CN115072807B - 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用 - Google Patents

一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用 Download PDF

Info

Publication number
CN115072807B
CN115072807B CN202210709285.0A CN202210709285A CN115072807B CN 115072807 B CN115072807 B CN 115072807B CN 202210709285 A CN202210709285 A CN 202210709285A CN 115072807 B CN115072807 B CN 115072807B
Authority
CN
China
Prior art keywords
mno
atomic
electric field
preparation
nickel doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210709285.0A
Other languages
English (en)
Other versions
CN115072807A (zh
Inventor
杨志宇
王德维
付真真
刘霞
姚烨波
高雪颖
吉英杰
李永嘉
严乙铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202210709285.0A priority Critical patent/CN115072807B/zh
Publication of CN115072807A publication Critical patent/CN115072807A/zh
Application granted granted Critical
Publication of CN115072807B publication Critical patent/CN115072807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用,属于电极材料制备领域。包括前驱体溶液制备,并通过水热合成和干燥得到Ni‑MnO2。本发明通过简单的镍掺杂增强MnO2内建电场来离子在其中的扩散能垒,从而提高了二氧化锰电极材料的电化学性能和除盐性能,该方法制备步骤简单,易于操作。

Description

一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及 应用
技术领域
本发明属于电极材料制备领域,主要涉及电容去离子电极材料的制备方法。
背景技术
由于地球上人口分布与淡水资源分布不成比例,加上水资源污染和使用过程中的浪费,据估测,到2025年,淡水资源紧缺将成为世界各国普遍面临的严峻问题。据联合国公布的统计数据,全球有11亿人生活缺水,26亿人缺乏基本的卫生设施。由于在地球全部水资源中,97.5%是海水,,为了缓解水资源紧张的严峻情况,海水淡化是大势所趋。在各种海水淡化技术中,电容去离子(Capacitive deionization,i.e.CDI)技术该项技术因为低能耗、清洁无污染的特点,在如今能源危机和淡水紧缺的大背景下,被认为是最有前景地、高效地为人类提供可利用淡水的方法之一。
传统CDI材料通常以碳材料为基础,包括碳气凝胶、活性炭、碳纳米纤维、碳纳米管、石墨烯和分级多孔碳。然而,由于碳基材料没有离子选择性,在CDI工艺过程中,共离子的排出与反离子的吸附共存,降低了除盐能力,增加了能耗。过渡金属氧化物由于其低成本和高理论电容而受到广泛关注。锰氧化物中,如二氧化锰(MnO2),因其具有较高的理论电容,固有的低成本和低毒性以及表面的亲水性促使锰氧化物易于被溶液润湿而受到更多关注。然而,MnO2受限于其固有的半导体特性,本征电导率差,无法储存更多的钠离子,导致其脱盐能力相对较低,限制了其在CDI技术中的实际应用。
为了解决上述问题,目前制备了通过引入镍杂原子以提高MnO2电极材料的对Na+电荷存储能力。MnO2基杂化电容去离子(Hybrid capacitive deionization,i.e.HCDI)的性能依赖于电子结构的调节。然而,电场强度调节常用于光催化,内建电场与离子吸附之间的潜在关系尚不清楚。到目前为止,还没有关于原子掺杂增强内建电场在电容去离子方面的系统研究报道,特别是在MnO2基HCDI中。
发明内容
本发明的首要目的是制备一种HCDI用电极材料。利用镍掺杂调节内建电场来优化MnO2电极材料,提高二氧化锰的电化学性能和除盐性能。
为实现上述技术目的,本发明采用的技术方案如下:
本发明所述的杂化电容去离子电极材料,包括以下合成步骤:
步骤1:在室温下,将金属锰盐(Mn(SO4)2·H2O)和金属镍盐(Ni(SO4)2·6H2O)溶解于蒸馏水中搅拌至混合均匀形成溶液;
步骤2:将高锰酸钾(KMnO4)溶解于蒸馏水中搅拌形成均匀溶液;
步骤3:在剧烈搅拌的情况下,将步骤2配好的高锰酸钾均匀溶液通过塑料吸水管逐渐滴入步骤1的溶液中,观察到溶液逐渐由浅棕色变成深棕色,且伴随着有沉淀快速生成;滴加结束后,继续搅拌约1小时,将所得到的物质转移到内衬反应釜中;
步骤4:将反应釜放入烘箱中140℃水热反应12小时;待冷却至常温后取出用乙醇抽滤3-5次,将收集到的药品放入玻璃皿中在烘箱中85℃过夜烘干至第二天取出,研磨后收集装瓶,得到镍掺杂的二氧化锰,记为Ni-MnO2
Ni(SO4)2、Mn(SO4)2的摩尔比为(0.01-0.1):1。
每1.01g Mn(SO4)2·H2O对应0.63g KMnO4
本发明所得材料用于杂化电容去离子装置的电极材料。
采用本发明的方法制备的电极材料,具有较大的电容和较小的电阻。内电场表示为因电荷分布不均匀,从而在材料内部产生一个由正电荷区域向负电荷区域的电场,本发明通过原子级的Ni元素掺杂,开发了一种增强内建电场的方法来优化MnO2电极材料的制备方法,改善了二氧化锰作为半导体材料本征电导率低的问题,在HCDI测试时成功地降低了Na+的扩散能垒,加快了电极材料的除盐速率。在原子尺度上调整材料的电子状态来提高二氧化锰基电极材料的电容去离子的性能。
采用本发明的方法制备的Ni-MnO2电极材料具备高的可逆容量,在电流密度为1A·g-1时为192F·g-1,并具备优异的循环稳定性。通过电化学工作站测试,在1A·g-1循环10000圈之后,容量保持率为88.8%,同时在HCDI装置中除盐80个循环后,除盐量保持率为同样也具备优异的倍率性能。
附图说明
图1为所制备材料MnO2与Ni-MnO2不同放大比例的SEM图;
(a)-(b)为MnO2材料的SEM图,(c)-(d)为Ni-MnO2材料的SEM图。
图2为所制备材料MnO2与Ni-MnO2的TEM图和HRTEM图;
(a)-(b)分别为MnO2材料的TEM图和HRTEM图,(c)-(d)分别为Ni-MnO2材料的TEM图和HRTEM图。
图3为所制备材料MnO2与Ni-MnO2的XRD对比图。
图4为电极材料MnO2与Ni-MnO2的XPS对比图。
图5为电极材料MnO2与Ni-MnO2的KPFM和电场强度对比图
图6为电极材料MnO2与Ni-MnO2的循环伏安测试结果和恒电流充放电测试结果。
图7为电极材料MnO2与Ni-MnO2的在HCDI装置除盐量和除盐速率比较结果。
图8为MnO2与Ni-MnO2的四探针测试结果。
图9为MnO2与Ni-MnO2的在HCDI装置中进行循环稳定性的测试结果。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
在室温下,将1.01g Mn(SO4)2·H2O和2.10g Ni(SO4)2溶解于超纯水中形成35ml溶液,在剧烈搅拌的情况下,逐渐滴加15mL的高锰酸钾溶液,观察到溶液逐渐由浅棕色变成深棕色,且伴随着有沉淀快速生成。滴加结束后,继续搅拌约1小时,将所得到的物质转移到内衬100mL的反应釜中,并适当用蒸馏水将烧杯中的残留物冲入内衬中装入反应釜,放入烘箱中140℃水热12小时。待冷却至常温后取出用乙醇抽滤3-5次,将收集到的药品放入玻璃皿中在烘箱中85℃过夜烘干至第二天取出,研磨后收集装瓶,得到镍掺杂的二氧化锰,记为Ni-MnO2
实施例2(对比例)
在室温下,将1.01g Mn(SO4)2H2O溶解于超纯水中形成35mL溶液,在剧烈搅拌的情况下,逐渐滴加15mL的高锰酸钾溶液,观察到溶液逐渐由浅棕色变成深棕色,且伴随着有沉淀快速生成。滴加结束后,继续搅拌约1小时,将所得到的物质转移到内衬100mL的反应釜中,并适当用蒸馏水将烧杯中的残留物冲入内衬中装入反应釜,放入烘箱中140℃水热12小时。待冷却至常温后取出用乙醇抽滤3-5次,将收集到的药品放入玻璃皿中在烘箱85℃过夜烘干至第二天取出,研磨后收集装瓶,得到MnO2
图1为材料MnO2与Ni-MnO2不同放大比例的SEM图。(a)-(b)为MnO2材料的SEM图,(c)-(d)为Ni-MnO2材料的SEM图。
图2为材料MnO2与Ni-MnO2的TEM图和HRTEM图。(a)-(b)为MnO2材料的TEM图和HRTEM图,(c)-(d)为Ni-MnO2材料的TEM图和HRTEM图。从SEM图和TEM图可以看出制备出来的是纳米棒状结构的材料。
图3为材料MnO2与Ni-MnO2的XRD对比图。从图3可以看出材料的晶型都与MnO2对应,均对应于PDF标准卡片#44-0141,证明在制备过程中镍掺杂并没有改变材料的晶体结构以及物质组成,仅仅有部分晶面(如310晶面)中,Ni-MnO2峰位置右移。
图4为材料MnO2与Ni-MnO2的XPS图。从图4(a)和4(b)可以看出,相比于MnO2,Ni-MnO2的Mn3s的ΔE较大,表明Ni掺杂降低了MnO2的价态,同时Ni-MnO2的Ni2p峰表明Ni主要以Ni(Ⅱ)形式存在。
图5为材料MnO2和Ni-MnO2的KPFM和拟合得到的电场强度,其中图5中(a)和(b)分别为Ni-MnO2和MnO2的KPFM图,图5中(c)和(d)分别为从两者KPFM中提取出来的表面接触电势差与材料位置关系的数据以及拟合结果,通过进一步计算,得到图5中(e)中Ni-MnO2和MnO2的电场强度关系。
图6为材料MnO2和Ni-MnO2的循环伏安测试结果和恒电流充放电测试结果。电化学测量是在1M NaCl水溶液中,以Ag/AgCl和铂片分别作为参比电极和对电极的三电极体系进行的。循环伏安法(CV)和恒电流充放电(GCD)测试在0到1V的电位窗口内进行。图6中(a)分别为Ni-MnO2和MnO2在5mV/s扫描速率下相对于Ag/AgCl参考电极的典型CV曲线,而图6中(b)分别为Ni-MnO2和MnO2在1A·g-1电流密度下相对于Ag/AgCl参考电极的GCD曲线。结果显示MnO2具有比较差的电化学性能,在1A·g-1电流密度下,其比电容为80F·g-1,而Ni-MnO2的比电容为192F·g-1
图7为得到的材料MnO2和Ni-MnO2在HCDI装置中的去离子性能,采取的模式为批处理模式(Batch Mode,i.e.BM)。在常温下,使用浓度为500mg L-1的NaCl溶液,在恒压为1.2V下除盐吸附2小时后,再进行脱附2小时。
图7中(a)为溶液电导率随时间变化的关系图,在2小时除盐时间下,Ni-MnO2所在的装置中,电导率下降程度远远大于MnO2,表明Ni-MnO2的除盐性能远优于MnO2。图7中(b)为盐离子去除量和时间的关系,也同样表明Ni-MnO2的除盐性能远优于MnO2。图7中(c)为盐离子去除量和时间的关系,表明Ni-MnO2在HCDI装置中相比于MnO2除盐更快。图7中(d)为不同电压下除盐两小时后计算得到的除盐量,可以明显地看出不同电压下Ni-MnO2的除盐量均远优于MnO2。图8为MnO2与Ni-MnO2的动态四探针测试结果。结果显示Ni-MnO2比MnO2具备更高的电导率,通过对加压板逐步施加压强,使样品槽内MnO2与含四探针探头的上电极接触并逐渐被压紧产生电位差,在测试的加压压强分别为1、2、3MPa下,其电导率分别为0.495S m-1、0.885S m-1、1.37S m-1,均优于MnO2(0.087S m-1、0.158S m-1、0.194S m-1)。说明镍掺杂导致了电子传输速率的提升。
对实施例1与实施例2所得到的电极材料进行电化学性能的对比,说明了镍掺杂增强内建电场对二氧化锰的性能起到了促进作用,Ni-MnO2具备更优异的电化学性能。
图9为MnO2与Ni-MnO2的在HCDI装置中进行循环稳定性的测试结果。结果显示在循环了80之后,Ni-MnO2的除盐量保持率为78.6%,比MnO2在装置中的除盐量保持率要高(70.0%)。

Claims (1)

1.一种原子级镍掺杂优化MnO2材料的应用,材料用于杂化电容去离子装置的电极材料,所述原子级镍掺杂优化MnO2材料的制备方法,包括以下步骤:
在室温下,将1.01g MnSO4∙H2O和2.10g NiSO4溶解于超纯水中形成35 mL溶液,在剧烈搅拌的情况下,逐渐滴加15 mL的高锰酸钾溶液,观察到溶液逐渐由浅棕色变成深棕色,且伴随着有沉淀快速生成;滴加结束后,继续搅拌1小时,将所得到的物质转移到内衬100 mL的反应釜中,并用蒸馏水将烧杯中的残留物冲入内衬中装入反应釜,放入烘箱中140℃水热12小时;待冷却至常温后取出用乙醇抽滤3-5次,将收集到的药品放入玻璃皿中在烘箱中85℃过夜烘干至第二天取出,研磨后收集装瓶,得到原子级镍掺杂优化MnO2材料,记为Ni-MnO2
CN202210709285.0A 2022-06-21 2022-06-21 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用 Active CN115072807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210709285.0A CN115072807B (zh) 2022-06-21 2022-06-21 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210709285.0A CN115072807B (zh) 2022-06-21 2022-06-21 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115072807A CN115072807A (zh) 2022-09-20
CN115072807B true CN115072807B (zh) 2023-06-27

Family

ID=83254198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210709285.0A Active CN115072807B (zh) 2022-06-21 2022-06-21 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115072807B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409152B (zh) * 2008-09-16 2010-12-01 上海第二工业大学 一种超级电容器用元素掺杂二氧化锰电极材料的制备方法
US20160141114A1 (en) * 2014-11-14 2016-05-19 Council Of Scientific & Industrial Research Nanocomposite of multilayer fullerenes with transition metal oxide nanoparticles and a process for the preparation thereof
CN109607711A (zh) * 2019-01-30 2019-04-12 东莞理工学院 一种杂化电容去离子脱盐模块及脱盐方法
CN112299493B (zh) * 2019-07-26 2023-03-31 南京理工大学 一种Ni掺杂δ-MnO2材料制备方法及其在钾离子电池中应用
CN110690057B (zh) * 2019-09-27 2021-02-02 同济大学 镍插层二氧化锰基柔性对称准固态超级电容器材料及其制备方法和应用
CN113690063B (zh) * 2021-07-29 2022-11-29 北京化工大学 一种镍掺杂调节自旋态来优化MnO2电极材料的制备方法及应用

Also Published As

Publication number Publication date
CN115072807A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Yuan et al. Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide
Liu et al. Low-crystalline β-Ni (OH) 2 nanosheets on nickel foam with enhanced areal capacitance for supercapacitor applications
CN102664107B (zh) 一种纳米二氧化锰电极的制备方法
Yang et al. Electrochemically reduced graphene oxides/nanostructured iron oxides as binder-free electrodes for supercapacitors
Lei et al. NiCo-layered double hydroxide with cation vacancy defects for high-performance supercapacitors
CN108376617B (zh) 一种纳米多孔氢氧化镍薄膜的电化学制备方法及其应用
CN108281296A (zh) 一种提高金属有机框架材料在碱性溶液中电化学性能的方法
Pan et al. MoS 2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor
Xiong et al. Hierarchical construction of reduced graphene oxide-polyaniline-NiMoS4 phases to enhance the asymmetric supercapacitor capacity
Zhang et al. Metal-organic frameworks derived transition metal phosphide/carbon for high performance asymmetric supercapacitor
CN113690063B (zh) 一种镍掺杂调节自旋态来优化MnO2电极材料的制备方法及应用
Sun et al. Facile electrodeposition of Ni3 (BO3) 2 nanospheres on Ti mesh for high-performance asymmetric supercapacitors
Lin et al. Electroconversion synthesis of Ni/Co layered nanomaterials for high-performance supercapacitors
Sun et al. A novel MoP2@ Ni2P nanosheet and an individual kelp-based porous carbon for assembly a unique high performance asymmetric supercapacitor
Xu et al. Manganese oxides in-situ grown on carbon sphere and derived different crystal structures as high-performance pseudocapacitor electrode material
He et al. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices
CN115072807B (zh) 一种原子级镍掺杂增强内建电场优化MnO2材料的制备方法及应用
Zou et al. Sulfur powder as a reducing agent to synthesize the Ni@ Ni (OH) 2 flower-like material for electrochemical capacitors
Chen et al. Electrodeposited Bi (OH) 3@ Mo (OH) 4 nanostructured electrode for high-performance supercapacitor application
Jiang et al. One-step electrodeposition preparation of NiCoSe 2@ carbon cloth as a flexible supercapacitor electrode material
Yang et al. Self-supported PANI@ MnO2 coaxial nanowire network sponge as a binder free electrode for supercapacitors
CN112420401B (zh) 一种氧化铋/氧化锰复合型超级电容器及其制备方法
Jiang et al. NiO/Ni x Co 3− x O 4 porous ultrathin nanosheet/nanowire composite structures as high-performance supercapacitor electrodes
Yu et al. Tiny Basic Nickel Carbonate Arrays/Reduced Graphene Oxide Composite for High-Efficiency Supercapacitor Application
Zhang et al. Platanus fruit-like nickel cobalt ammonium phosphate/MWCNTs composite grown on nickel foam for high-performance supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant