CN115047296B - 一种配电网故障区段定位方法 - Google Patents

一种配电网故障区段定位方法 Download PDF

Info

Publication number
CN115047296B
CN115047296B CN202210971159.2A CN202210971159A CN115047296B CN 115047296 B CN115047296 B CN 115047296B CN 202210971159 A CN202210971159 A CN 202210971159A CN 115047296 B CN115047296 B CN 115047296B
Authority
CN
China
Prior art keywords
time
convnext
fault
distribution network
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210971159.2A
Other languages
English (en)
Other versions
CN115047296A (zh
Inventor
吴浩
邓思敬
杨玉萍
邹西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN202210971159.2A priority Critical patent/CN115047296B/zh
Publication of CN115047296A publication Critical patent/CN115047296A/zh
Application granted granted Critical
Publication of CN115047296B publication Critical patent/CN115047296B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明提供了一种配电网故障区段定位方法,包括:采集配电网发生故障后的各区段两端的零序电流;对所述零序电流进行预处理后,再进行短时傅里叶变换,获取时频图;根据引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类,获取配电网故障区段定位结果。本发明耐受高阻能力强,具有一定的抗噪声的能力,且在部分数据丢失的情况下依然能进行区段定位。

Description

一种配电网故障区段定位方法
技术领域
本发明属于深度学习技术领域,尤其涉及一种配电网故障区段定位方法。
背景技术
随着电力系统的不断发展,配电网的结构愈发复杂,以谐振方式进行接地的系统在发生单相接地故障时,其特点是故障电流较小,系统能够在短时间内带接地点运行,但是带接地点运行时间太长会导致相间故障,增大故障的范围,可能会引发大面积的停电。为了在线路发生故障时缩小故障的范围,使得巡线人员能够能迅速修复线路故障,需要对故障发生的区段进行准确的定位,以提高电力系统供电可靠性。
随着故障诊断技术的不断发展,国内外的专家对配电网故障定位方法进行了大量的研究和改进。目前故障定位的方法包括阻抗法,行波法和注入信号法三种方法。其中,一种阻抗法为:利用阻抗分析进行故障定位,能够在不同故障类型的情况下准确识别出故障点,但随着故障距离的增加,故障定位的难度会增大;另一种阻抗法为:首先通过主成分分析与支持向量机提取出线路故障的特征,然后构造函数提取行波的分布信息,通过行波的时域信息找出有效突变点,但需要较高精度的电流互感器才能获取到故障数据。一种行波法为:通过小波多分辨率对行波特征进行提取,采用粒子群算法优化定位网络的超参数,定位准确度有所提高,但行波的波头识别困难且对采样频率选择的要求较高,且该方法未对线路发生高阻接地故障的情况进行分析;另一种行波法为:通过检测零模和线模第一个波头出现的时刻来进行区段定位,但所需的采样频率较高,导致处理的数据量较大,工程中较难实现。注入信号法利用注入装置注入信号,再进行检测以实现故障定位。信号注入法为:在配电网发生故障时给线路串联了一个LC注入装置,通过分析衰减系数与故障位置的关系进行故障定位,但注入信号本身对电网会有一定的冲击,且发生高阻接地故障时难以准确进行定位。综上,目前的配电网故障区段定位方法存在数据计算量较大、耐高阻能力较弱,对噪声环境的适应性较差等问题。
发明内容
为解决上述技术问题,本发明提出了一种配电网故障区段定位方法,该方法耐受高阻能力强,具有一定的抗噪声的能力,且在部分数据丢失的情况下依然能进行区段定位。
为实现上述目的,本发明提供了一种配电网故障区段定位方法,包括:
采集配电网发生故障后的各区段两端的零序电流;
对所述零序电流进行预处理后,再进行短时傅里叶变换,获取时频图;
利用引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类,获取配电网故障区段定位结果。
可选地,发生故障后的各区段两端的所述零序电流为:
Figure 369198DEST_PATH_IMAGE001
其中,
Figure 958442DEST_PATH_IMAGE002
为故障点上游的零序电流量,
Figure 207021DEST_PATH_IMAGE003
为故障点下游的零序电流量,
Figure 563351DEST_PATH_IMAGE004
为对 地电容;
Figure 315406DEST_PATH_IMAGE005
为消弧线圈电感;
Figure 75552DEST_PATH_IMAGE006
为流经
Figure 545847DEST_PATH_IMAGE004
的电容电流;
Figure 682431DEST_PATH_IMAGE007
为流经
Figure 23413DEST_PATH_IMAGE008
的电感电流;
Figure 751198DEST_PATH_IMAGE009
表示 终端的总数;
Figure 974369DEST_PATH_IMAGE010
表示故障上游的终端数量,终端如图2中
Figure 383485DEST_PATH_IMAGE011
所示;
Figure 641291DEST_PATH_IMAGE012
表示流经第
Figure 743239DEST_PATH_IMAGE013
个 电容的电流;
Figure 453706DEST_PATH_IMAGE013
Figure 197671DEST_PATH_IMAGE014
间的整数。
可选地,对所述零序电流进行预处理包括:
基于所述零序电流,计算各区段的零序电流幅值差;
将各区段的所述零序电流幅值差,按照区段顺序进行排列拼接成组合信号。
可选地,所述短时傅里叶变换为:
Figure 575563DEST_PATH_IMAGE015
其中,
Figure 582833DEST_PATH_IMAGE016
为原信号;
Figure 780596DEST_PATH_IMAGE017
为窗函数的时域形式,
Figure 328252DEST_PATH_IMAGE018
为窗函数选取的时间,
Figure 560650DEST_PATH_IMAGE019
为时 间,f为频率,e表示数学常量,j表示复数。
可选地,进行所述短时傅里叶变换还包括:设置所述短时傅里叶变换的带宽和时域分辨率;
所述短时傅里叶变换的带宽为:
Figure 801139DEST_PATH_IMAGE020
其中,
Figure 220619DEST_PATH_IMAGE021
为带宽,
Figure 775228DEST_PATH_IMAGE022
Figure 596554DEST_PATH_IMAGE023
的能量;
Figure 7943DEST_PATH_IMAGE023
表示窗函数的频域形式,f表示频率。
所述短时傅里叶变换的时域分辨率为:
Figure 180299DEST_PATH_IMAGE024
其中,
Figure 69757DEST_PATH_IMAGE025
为时域分辨率,
Figure 214431DEST_PATH_IMAGE026
Figure 796722DEST_PATH_IMAGE017
的能量,
Figure 190794DEST_PATH_IMAGE017
表示窗函数的时域形式。
可选地,所述引入迁移学习的ConvNeXt包括:Stem、Res2-Res5、全局平均池化层、全连接层和Softmax分类器;
所述Stem、Res2-Res5、全局平均池化层、全连接层与Softmax分类器依次连接;
所述Stem由一个预设数值卷积核的卷积层构成,Res2-Res5由ConvNeXt Block堆叠构成,其中,每个Res后都接入一个下采样层。
可选地,在所述引入迁移学习的ConvNeXt中,softmax分类器输出结构为1×1×配电网区段的数量,所述Stem、Res2-Res5载入预训练模型的权重参数,其中,所述预训练模型为引入ImageNet数据集后训练完成的模型,所述权重参数为预训练模型训练完成后得到的权重参数。
可选地,根据引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类包括:
将所述时频图划分为训练集和测试集;
将所述训练集输入至所述引入迁移学习的ConvNeXt中,对所述引入迁移学习的ConvNeXt进行训练,再通过所述测试集对训练后的所述引入迁移学习的ConvNeXt进行测试;
通过测试后的所述引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类。
与现有技术相比,本发明具有如下优点和技术效果:
(1)利用故障区段与健全区段两端零序电流幅值差的差异作为配电网区段定位的依据,经短时傅里叶变换后得到的时频图能够完整的表征出电气量的时频信息。
(2)将时频图输入到引入迁移学习的ConvNeXt模型中进行训练得到的区段定位模型能够有效地将区段定位问题转化为图像分类问题,提高区段定位的精度。
(3)本发明所提的方法不受故障初始角、故障位置、过渡电阻变化的影响,且在高阻接地、噪声干扰与数据丢失工况下依然能够正确进行区段定位。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例的一种配电网故障区段定位方法流程示意图;
图2为本发明实施例的谐振接地系统的等值电路示意图;
图3为本发明实施例的配电网仿真模型示意图;
图4为本发明实施例的区段a发生单相接地故障时健全区段与故障区段零序电流差示意图;
图5为本发明实施例的组合信号波形示意图;
图6为本发明实施例的区段a发生故障时的时频图;
图7为本发明实施例的ConvNeXt Block结构示意图;
图8为本发明实施例的全局平均池化实现过程示意图;
图9为本发明实施例的改进后ConvNeXt的总体结构示意图;
图10为本发明实施例的引入迁移学习的ConvNeXt模型示意图;
图11为本发明实施例的训练集准确率与损失率曲线示意图;其中,图11(a)为训练集准确率曲线,图11(b)为训练集损失率曲线;
图12为本发明实施例的测试集准确率与损失率曲线示意图;其中,图12(a)为测试集准确率曲线,图12(b)为测试集损失率曲线;
图13为本发明实施例的加入信噪比为20db噪声后的波形图;
图14为本发明实施例的噪声测试分类结果示意图;
图15为本发明实施例的高阻测试分类结果示意图;
图16为本发明实施例的数据丢失50个采样点的波形图;
图17为本发明实施例的数据丢失测试分类结果示意图;
图18为本发明实施例的不同分类网络准确率对比图示意图;
图19为本发明实施例的GSA-SVM定位模型测试结果示意图;其中,图19(a)为测试集测试结果,图19(b)为噪声测试结果,图19(c)为高阻测试结果,图19(d)为数据丢失测试结果;
图20为本发明实施例的BA-BP定位模型测试结果示意图;其中,图20(a)为测试集测试结果,图20(b)为噪声测试结果,图20(c)为高阻测试结果,图20(d)为数据丢失测试结果。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本实施例提供了基于一种配电网故障区段定位方法,包括:
采集配电网发生故障后的各区段两端的零序电流;
对所述零序电流进行预处理后,再进行短时傅里叶变换,获取时频图;
根据引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类,获取配电网故障区段定位结果。
进一步地,对所述零序电流进行预处理包括:
基于所述零序电流,计算各区段的零序电流幅值差;
将各区段的所述零序电流幅值差,按照区段顺序进行排列拼接成组合信号。
进一步地,进行所述短时傅里叶变换还包括:设置所述短时傅里叶变换的带宽和时域分辨率。
进一步地,可选地,所述引入迁移学习的ConvNeXt包括:Stem、Res2-Res5、全局平均池化层、全连接层和Softmax分类器;
所述Stem、Res2-Res5、全局平均池化层、全连接层与Softmax分类器依次连接;
所述Stem由一个卷积核大小为
Figure 883944DEST_PATH_IMAGE027
的卷积层构成,Res2-Res5由ConvNeXt Block 堆叠构成,其中,Res2由3个ConvNeXt Block堆叠而成,Res3由3个ConvNeXt Block堆叠而 成,Res4由9个ConvNeXt Block堆叠而成,Res5由3个ConvNeXt Block堆叠而成,且每个Res 后都接入了一个下采样层。ConvNeXt Block是由1个卷积核大小为7×7的卷积与2个卷积核 大小为1×1的卷积构成的残差结构。
进一步地,在所述引入迁移学习的ConvNeXt中,softmax分类器输出结构为1×1×配电网区段的数量,所述Stem、Res2-Res5载入预训练模型的权重参数,其中,所述预训练模型为引入ImageNet数据集后训练完成的模型,所述权重参数为预训练模型训练完成后得到的权重参数。
进一步地,根据引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类包括:
将所述时频图划分为训练集和测试集;
将所述训练集输入至所述引入迁移学习的ConvNeXt中,对所述引入迁移学习的ConvNeXt进行训练,再通过所述测试集对训练后的所述引入迁移学习的ConvNeXt进行测试;
通过测试后的所述引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类。
在本实施例中,针对配电网单相接地故障时传统定位方法耐受高阻能力较弱、抗噪能力较差等问题,提出一种基于短时傅里叶变换(STFT,Short-time FourierTransform)与引入迁移学习的ConvNeXt配电网故障区段定位方法。首先采集配电网各区段两端零序电流,通过计算得到各区段零序电流幅值差,再将各区段零序电流幅值差拼接成一个组合信号,经STFT处理组合信号获得时频图,把所得时频图划分为训练集与测试集。将训练集输入引入迁移学习的ConvNeXt进行图像的特征提取与分类,利用测试集进行测试。仿真结果表明:基于STFT与引入迁移学习的ConvNeXt配电网故障区段定位方法能在不同故障距离、不同接地电阻和不同故障初始角度的情况下有效实现故障区段的选择,该方法耐受高阻能力强,具有一定的抗噪声的能力,且在部分数据丢失的情况下依然能进行区段定位。
如图1所示,本实施中所提出的一种基于STFT与引入迁移学习的ConvNeXt配电网故障区段定位方法的具体实现步骤如下:
1.单相接地故障暂态过程分析
谐振接地系统发生单相接地故障时的等值电路图如图2所示,其中,
Figure 679861DEST_PATH_IMAGE004
为对地电 容;
Figure 433054DEST_PATH_IMAGE005
为消弧线圈电感;
Figure 314422DEST_PATH_IMAGE006
为流过
Figure 14525DEST_PATH_IMAGE004
的电容电流;
Figure 664949DEST_PATH_IMAGE007
为流过
Figure 589043DEST_PATH_IMAGE008
的电感电流;
Figure 957707DEST_PATH_IMAGE028
Figure 992659DEST_PATH_IMAGE029
(其 中包括
Figure 966431DEST_PATH_IMAGE030
)表示1到
Figure 795847DEST_PATH_IMAGE009
段线路的电容电流;
Figure 651808DEST_PATH_IMAGE031
Figure 756030DEST_PATH_IMAGE032
(其中包括
Figure 115467DEST_PATH_IMAGE033
)分别表示1到
Figure 584626DEST_PATH_IMAGE009
段线路的对地电容;
Figure 662303DEST_PATH_IMAGE034
Figure 304637DEST_PATH_IMAGE035
(其中包括
Figure 49739DEST_PATH_IMAGE036
)为定位终端;
Figure 486537DEST_PATH_IMAGE037
Figure 51510DEST_PATH_IMAGE038
(其中包括
Figure 435218DEST_PATH_IMAGE039
)为零序电流,
Figure 769247DEST_PATH_IMAGE040
为电阻;
Figure 642526DEST_PATH_IMAGE041
表示流过电阻
Figure 694795DEST_PATH_IMAGE040
的电流,
Figure 413352DEST_PATH_IMAGE042
为故障点等值电势,
Figure 70730DEST_PATH_IMAGE043
为故障点零序电压。
由于配电网的线长相比输电线路长度较短,当谐振系统发生单相接地故障时,线路的串联阻抗可以忽略,由基尔霍夫定理可得:
Figure 849330DEST_PATH_IMAGE044
其中,
Figure 388896DEST_PATH_IMAGE002
为故障点上游的零序电流量;
Figure 176723DEST_PATH_IMAGE003
为故障点下游的零序电流量,
Figure 485345DEST_PATH_IMAGE004
为对 地电容;
Figure 434846DEST_PATH_IMAGE008
为消弧线圈电感;
Figure 399391DEST_PATH_IMAGE006
为流经
Figure 990910DEST_PATH_IMAGE004
的电容电流;
Figure 154038DEST_PATH_IMAGE007
为流经
Figure 274440DEST_PATH_IMAGE008
的电感电流;
Figure 991861DEST_PATH_IMAGE012
表示 流经第
Figure 855911DEST_PATH_IMAGE013
个电容的电流,
Figure 873546DEST_PATH_IMAGE013
Figure 696009DEST_PATH_IMAGE014
间的整数;
Figure 431883DEST_PATH_IMAGE009
表示终端的总数;
Figure 302887DEST_PATH_IMAGE010
表示故障上游的终端数 量,终端如图2中
Figure 175029DEST_PATH_IMAGE011
所示。
故障点下游第
Figure 168392DEST_PATH_IMAGE045
个终端的零序电流值
Figure 391563DEST_PATH_IMAGE046
为:
Figure 597417DEST_PATH_IMAGE047
两边同时求
Figure 792906DEST_PATH_IMAGE018
Figure 691592DEST_PATH_IMAGE048
的积分可得:
Figure 136479DEST_PATH_IMAGE049
其中,
Figure 411603DEST_PATH_IMAGE050
为1个工频周期的时间;
Figure 727178DEST_PATH_IMAGE051
表示
Figure 531186DEST_PATH_IMAGE052
Figure 728949DEST_PATH_IMAGE048
时刻对应的值,
Figure 276605DEST_PATH_IMAGE053
表示
Figure 509003DEST_PATH_IMAGE052
Figure 483912DEST_PATH_IMAGE018
时刻对应的值,
Figure 168972DEST_PATH_IMAGE054
表示第
Figure 723581DEST_PATH_IMAGE055
到第
Figure 544906DEST_PATH_IMAGE009
个电容之和,
Figure 221875DEST_PATH_IMAGE056
表示第
Figure 128651DEST_PATH_IMAGE057
个电容,
Figure 18110DEST_PATH_IMAGE057
Figure 162784DEST_PATH_IMAGE058
间的整数,
Figure 479495DEST_PATH_IMAGE055
表示故障下游终端序号,
Figure 873568DEST_PATH_IMAGE009
表示终端总数。
Figure 832296DEST_PATH_IMAGE059
数量级为
Figure 628214DEST_PATH_IMAGE060
,因此故障点下游的零序电流近似为零,而故障点上游受到过渡 电阻影响,其零序电流与故障点下游有较大差异。
将区段两端零序电流作差后能够突出故障特征,可以将一条配电网线路划分成几个区段,再计算各区段零序电流幅值差,利用每个区段两端的零序电流差的差异作为配电网故障区段定位的依据。
2.基于STFT的图像表达
2.1.配电网建设
本实施例在PSCAD中搭建了配电网模型,如图3所示。该配电网模型共四条线路,其中将架空-电缆混合线路L1划分为a、b、c、d四个区段,区段长度分别为3km、3km、3.6km、3.1km,余下三条线路的线长分别为15km、11km、9km。线路的正零序参数如表1所示。
Figure 381406DEST_PATH_IMAGE061
2.2.短时傅里叶变换(STFT)
短时傅里叶变换的特点是原信号在进行变换后能够对时域尺度特征与频率成分进行分析。短时傅里叶变换是在傅里叶变换的过程中加上了一个滑移窗函数,通过窗函数的大小控制变换后的时频分辨率,其优势在于能够准确表现出信号在时频域的特征,无论是高频信号还是低频信号都能够还原其能量分布,具有一定的自适应性。
对某非平稳信号
Figure 466037DEST_PATH_IMAGE016
进行短时傅里叶变换的过程如下:首先构建一个高度为1的 时间窗函数
Figure 697298DEST_PATH_IMAGE017
,当时间窗口较窄时,
Figure 613302DEST_PATH_IMAGE062
为一个局部平稳信号。
Figure 537395DEST_PATH_IMAGE017
的中心位置在 时间域内滑动,可得到多个
Figure 906060DEST_PATH_IMAGE062
信号。然后对所得的
Figure 941012DEST_PATH_IMAGE062
信号进行傅里叶变换, 其表达式如下:
Figure 649205DEST_PATH_IMAGE063
其中,
Figure 744200DEST_PATH_IMAGE016
为原信号;
Figure 600160DEST_PATH_IMAGE017
为窗函数的时域形式;
Figure 415366DEST_PATH_IMAGE018
表示窗函数选取的时间,
Figure 243645DEST_PATH_IMAGE019
为时 间,f为频率,e表示数学常量,j表示复数。
考虑到STFT在区分两个正弦波时与带宽的长短相关,当给定时间窗函数
Figure 509541DEST_PATH_IMAGE017
与傅 里叶变换
Figure 587218DEST_PATH_IMAGE023
时,带宽
Figure 495131DEST_PATH_IMAGE021
的表达式如下:
Figure 974654DEST_PATH_IMAGE064
其中,
Figure 411452DEST_PATH_IMAGE022
Figure 976425DEST_PATH_IMAGE023
的能量,
Figure 94554DEST_PATH_IMAGE023
表示窗函数的频域形式,f表示频率。
时域分辨率为
Figure 959742DEST_PATH_IMAGE025
,其表达式为:
Figure 567441DEST_PATH_IMAGE065
其中,
Figure 619711DEST_PATH_IMAGE066
Figure 338268DEST_PATH_IMAGE017
的能量,
Figure 995645DEST_PATH_IMAGE017
表示窗函数的时域形式。
当配电网线路发生故障时,线路的零序电流会产生瞬时的变化,持续时间较短,能量分布较为集中。
2.3.STFT时频图获取
在本实施例中,设置仿真时间为0.2秒,故障发生时间为0.05秒,故障持续0.1秒,分别对a、b、c、d四个区段两端的零序电流进行采集,再计算各区段两端零序电流的差值。故障设置的相关参数设置如表2所示,则各区段两端零序电流作差后波形图如图4所示。
Figure 774245DEST_PATH_IMAGE067
截取每个区段故障后一个工频周期的数据(即200个采样点),再按区段顺序进行 排列,拼接成组合信号
Figure 313811DEST_PATH_IMAGE068
,如图5所示。
利用短时傅里叶变换将组合信号转化为时频图,如图6所示。
3.基于迁移学习的ConvNeXt模型
3.1.ConvNeXt模型
ConvNeXt模型为在ResNet50模型的基础上,利用Swin-Transformer的结构设计来进行改进,提出了ConvNeXt模型,相比ResNet50具有更快的推理速度和更高的准确率。ConvNeXt主干网络是由第一层卷积层(Stem)、第二层卷积层(Res2)至第五层卷积层(Res5)构成的;所述Stem由一个预设数值卷积核的卷积层构成,Res2-Res5由ConvNeXt Block堆叠构成,其中,Res2由3个ConvNeXt Block堆叠而成,Res3由3个ConvNeXt Block堆叠而成,Res4由9个ConvNeXt Block堆叠而成,Res5由3个ConvNeXt Block堆叠而成。ConvNeXtBlock中的depthwise conv采用的是7×7的卷积核,且将depthwise conv置于第一层,经归一化处理后依次输入两个卷积核大小为1×1卷积,激活函数采用的是GELU,ConvNeXtBlock的结构如图7所示。其中,每个Res后都接入一个下采样层。ConvNeXt结构如表3所示。
Figure 836059DEST_PATH_IMAGE069
3.2.构建引入迁移学习的ConvNeXt模型
3.2.1.全局平均池化(GAP,Global Average Pooling)
经过卷积神经网络提取得到的特征图中包含了原始图片的空间信息,如果直接将特征图转换为特征向量会破坏空间信息,因此提出全局平均池化的方法,GAP能够降低网络的参数量,有效避免出现过拟合的情况,提高网络的运行速度,其实现过程如图8所示。
在ConvNeXt的全连接层前加入全局平均池化层,如图9所示。
3.2.2迁移学习
迁移学习是指将预训练模型中的权值迁移到新领域的过程。当数据样本足够多时,神经网络能够训练得到一个鲁棒性较强的模型,但在配电网故障区段定位中,可获得的数据样本较少,使用少量的训练样本进行训练时,模型易出现过拟合等问题,引入迁移学习能够有效解决上述问题。
现有技术中为解决机器学习中过拟合和泛化的问题而构建ImageNet数据集。目前该数据集仍然是深度学习领域中图像分类、检测、定位的最常用数据集之一,将引入ImageNet后训练完成的模型作为预训练模型。
本实施例在训练过程中对softmax分类器进行微调,将softmax分类器输出结构由1×1×1000改为1×1×配电网区段的数量,第一层卷积层(Stem)、第二层卷积层(Res2)至第五层卷积层(Res5)载入预训练模型的权重参数,如图10所示,将本模型简称为T-ConvNeXt。
4.基于STFT与引入迁移学习的ConvNeXt配电网故障区段定位步骤,配电网故障区段定位实现步骤如下:
(1)采集线路发生故障后一个工频周期各区段两端的零序电流。
(2)将区段两端的零序电流作差得到每个区段的零序电流差。
(3)将所有区段求得的零序电流差值按照区段顺序进行排列拼接成组合信号
Figure 410260DEST_PATH_IMAGE068
(4)对组合信号
Figure 359762DEST_PATH_IMAGE068
作短时傅里叶变换,得到时频图。
(5)将时频图输入到引入迁移学习的ConvNeXt进行训练,得到基于STFT与引入迁移学习的ConvNeXt配电网故障区段定位模型。
(6)将测试集输入到区段定位模型中进行测试。
5配电网故障仿真分析
5.1 区段定位方法验证
本实施例采样频率设置为10kHz,在4个区段设置故障点,采集故障发生后各区段 两端一个工频周期的零序电流,将两端零序电流作差得到零序电流差,再通过拼接4个区段 的零序电流差得到组合信号。故障初始角取值区段为
Figure 324307DEST_PATH_IMAGE070
°,考虑共7种不同的情况;接 地电阻取值区间为
Figure 650246DEST_PATH_IMAGE071
Ω,考虑共10种不同的情况;考虑共10种故障发生的位置,因此 组合信号共
Figure 813374DEST_PATH_IMAGE072
组。利用短时傅里叶变换将2800组组合信号转化成时频 图,按9:1的比例将样本进行划分,数据样本如表4所示。
Figure 199356DEST_PATH_IMAGE073
将2520组训练样本分别输入T-ConvNeXt与ConvNeXt进行训练,设置迭代次数为60次,训练结果如图11所示。
从图11中可以看出模型的准确率在不断提高,损失率在不断减小,说明模型不存在过拟合的情况。在训练过程中,T-ConvNeXt的收敛速度更快,说明引入预训练后的权重能够加速训练的过程,最终能够达到100%的准确率。
将280组测试集数据输入已经训练好的T-ConvNeXt与ConvNeXt中进行测试,测试结果如图12所示。
从图12中可以看出引入迁移学习的ConvNeXt在迭代22次时就已经达到较高的准确率,能够在不同过渡电阻、不同故障距离、不同故障初始角的情况下进行故障区段定位。而未引入迁移学习的ConvNeXt在迭代至45次时识别准确率才趋于稳定且最终分类的准确率低于引入迁移学习的ConvNeXt。这说明在引入迁移学习后能够使模型更快收敛且能够提升分类精度,使故障区段定位的结果更加可靠。
6.算法性能分析
6.1.抗噪声干扰
在实际工作中,由于电力设备上经常会出现大量噪音数据,因此为了检验该方法在噪音影响状况下的可行性,在系统出现故障时检测所得零序电流信息中,依次增加了信噪比为10dB-50dB的噪声模拟噪音影响的情况。图13为加入信噪比为20db的噪声后波形图。
将噪声干扰测试样本输入ConvNeXt中进行测试,图14为噪声测试分类结果图,表5为噪声干扰情况下不同区段发生故障时的定位结果。由图14与表5中可以看出,当数据加入噪声后依然能识别出故障区段。
Figure 713514DEST_PATH_IMAGE074
6.2高阻接地测试
在系统出现高阻接地故障后,由于暂态过程的故障特性并不明确,在使用判据法进行区段定位时很容易出现错误,因此为了检验该算法在系统出现高阻接地时能否正确的进行故障区段定位,接地电阻依次设置为2000Ω,2500Ω,3000Ω,将故障特征数据集输入到ConvNeXt模型中,结果如图15所示,表6为接地电阻为高阻情况下不同区段发生故障时的定位结果。
Figure 577564DEST_PATH_IMAGE075
由表6可以看出,当系统发生高阻接地时,该故障区段定位模型仍能准确的进行定位。
6.3 数据丢失
在进行采集数据时可能会出现数据丢失的情况,为验证该算法在发生上述情况下是否还能准确进行故障区段定位,在组合信号中丢失不同数量的采样点,如图16所示。
当不同区段发生故障时分别进行数据随机丢失,经短时傅里叶变换转化为时频图,再将转换后的时频图输入区段定位模型中进行分类,结果如图17所示,表7为数据丢失情况下不同区段发生故障时的定位结果。
Figure 798461DEST_PATH_IMAGE076
从图17可以看出在丢失50、80、100个数据时ConvNeXt仍能进行准确的区段定位。
6.4 对比实验
6.4.1与不同深度学习分类网络对比
将5.1中的2800组时频图输入不同的深度学习分类网络中进行训练与测试,测试结果如图18所示。
由图18可知,其他3种分类网络的精确率均没有引入迁移学习的ConvNeXt网络高。表明相比其他分类网络,引入迁移学习的ConvNeXt网络对时频图的分类能力更加优越,具有更高的故障识别率。
6.4.2与传统配电网区段定位算法对比
将本实施例的配电网故障区段定位模型与传统的配电网区段定位模型进行对比。首先利用5.1中采集到的零序电流数据经集成经验模态分解(EEMD)得到本征模态分量,然后计算其能量熵,将能量熵按区段顺序进行排列得到特征向量,共2800组数据。按9:1的比例划分成训练集与测试集。将训练集分别输入经引力搜索算法(GSA)优化后的支持向量机(SVM)与经蝙蝠算法(BA)优化后的BP神经网络中进行训练,得到两个传统区段定位模型。再将测试集分别输入两个训练好的模型进行测试,并进行性能分析。GSA-SVM定位模型测试结果如图19所示,BA-BP定位模型测试结果如图20所示。
本实施例配电网故障区段定位模型与两种传统配电网故障区段定位模型性能对比如表8所示,其中包括测试集、噪声干扰、高阻接地、部分数据丢失情况下三种模型的区段定位准确率。
Figure 355345DEST_PATH_IMAGE077
由表8可知,三个定位模型在测试集测试时都有较高的识别率,且都能够在高阻接地的情况下识别出故障区段,但两个传统区段定位模型在噪声干扰与部分数据丢失的情况下分类精度较T-ConvNeXt定位模型更低,因此本实施例研究的基于STFT与引入迁移学习的ConvNeXt配单网故障区段定位方法在噪声干扰与部分数据丢失的情况下比传统定位方法更加可靠。
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (4)

1.一种配电网故障区段定位方法,其特征在于,包括:
采集配电网发生故障后的各区段两端的零序电流;
对所述零序电流进行预处理后,再进行短时傅里叶变换,获取时频图;
利用引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类,获取配电网故障区段定位结果;
对所述零序电流进行预处理包括:
基于所述零序电流,计算各区段的零序电流幅值差;
将各区段的所述零序电流幅值差,按照区段顺序进行排列拼接成组合信号;
所述引入迁移学习的ConvNeXt包括:Stem、Res2-Res5、全局平均池化层、全连接层和Softmax分类器;
所述Stem、Res2-Res5、全局平均池化层、全连接层与Softmax分类器依次连接;
所述Stem由一个预设数值卷积核的卷积层构成,Res2-Res5由ConvNeXt Block堆叠构成,其中,每个Res后都接入一个下采样层;
在所述引入迁移学习的ConvNeXt中,Softmax分类器输出结构为1×1×配电网区段的数量,所述Stem、Res2-Res5载入预训练模型的权重参数,其中,所述预训练模型为引入ImageNet数据集后训练完成的模型,所述权重参数为预训练模型训练完成后得到的权重参数;
根据引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类包括:
将所述时频图划分为训练集和测试集;
将所述训练集输入至所述引入迁移学习的ConvNeXt中,对所述引入迁移学习的ConvNeXt进行训练,再通过所述测试集对训练后的所述引入迁移学习的ConvNeXt进行测试;
通过测试后的所述引入迁移学习的ConvNeXt,对所述时频图进行特征提取与分类。
2.根据权利要求1所述的配电网故障区段定位方法,其特征在于,发生故障后的各区段两端的所述零序电流为:
Figure 967683DEST_PATH_IMAGE001
其中,
Figure 834008DEST_PATH_IMAGE002
为故障点上游的零序电流量,
Figure 467989DEST_PATH_IMAGE003
为故障点下游的零序电流量,
Figure 812383DEST_PATH_IMAGE004
为对地电 容,
Figure 982464DEST_PATH_IMAGE005
为消弧线圈电感,
Figure 285270DEST_PATH_IMAGE006
为流过
Figure 642433DEST_PATH_IMAGE007
的电容电流,
Figure 56097DEST_PATH_IMAGE008
为流过
Figure 815105DEST_PATH_IMAGE009
的电感电流,
Figure 288812DEST_PATH_IMAGE010
表示终端的 总数,
Figure 631806DEST_PATH_IMAGE011
表示故障上游的终端数量,
Figure 583582DEST_PATH_IMAGE012
表示流经第
Figure 462676DEST_PATH_IMAGE013
个电容的电流,
Figure 107284DEST_PATH_IMAGE013
Figure 439039DEST_PATH_IMAGE014
间的整数。
3.根据权利要求1所述的配电网故障区段定位方法,其特征在于,所述短时傅里叶变换为:
Figure 194506DEST_PATH_IMAGE015
其中,
Figure 662527DEST_PATH_IMAGE016
为原信号,
Figure 478037DEST_PATH_IMAGE017
为窗函数的时域形式,
Figure 795623DEST_PATH_IMAGE018
为窗函数选取的时间,
Figure 354780DEST_PATH_IMAGE020
为时间,f为 频率,e表示数学常量,j表示复数。
4.根据权利要求3所述的配电网故障区段定位方法,其特征在于,进行所述短时傅里叶变换还包括:设置所述短时傅里叶变换的带宽和时域分辨率;
所述短时傅里叶变换的带宽为:
Figure DEST_PATH_IMAGE021
其中,
Figure DEST_PATH_IMAGE022
为带宽,
Figure DEST_PATH_IMAGE023
Figure DEST_PATH_IMAGE024
的能量,
Figure 818254DEST_PATH_IMAGE024
表示窗函数的频域形式,f表示频率;
所述短时傅里叶变换的时域分辨率为:
Figure DEST_PATH_IMAGE025
其中,
Figure DEST_PATH_IMAGE026
为时域分辨率,
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
的能量,
Figure 912987DEST_PATH_IMAGE028
表示窗函数的时域形式。
CN202210971159.2A 2022-08-15 2022-08-15 一种配电网故障区段定位方法 Active CN115047296B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210971159.2A CN115047296B (zh) 2022-08-15 2022-08-15 一种配电网故障区段定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210971159.2A CN115047296B (zh) 2022-08-15 2022-08-15 一种配电网故障区段定位方法

Publications (2)

Publication Number Publication Date
CN115047296A CN115047296A (zh) 2022-09-13
CN115047296B true CN115047296B (zh) 2022-10-25

Family

ID=83166451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210971159.2A Active CN115047296B (zh) 2022-08-15 2022-08-15 一种配电网故障区段定位方法

Country Status (1)

Country Link
CN (1) CN115047296B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117826019A (zh) * 2024-03-06 2024-04-05 国网吉林省电力有限公司长春供电公司 中性点不接地系统的线路单相接地故障区及类型检测方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214968A1 (en) * 2016-06-17 2017-12-21 Nokia Technologies Oy Method and apparatus for convolutional neural networks
CN108107324A (zh) * 2017-12-22 2018-06-01 北京映翰通网络技术股份有限公司 一种基于深度卷积神经网络的配电网故障定位方法
CN108279364A (zh) * 2018-01-30 2018-07-13 福州大学 基于卷积神经网络的配电网单相接地故障选线方法
CN108959732A (zh) * 2018-06-15 2018-12-07 西安科技大学 一种基于卷积神经网络的输电线路故障类型识别方法
CN109324266A (zh) * 2018-11-21 2019-02-12 国网电力科学研究院武汉南瑞有限责任公司 一种基于深度学习的配网接地故障分析方法
CN110346692A (zh) * 2019-08-20 2019-10-18 国网河南省电力公司电力科学研究院 一种基于时频图像信息的配电网单相接地故障选线方法
CN112149554A (zh) * 2020-09-21 2020-12-29 广东电网有限责任公司清远供电局 故障分类模型的训练、故障检测方法及相关装置
CN112180217A (zh) * 2020-09-30 2021-01-05 福州大学 一种配电网单相接地故障区段定位方法及系统
CN112526282A (zh) * 2020-06-15 2021-03-19 国网湖北省电力有限公司黄冈供电公司 一种配网单相接地故障区段定位方法
CN113504437A (zh) * 2021-08-02 2021-10-15 国网江苏省电力有限公司宿迁供电分公司 一种中性点小电阻接地配电网单相接地故障区间辨识方法
CN113625107A (zh) * 2021-08-02 2021-11-09 四川轻化工大学 一种配电网单相接地故障选线方法
CN113850330A (zh) * 2021-09-27 2021-12-28 华北电力大学 一种基于短时傅里叶变换和卷积神经网络的配电网故障原因检测方法
WO2022064350A1 (en) * 2020-09-22 2022-03-31 Victoria Link Limited Electricity distribution network fault detection system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083374B2 (en) * 2016-12-12 2018-09-25 Texas Instruments Incorporated Methods and systems for analyzing images in convolutional neural networks
CN107609569B (zh) * 2017-07-31 2020-11-03 北京映翰通网络技术股份有限公司 一种基于多维特征向量的配电网接地故障定位方法
CN113945862A (zh) * 2021-10-18 2022-01-18 广东电网有限责任公司东莞供电局 一种配电网高阻接地故障识别方法、装置及设备

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214968A1 (en) * 2016-06-17 2017-12-21 Nokia Technologies Oy Method and apparatus for convolutional neural networks
CN108107324A (zh) * 2017-12-22 2018-06-01 北京映翰通网络技术股份有限公司 一种基于深度卷积神经网络的配电网故障定位方法
CN108279364A (zh) * 2018-01-30 2018-07-13 福州大学 基于卷积神经网络的配电网单相接地故障选线方法
CN108959732A (zh) * 2018-06-15 2018-12-07 西安科技大学 一种基于卷积神经网络的输电线路故障类型识别方法
CN109324266A (zh) * 2018-11-21 2019-02-12 国网电力科学研究院武汉南瑞有限责任公司 一种基于深度学习的配网接地故障分析方法
CN110346692A (zh) * 2019-08-20 2019-10-18 国网河南省电力公司电力科学研究院 一种基于时频图像信息的配电网单相接地故障选线方法
CN112526282A (zh) * 2020-06-15 2021-03-19 国网湖北省电力有限公司黄冈供电公司 一种配网单相接地故障区段定位方法
CN112149554A (zh) * 2020-09-21 2020-12-29 广东电网有限责任公司清远供电局 故障分类模型的训练、故障检测方法及相关装置
WO2022064350A1 (en) * 2020-09-22 2022-03-31 Victoria Link Limited Electricity distribution network fault detection system and method
CN112180217A (zh) * 2020-09-30 2021-01-05 福州大学 一种配电网单相接地故障区段定位方法及系统
CN113504437A (zh) * 2021-08-02 2021-10-15 国网江苏省电力有限公司宿迁供电分公司 一种中性点小电阻接地配电网单相接地故障区间辨识方法
CN113625107A (zh) * 2021-08-02 2021-11-09 四川轻化工大学 一种配电网单相接地故障选线方法
CN113850330A (zh) * 2021-09-27 2021-12-28 华北电力大学 一种基于短时傅里叶变换和卷积神经网络的配电网故障原因检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fault location in distribution system using convolutional neural network based on domain transformation;Yang Yu et al.;《CSCE Journal of Power and Energy Systems》;20210531;472-484 *
基于多维数据的配电网单相接地故障识别;许佳敏;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20220115;C042-2341 *

Also Published As

Publication number Publication date
CN115047296A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN112041693B (zh) 一种基于混合录波的配电网故障定位系统
CN108107324B (zh) 一种基于深度卷积神经网络的配电网故障定位方法
CN107451557B (zh) 基于经验小波变换与局部能量的输电线路短路故障诊断方法
CN113219300B (zh) 一种基于相电流暂态稳态的配电网单相接地故障感知方法
CN109001594B (zh) 一种故障行波定位方法
CN106443316A (zh) 一种电力变压器绕组形变状态多信息检测方法及装置
CN106771520B (zh) 一种配电网暂时过电压分类识别方法及装置
CN111239549A (zh) 一种基于离散小波变换的配电故障快速定位方法
CN110247420B (zh) 一种hvdc输电线路故障智能识别方法
CN115047296B (zh) 一种配电网故障区段定位方法
CN112130026B (zh) 基于小波包能量熵和dbn的mmc-hvdc单极接地故障定位方法
CN104931793B (zh) 一种变电站接地网接地阻抗获取方法
CN112114232A (zh) 基于小波分解和dbn的单极接地故障测距方法
CN111157843B (zh) 一种基于时频域行波信息的配电网选线方法
Li et al. A single-phase-to-ground fault location method based on convolutional deep belief network
CN115980514A (zh) 一种基于多端行波频率矩阵的复杂配电网故障定位方法
CN112557950B (zh) 基于矩阵相似性的配电网谐振接地系统故障选线方法
Wang et al. Transmission line fault diagnosis based on wavelet packet analysis and convolutional neural network
CN112946425A (zh) 一种利用深度学习挖掘行波时-频域特征的故障定位方法
Hosseini et al. Double circuit transmission lines short circuit fault location using wavelet transform and MLP
CN113033077A (zh) 一种基于神经网络算法的直流输电线路故障测距方法
CN116482571A (zh) 一种基于cnn的小电流单相接地故障多判据融合选线方法
Wu et al. An improved Hausdorff distance method for locating single phase to ground fault in neutral non‐effectively grounded system
Hongchun et al. A fault location method of traveling wave for distribution network with only two-phase current transformer using artificial neutral network
CN112363009B (zh) 一种用于同塔线路接地故障的单端故障测距方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant