,已广泛用于中药复方复杂体系化合物的快速分析鉴定,本发明也基于该项技术进行。
发明内容
本发明的目的在于基于UHPLC-Q-TOF/MS技术开展中药复方体外成分的鉴别,明确柴胡桂枝干姜汤免煎剂的化学成分,为下一步阐明药效物质筛选提供科学依据。
本发明提供的基于UHPLC-Q-TOF/MS识别上述免煎剂化学成分的分析方法中,所述柴胡桂枝干姜免煎剂由柴胡、黄芩、桂枝、半夏、干姜、天花粉、牡蛎、炙甘草配伍组成,分析方法包括如下步骤:
A、组分提取
精密称定免煎剂摇匀、密塞,加入体积为免煎剂质量50倍的70%甲醇,称定质量后超声提取30min,放至室温,再次称定质量,并用70%甲醇补足减失的质量。
B、样品前处理
取提取液以3000r/min的转速离心10min,取上层溶液15000r/min转速离心10min,静置10min后,再次取上清液15000r·min-1离心10min,取适量上清液(优选200μL)于棕色进样小瓶中,待UHPLC-Q-TOF/MS分析。
C、UHPLC-Q-TOF/MS分析
色谱条件:Agilent 1290Infinity型超高效液相色谱,选用Waters ACQUITY UPLCBEH C18色谱柱,柱温:30℃,流速:0.3mL/min,进样量:1μL,检测波长:254nm,流动相:含0.1%甲酸的水溶液作为A相,乙腈作为B相,进行梯度洗脱,程序如下:
Figure BDA0003705744810000021
Figure BDA0003705744810000031
质谱条件:Agilent 6530型四极杆-飞行时间串联质谱仪,ESI离子源,分别在正、负离子模式下采集数据;数据采集范围m/z 100~1700,离子源温度350℃,正离子模式下毛细管电压3.5kV、负离子模式下4.0kV,雾化气压力45Psi,干燥气流速11L/min,鞘气流速11L/min,鞘气温度350℃,碎片电压140V。
根据在线获得的化合物质谱数据,得到柴胡、黄芩、桂枝、半夏、干姜、天花粉、牡蛎、炙甘草的化学组分。
通过上述分析方法可分析得到107种化合物,其中,英西卡林、6-O-香草酰基筋骨草醇、东莨菪亭、罗汉松脂素、柴胡皂甙v/scorzoneroside A、epinortrachelogenin、柴胡皂苷X、3,7-二甲氧基槲皮素、滨蒿内酯、柴胡皂苷F、柴胡皂甙元F/G、柴胡皂苷H/BK1、柴胡毒素、异柴胡内酯、柴胡皂苷b1/b2、亚太因、9Z,12Z-十八二烯基乙酸、乙酰柴胡皂苷b2/b3、柴胡皂苷a/d、柴胡皂苷e、乙酰柴胡皂苷d、乙酰柴胡皂苷a、山奈酚、香豆素、汉黄芩素共25个化合物来自柴胡;精氨酸、甘草素-7,4'-二糖苷、光甘草定、新甘草酚、维采宁-2、夏佛塔苷、7,4'-二羟基黄酮、黄豆黄苷、芹糖异甘草苷、甘草素、芹糖甘草苷、桂木宁E、新异甘草甙、芒柄花苷、毛蕊异黄酮、三叶豆紫檀苷、樱黄素、3-羟基光甘草酚、甘草皂苷A3、芒柄花黄素、甘草皂苷E2及同分异构体、甘草皂苷G2及同分异构体、甘草C、单葡糖甘草酸、甘草次酸、甘草酸、飞机草素、甘草皂苷J2、甘草香豆素、甘草皂苷B2及同分异构体、甘草酮、异甘草甙、山奈酚、乔松素共34个化合物来自甘草;姜油酮、6-姜酮酚、6-gingerdiol、6-姜酚、甲基-6-姜酚、8-姜烯酚、10-姜酚共7个化合物来自干姜;2-甲氧基肉桂醛/3-甲氧基肉桂醛、肉桂酸甲酯、茴香醛、乙酸肉桂酯、香豆素共5个化合物来自桂枝;异甘草甙、赤松素、异形叶乌头碱、(2R,3R)-3,5,7,2’,6’-五羟基双氢黄酮/3,6,7,2',6-五羟基双氢黄酮、3,5,7,2',6'-五羟基黄酮、(±)5,7,4'-三羟基-8-甲氧基黄酮、丁午酚甙、5,7,2'-三羟基-6'-甲氧基黄酮、5,7,2',6'-四羟基黄酮、甘黄芩甙元、白杨素、黄芩苷、黄芩素、5,7-二羟基-8,2'二甲氧基黄酮、槲皮苷、去甲汉黄芩素-8-葡糖苷酸、芹菜素、去甲汉黄芩素-7-O-葡萄糖苷、高车前素-7-O-D-葡萄糖苷、六甲氧基黄酮、白杨素-7-O-葡萄糖苷、千层纸素A-7-O-葡萄糖苷、野黄芩素、去甲汉黄芩素-7-O-葡萄糖苷、汉黄芩苷、山姜素、5,7,2'-三羟基黄酮、高车前素、7,8,4'-三羟基异黄酮、甘肃黄芩素I/粘毛黄芩素II、韧黄芩素II、韧黄芩素I、2'-羟基-2,3,4,5,4',5',6'-七甲氧基查尔酮、黄芩黄酮I、黄芩黄酮II、5,7-二羟基-8,2',6'-三甲氧基黄酮、汉黄芩素、乔松素共39个化合物来自黄芩,腺嘌呤、缬氨酸、谷氨酸共3个化合物来自牡蛎,谷氨酸同时也来自天花粉,具体参见表2。
方中半夏的成分已在申请人早前提交的专利号为CN112505221A的中国发明专利中分析,共含有鼠李糖甘草苷、异佛莱心苷、芹糖异甘草苷、异甘草苷、甘草皂苷G2、甘草酸共6个化合物。
本发明的有益保障及效果如下:
本研究基于UHPLC-Q-TOF/MS技术开展中药复方体外成分的鉴别,对柴胡桂枝干姜免煎剂中的化学成分进行具体分析。具有快捷、简便、易行,样品用量小和高通量分析等特点,且样品前处理简单,所建立的方法可用于快速识别柴胡桂枝干姜汤方的免煎剂的化学成分,为临床用药的安全、有效提供准确的参考依据,为下一步阐明药效物质筛选提供科学依据。
附图说明
图1为柴胡桂枝干姜汤的UHPLC-Q-TOF/MS色谱图。
图2为柴胡桂枝干姜汤醇提物化学成分药材来源。
图3为柴胡桂枝干姜汤醇提物化学成分类别。
具体实施方式
现结合实施例和附图,对本发明作详细描述,但本发明的实施不仅限于此。
本发明所用试剂和原料均市售可得或可按文献方法制备。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按体积计算。
一、实验材料
1.1UHPLC-Q-TOF/MS系统
Agilent 1290Infinity型超高效液相色谱和Agilent 6530型四极杆-飞行时间串联质谱仪(UHPLC-Q-TOF/MS,Agilent,美国),CPA255D型1/10万电子天平(Sartorius,德国),Lyovapor L-200冷冻干燥机(BUCHI,瑞士),Eppendorfmini spin离心机(Eppendorf,德国),Eppendorf5430r离心机(Eppendorf,德国),SK7200H型超声仪(上海科导超声仪器有限公司),Milli-Q型纯化水系统(Millipore,美国)。
1.2试剂与药材
水为屈臣氏纯净水,甲醇、乙腈、甲酸均为质谱纯(德国E.Merck公司),其余试剂均为分析纯。
二、药液准备及分析
1、药材提取
精密称定免煎剂1g,置于具塞锥形瓶中,摇匀,密塞,加入70%甲醇50mL,称定质量;超声提取30min,放至室温,再次称定质量,并用70%甲醇补足减失的质量。
2、样品前处理
取提取液以3000r/min的转速离心10min,取上层溶液于1.5ml离心管中,15000r/min转速离心10min,静置10min后,再次取上清液15000r·min-1离心10min,而后取上清液200μL于棕色进样小瓶中,待UHPLC-Q-TOF/MS分析。
3、化合物分析库的建立和数据分析
该方剂各味药的成分信息从已有的药材化合物成分分析文献,确保数据库中收录的化合物能够在已报道文章中检索可得,由此基于Agilent自带的defult文档建立方剂化合物数据库[5-35]。数据分析采用Agilent MassHunter QualitativeAnalysis 10.0软件进行。
4、UHPLC-Q-TOF/MS分析条件
色谱柱:Waters ACQUITY UPLC BEH C18色谱柱(2.1mm×100mm,1.7μm)
柱温:30℃
流速:0.3mL/min
进样量:1μL
检测波长:254nm
流动相:流动相A相(0.1%甲酸-水)-B相(乙腈),梯度洗脱程序见下表1。
分析时间:30min,后运行时间:3min
表1流动相梯度洗脱程序
Figure BDA0003705744810000051
质谱条件:ESI离子源,分别在正、负离子模式下采集数据。数据采集范围m/z 100~1700,离子源温度350℃,毛细管电压3.5kV(正离子)、4.0kV(负离子),雾化气压力45Psi,干燥气流速11L/min,鞘气流速11L/min,鞘气温度350℃,碎片电压140V。
三、化学成分识别
化合物的鉴定首先使用Agilent MassHunter软件中的按化学式查找(Find byFormula)功能,根据精确质量、同位素丰度,以及上述分子离子峰进行鉴定。根据质谱信息(包括化合物二级质谱信息)和参考文献进行初步的鉴定时,通过导入已建立的方剂化合物数据库,利用Agilent MassHunter Qualitative Analysis 10.0软件进行识别,并结合massbank、pubchem、msfinder等在线数据库进行辅助分析,根据化合物准确分子量及碎片信息进行判断,排除假阳性结果。
根据在线获得的化合物质谱数据,初步鉴定了107个化合物(图1)。其中,罗汉松脂素、柴胡皂苷X、柴胡皂苷F、柴胡皂苷e等25个化合物来自柴胡,精氨酸、甘草素等34个化合物来自甘草,姜油酮、6-姜酮酚等7个化合物来自干姜,肉桂酸甲酯、茴香醛等5个化合物来自桂枝,赤松素、黄芩苷、黄芩素等39个化合物来自黄芩,腺嘌呤等3个化合物来自牡蛎,谷氨酸来自天花粉。具体参见表2、图2。半夏的成分在早前申请的专利中(专利号为CN112505221A)已经分析,本次不再对其进行分析。
下以三种化合物为代表,对分析过程进行说明:
例如化合物1:通过数据库识别到0.841min的分子离子峰在正离子模式下出现m/z175.1199的[M+H]+离子,软件自动生成分子式中匹配度最高分值的为C6H14N4O2,说明其可能为精氨酸。其次,结合massbank在线数据库对其二级碎片离子进行查找,发现正离子模式下可识别到158.093,175.1188碎片离子,因此推断化合物1为精氨酸,结合我们建立化合物数据库信息,判断该化合物来源于甘草。
化合物51:通过数据库识别到19.500min的分子离子峰在正离子模式下出现m/z431.0976的[M+H]+离子,软件自动生成分子式中匹配度最高分值的为C21H18O10。其次,化合物产生m/z 255.0657白杨素的特征碎片离子,而黄芩中的简单黄酮类成分基本结构主要是白杨素、芹菜素、去甲汉黄芩素等,因此推测该化合物为来源于黄芩的白杨素-7-O-葡萄糖苷。
化合物72:正离子模式下在32.968min识别到m/z 839.4063的[M+H]+离子,软件自动生成分子式中匹配度最高分值的为C42H62O17。其次,化合物产生m/z 487.3415的离子峰,为其结构中的葡萄糖醛酸苷键断裂形成的碎片离子m/z 487.3415[C30H46O5+H]+离子,因此推断化合物72为甘草皂苷G2及其同分异构体,来源于甘草。
化合物类别上,醇提物中识别到的成分以黄酮类成分为主,占比43%,这可能与柴胡桂枝干姜汤中柴胡、黄芩以及甘草药材中均含有黄酮类成分有关;三萜皂苷类次之,占比16%,主要来自于柴胡桂枝干姜汤中的柴胡与甘草两种药材,其余还有氨基酸类、酚类等多类化学成分,具体参见图3。
表2方剂中化学成分的鉴定分析结果
Figure BDA0003705744810000071
Figure BDA0003705744810000081
Figure BDA0003705744810000091
Figure BDA0003705744810000101
Figure BDA0003705744810000111
Figure BDA0003705744810000121
Figure BDA0003705744810000131
Figure BDA0003705744810000141
参考文献
[1]李陆军,陶永梅.柴胡桂枝干姜汤现代临床应用[J].中医药学报,2015(3):140-143.
[2]张立山,戴雁彦.应用柴胡桂枝干姜汤治疗妇科疾病举隅[J].中华中医药杂志,2009(11):1463-1464.
[3]陈宝明,薄建如,赵晔.柴胡桂枝干姜汤的应用[J].基层医学论坛,2005,9(8):729-729.
[4]袁嘉嘉,孙志广,肖君.柴胡桂枝干姜汤在治疗消化系统疾病中的应用[J].辽宁中医杂志(08).2016;43(8):1777-1780.
[5]X.F.Shang,X.R.He,X.Y.He,M.X.Li,R.X.Zhang,P.C.Fan,Q.L.Zhang,Z.P.Jia,The genus Scutellaria an ethnopharmacological and phytochemicalreview,J Ethnopharmacol128(2)(2010)279-313.
[6]M.Wang,Y.Chen,P.Hu,J.Ji,X.Li,J.Chen,Neoclerodane diterpenoids fromScutellaria barbata with cytotoxic activities,Nat Prod Res 34(10)(2020)1345-1351.
[7]W.Maolin,M.Chenyao,C.Yong,L.Xiang,C.Jianwei,Cytotoxic Neo-Clerodane Diterpenoids from ScutellariabarbataD.Don,Chemistry&biodiversity 16(2)(2019).
[8]G.-C.Yang,J.-H.Hu,B.-L.Li,H.Liu,J.-Y.Wang,L.-X.Sun,Six New neo-Clerodane Diterpenoids fromAerial Parts ofScutellaria barbata and TheirCytotoxic Activities,Planta Medica(2018).
[9]X.Chen,W.Chen,G.Chen,C.Han,J.J.He,X.Zhou,Z.Yu,C.Dai,X.Song,Neo-clerodane diterpenoids from the whole plants of Scutellaria formosana,Phytochemistry 145(2018)1-9.
[10]A.Delazar,H.Nazemiyeh,F.H.Afshar,N.Barghi,S.Esnaashari,P.Asgharian,Chemical compositions and biological activities of ScutellariapinnatifidaA.Hamilt aerial parts,Res Pharm Sci 12(3)(2017)187-195.
[11]Q.Q.Yuan,W.B.Song,W.Q.Wang,L.J.Xuan,Scubatines A-F,new cytotoxicneo-clerodane diterpenoids from Scutellariabarbata D.Don,Fitoterapia 119(2017)40-44.
[12]H.L.Long,H.J.Zhang,A.J.Deng,L.Ma,L.Q.Wu,Z.H.Li,Z.H.Zhang,W.J.Wang,J.D.Jiang,H.L.Qin,Three new lignan glucosides from the rootsofScutellariabaicalensis,Acta Pharm Sin B 6(3)(2016)229-233.
[13]S.J.Dai,K.Xiao,L.Zhang,Q.T.Han,New neo-clerodane diterpenoidsfrom Scutellaria strigillosa with cytotoxic activities,JAsianNat ProdRes 18(5)(2016)456-461.
[14]S.J.Dai,L.Zhang,K.Xiao,Q.T.Han,New cytotoxic neo-clerodanediterpenoids from Scutellaria strigillosa,Bioorg Med Chem Lett 26(7)(2016)1750-1753.
[15]T.D.Cuong,T.M.Hung,J.S.Lee,K.Y.Weon,M.H.Woo,B.S.Min,Anti-inflammatory activity of phenolic compounds from the whole plant ofScutellaria indica,Bioorg Med Chem Lett 25(5)(2015)1129-1134.
[16]G.Bhat,B.A.Ganai,A.S.Shawl,New phenolics from the root ofScutellaria prostrata JACQ.ex BENTH.,Natural Product Research 28(20)(2014)1685-1690.
[17]D.T.Thao,D.T.Phuong,T.T.H.Hanh,N.P.Thao,N.X.Cuong,N.H.Nam,C.V.Minh,Two new neoclerodane diterpenoids from Scutellaria barbata D.Dongrowing in Vietnam,J AsianNat Prod Res 16(4)(2014)364-369.
[18]Y.Y.Li,X.L.Tang,T.Jiang,P.F.Li,P.L.Li,G.Q.Li,Bioassay-guidedisolation of neo-clerodane diterpenoids from Scutellaria barbata,J Asian NatProd Res 15(9)(2013)941-949.
[19]F.Zhu,Y.T.Di,L.L.Liu,Q.Zhang,X.Fang,T.Q.Yang,X.J.Hao,H.P.He,Cytotoxic neoclerodane diterpenoids from Scutellariabarbata,JNat Prod 73(2)(2010)233-6.
[20]J.L.Wang,B.Y.Zhao,H.M.Xu,M.Zhao,W.X.Tang,S.J.Zhang,Study onchemical constituents of Scutelliaria regeliana,China Journal ofChinese.Materia Medica 36(23)(2011)3270-3275.
[21]G.Wang,F.Wang,J.K.Liu,Two new phenols from Scutellaria barbata,Molecules 16(2)(2011)1402-8.
[22]G.W.Qu,X.D.Yue,G.S.Li,Q.Y.Yu,S.J.Dai,Two new cytotoxic ent-clerodane diterpenoids from Scutellariabarbata,JAsianNat Prod Res 12(10)(2010)859-64.
[23]H.Lee,Y.Kim,I.Choi,B.S.Min,S.H.Shim,Two novel neo-clerodanediterpenoids from Scutellariabarbata,Bioorg Med Chem Lett 20(1)(2010)288-90.
[24]S.J.Dai,G.W.Qu,Q.Y.Yu,D.W.Zhang,G.S.Li,New neo-clerodanediterpenoids from Scutellariabarbata with cytotoxic activities,Fitoterapia 81(7)(2010)737-41.
[25]袁静,林莉,刘文凤,夏玉凤.芍药甘草附子汤化学成分的UPLC-Q-TOF-MS/MS分析.中国实验方剂学杂志
[26]崔园园,周永峰,马艳芹,房吉祥,王国强,张蓉蓉,董旖,张萍.基于UPLC-Q-TOF-MS法分析生、炙甘草中化学成分的差异性[J].中国药房,2020,31(09):1049-1053.
[27]Zou W,Gong L,Zhou F,LongY,Li Z,Xiao Z,Ouyang B,Liu M.Anti-inflammatory effect of traditional Chinese medicine preparation Penyanling onpelvic inflammatory disease.J Ethnopharmacol.2021Feb 10;266:113405
[28]Qi Y,Li S,Pi Z,Song F,Lin N,Liu S,Liu Z.Chemical profiling ofWu-tou decoction by UPLC-Q-TOF-MS.Talanta.2014Jan;118:21-9.
[29]Chen L,Hu C,Hood M,Kan J,Gan X,Zhang X,Zhang Y,Du J.An IntegratedApproach Exploring the Synergistic Mechanism ofHerbal Pairs in a BotanicalDietary Supplement:A Case Study ofa Liver Protection Health Food.Int JGenomics.2020Apr 9;2020:9054192.
[30]Xu T,Pi Z,Liu S,Song F,Liu Z.Chemical Profiling Combinedwith"Omics"Technologies (CP-Omics):a Strategy to Understand the CompatibilityMechanisms and Simplify Herb Formulas in Traditional ChineseMedicines.PhytochemAnal.2017Sep;28(5):381-391.
[31]张兰,王云,张村,赵应红.傣肾宁化学成分的HPLC-Q-TOF-MS/MS分析[J].中国实验方剂学杂志,2021,27(13):137-145.
[32]闫伊萌,岳可心,刘玉生,陈革,田涵雯,刘忠英,刘志强,宋凤瑞,皮子凤.基于UPLC-Q-TOF-MS~(E)的黄英咳喘糖浆化学成分分析[J/OL].应用化学:1-21[2021-06-10].
[33]Miao WJ,Wang Q,Bo T,Ye M,Qiao X,Yang WZ,Xiang C,Guan XY,GuoDA.Rapid characterization of chemical constituents and rats metabolites ofthe traditional Chinese patent medicine Gegen-Qinlian-Wan by UHPLC/DAD/qTOF-MS.J Pharm Biomed Anal.2013Jan;72:99-108.
[34]Ye M,Liu SH,Jiang Z,Lee Y,Tilton R,Cheng YC.Liquidchromatography/mass spectrometry analysis of PHY906,a Chinese medicineformulation for cancer therapy.Rapid Commun Mass Spectrom.2007;21(22):3593-607.
[35]Tan G,Zhu Z,Zhang H,Zhao L,Liu Y,Dong X,Lou Z,Zhang G,ChaiY.Analysis of phenolic and triterpenoid compounds in licorice and rat plasmaby high-performance liquid chromatography diode-array detection,time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry.RapidCommun Mass Spectrom.2010Jan;24(2):209-18.
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (6)

1.基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,所述柴胡桂枝干姜免煎剂由柴胡、黄芩、桂枝、半夏、干姜、天花粉、牡蛎、炙甘草组成,其特征在于,包括如下步骤:
A、组分提取
采用醇提取的方式获得免煎剂提取液;
B、样品前处理
取提取液以3000r/min的转速离心,取上层溶液15000r/min转速离心,静置后再次取上清液15000r/min离心,而后取适量上清液于棕色进样小瓶中,待UHPLC-Q-TOF/MS分析;
C、UHPLC-Q-TOF/MS分析
色谱条件:选用Waters ACQUITY UPLC BEH C18色谱柱,柱温:30℃,流速:0.3mL/min,进样量:1μL,检测波长:254nm,流动相:含0.1%甲酸的水溶液作为A相,乙腈作为B相,进行梯度洗脱;
质谱条件:ESI离子源,分别在正、负离子模式下采集数据;数据采集范围m/z 100~1700,离子源温度350℃,正离子模式下毛细管电压3.5kV、负离子模式下4.0kV,雾化气压力45Psi,干燥气流速11L/min,鞘气流速11L/min,鞘气温度350℃,碎片电压140V;
根据在线获得的化合物质谱数据,分析得到柴胡、黄芩、桂枝、干姜、天花粉、牡蛎、炙甘草的化学组分。
2.根据权利要求1所述的基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,其特征在于,
其中,所述免煎剂为颗粒剂。
3.根据权利要求2所述的基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,其特征在于,
其中,步骤A中,醇提取的方式如下:精密称定颗粒剂摇匀、密塞,加入体积为免煎剂质量50倍的70%甲醇,称定质量后超声提取30min,放至室温,再次称定质量,并用70%甲醇补足减失的质量。
4.根据权利要求1所述的基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,其特征在于:
其中,步骤B中,三次离心时间均为10min,静置时间也为10min,棕色进样小瓶中上清液体积为200μL。
5.根据权利要求1所述的基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,其特征在于:
其中,步骤C中,色谱分析时,进行梯度洗脱的程序如下:
Figure FDA0003705744800000021
6.根据权利要求1所述的基于UHPLC-Q-TOF/MS识别柴胡桂枝干姜免煎剂成分的方法,其特征在于:
化合物的鉴定方法如下:首先使用Agilent MassHunter软件中的按化学式查找功能,根据精确质量、同位素丰度,以及上述分子离子峰进行鉴定;根据包括化合物二级质谱信息在内的质谱信息和参考文献进行初步的鉴定时,通过导入已建立的方剂化合物数据库,利用Agilent MassHunter Qualitative Analysis 10.0软件进行识别,并结合massbank、pubchem、msfinder在线数据库进行辅助分析,根据化合物准确分子量及碎片信息进行判断,排除假阳性结果。
CN202210704618.0A 2022-06-21 2022-06-21 基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法 Pending CN115078581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210704618.0A CN115078581A (zh) 2022-06-21 2022-06-21 基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210704618.0A CN115078581A (zh) 2022-06-21 2022-06-21 基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法

Publications (1)

Publication Number Publication Date
CN115078581A true CN115078581A (zh) 2022-09-20

Family

ID=83252563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210704618.0A Pending CN115078581A (zh) 2022-06-21 2022-06-21 基于uhplc-q-tof/ms识别柴胡桂枝干姜免煎剂成分的方法

Country Status (1)

Country Link
CN (1) CN115078581A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110201130A (zh) * 2019-03-06 2019-09-06 十堰市太和医院 一种小柴胡汤提取物的制备及质谱指纹图谱构建方法
CN112505221A (zh) * 2020-11-19 2021-03-16 上海长征医院 基于uhplc-q-tof/ms识别消痰通腑方化学成分的分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110201130A (zh) * 2019-03-06 2019-09-06 十堰市太和医院 一种小柴胡汤提取物的制备及质谱指纹图谱构建方法
CN112505221A (zh) * 2020-11-19 2021-03-16 上海长征医院 基于uhplc-q-tof/ms识别消痰通腑方化学成分的分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周严严;高文雅;顾欣如;陈周全;赵海誉;边宝林;杨立新;司南;王宏洁;谈英;: "基于UHPLC-LTQ-Orbitrap-MS技术的清肺排毒汤化学成分鉴定及归属研究", 中国中药杂志, no. 13, 26 April 2020 (2020-04-26) *
岳小强等: "柴胡桂枝干姜汤方证特点及配伍规律分析", 《海军军医大学学报》, 27 March 2022 (2022-03-27) *

Similar Documents

Publication Publication Date Title
Jia et al. A review of Acanthopanax senticosus (Rupr and Maxim.) harms: From ethnopharmacological use to modern application
Cai et al. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs
Wang et al. Phytochemical and analytical studies of Panax notoginseng (Burk.) FH Chen
Yi et al. Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS
Shen et al. Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships
Avula et al. Quantitative determination of flavonoids and cycloartanol glycosides from aerial parts of Sutherlandia frutescens (L.) R. BR. by using LC-UV/ELSD methods and confirmation by using LC–MS method
Fu et al. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS
Wang et al. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian‐Pi‐Yi‐Shen pill by UPLC‐Q‐TOF‐MS/MS and HPLC‐QQQ‐MS/MS
CN107271577A (zh) 一种芪苓温肾消囊制剂的有效成分分析方法
Yang et al. Characterization of phytochemicals in the roots of wild herbaceous peonies from China and screening for medicinal resources
Huang et al. Quality evaluation for Radix Astragali based on fingerprint, indicative components selection and QAMS
Wei et al. GUO De-An. Chemical profiling of Huashi Baidu prescription, an effective anti-COVID-19 TCM formula
Zhang et al. Screening and identification of potential bioactive components in a combined prescription of Danggui Buxue decoction using cell extraction coupled with high performance liquid chromatography
Su et al. Ultra-performance liquid chromatography–tandem mass spectrometry analysis of the bioactive components and their metabolites of Shaofu Zhuyu decoction active extract in rat plasma
El-Shazly et al. Use, history, and liquid chromatography/mass spectrometry chemical analysis of Aconitum
Chen et al. Chemical and metabolic profiling of Si-Ni decoction analogous formulae by high performance liquid chromatography-mass spectrometry
Li et al. Rapid characterization of the constituents in Jigucao capsule using ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry
Nöst et al. Comprehensive metabolic profiling of modified gegen qinlian decoction by ultra-high-performance liquid chromatography-diode array detection-Q-exactive-orbitrap-electrospray ionization-mass spectrometry/mass spectrometry and application of high-performance thin-layer chromatography for its fingerprint analysis
Li et al. Characterization of chemical constituents in Shuanghuanglian oral dosage forms by ultra‐high performance liquid chromatography coupled with time‐of‐flight mass spectrometry
Fan et al. Identification of the absorbed components and metabolites of Xiao-Ai-Jie-Du decoction and their distribution in rats using ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry
Dong et al. Orthogonal array design in optimizing the extraction efficiency of active constituents from roots of Panax notoginseng
Kwon et al. Effect of processing method on platycodin D content in Platycodon grandiflorum roots
Zhou et al. A strategy for rapid discovery of traceable chemical markers in herbal products using MZmine 2 data processing toolbox: A case of Jing Liqueur
Chen et al. Chemical components analysis and in vivo metabolite profiling of Jian’er Xiaoshi oral liquid by UHPLC-Q-TOF-MS/MS
Lu-Lin et al. Identification of constituents in Gui-Zhi-Jia-Ge-Gen-Tang by LC-IT-MS combined with LC-Q-TOF-MS and elucidation of their metabolic networks in rat plasma after oral administration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination