CN115044837A - 界面共格纳米析出强化高强韧钢的制备方法 - Google Patents

界面共格纳米析出强化高强韧钢的制备方法 Download PDF

Info

Publication number
CN115044837A
CN115044837A CN202210648266.1A CN202210648266A CN115044837A CN 115044837 A CN115044837 A CN 115044837A CN 202210648266 A CN202210648266 A CN 202210648266A CN 115044837 A CN115044837 A CN 115044837A
Authority
CN
China
Prior art keywords
percent
strength
steel
treatment
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210648266.1A
Other languages
English (en)
Inventor
黄崇湘
何琼
曹文全
杨渤
王昌
刘正东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202210648266.1A priority Critical patent/CN115044837A/zh
Publication of CN115044837A publication Critical patent/CN115044837A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本发明公开了一种界面共格纳米析出强化高强韧钢及其制备方法,涉及高强韧钢制备技术领域,本发明所述高强韧钢由如下重量百分比的组分组成:C为0.3%~0.6%,Ni为5.0%~10.0%,Cr为5.0%~10.0%,Mo为2.0%~6.0%,Mn为1.0%~3.0%,Cu为0.5%~4.5%,V为0.05%~0.15%,Nb为0.05%~0.15%,余量为Fe;所述高强韧钢的结构为奥氏体和马氏体组织,所述奥氏体体积含量为70%~90%,所述马氏体体积含量为10%~30%;所述马氏体的组织界面附着有富铜‑9R纳米析出相,所述富铜‑9R纳米析出相与马氏体基体共格,且富铜‑9R纳米析出相宽度为2nm~50nm。本发明制备的界面共格纳米析出强化高强韧钢,有效解决了现有高强钢强度和塑性不可兼得的瓶颈,使其拉伸屈服强度范围高达1600MPa~2000MPa,极限拉伸强度范围高达1700MPa~2200MPa。

Description

界面共格纳米析出强化高强韧钢的制备方法
技术领域
本发明涉及高强韧钢制备技术领域,具体涉及一种界面共格纳米析出强化高强韧钢及其制备方法。
背景技术
钢作为世界应用最为广泛的金属材料之一,大量使用于汽车、轮船、家电和建筑等领域。随着科技水平的提高和日益增长的工业需求,高强钢应运而生,用于防弹钢板、汽车车身、火箭发动机壳体以及飞机起落架等特殊领域。遗憾的是,这种强度极高的高强钢难以维持塑性,高强度下往往伴随着塑性的损失,从而大幅度限制了其应用。因此,科学家聚焦于开发新的兼具强度和塑性的高强钢,纳米析出相是目前较为成功的结构设计思路。
截至目前,由于析出相的脆性导致塑性难以得到大幅度提高,高强度钢研究的瓶颈仍在于:开发具有高强度和高韧性一体化的钢种以及相应的高效制备工艺,为了突破这个瓶颈,本领域技术人员亦作出了多方尝试,专利申请号为201811584851.X的专利申请文件就公开了一种高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法,该技术利用奥氏体增韧抗疲劳作用和大量纳米析出相的强化作用来实现钢的高强韧性匹配,但也只能将其屈服强度提升至800~1200MPa,还达不到某些特种场景的使用要求。因此,亟需一种能通过合理的成分设计和简单有效的制备工艺,获得具有更高强度和更优异韧性一体化的钢材。
发明内容
针对现有技术中的上述问题,本发明提供一种界面共格纳米析出强化高强韧钢及其制备方法,以进一步提升现有钢材在强韧性上的力学性能。所述界面纳米析出是指富Cu-9R纳米析出相在马氏体界面析出且与基体保持共格关系。
本发明采用的技术方案如下:
本发明提供一种界面共格纳米析出强化高强韧钢,所述高强韧钢由如下重量百分比的组分组成:C为0.3%~0.6%,Ni为5.0%~10.0%,Cr为5.0%~10.0%,Mo为2.0%~6.0%,Mn为1.0%~3.0%,Cu为0.5%~4.5%,V为0.05%~0.15%,Nb为0.05%~0.15%,余量为Fe;所述高强韧钢的结构为奥氏体和马氏体组织,所述奥氏体体积含量为70%~90%,所述马氏体体积含量为10%~30%;所述马氏体的组织界面附着有富铜-9R纳米析出相,所述富铜-9R纳米析出相与马氏体基体共格,且富铜-9R纳米析出相宽度为2nm~50nm。
上述的界面共格纳米析出强化高强韧钢的制备方法,包括如下步骤:
S1对钢板进行固溶处理得到固溶态钢板;
S2对步骤S1预处理的固溶态钢板进行中温长时回火处理;
S3将中温长时回火处理后的钢板进行室温多道次轧制处理;
S4对室温多道次轧制处理后的钢板进行高温短时退火处理;
S5对退火处理后的钢板进行时效处理。
更优地,所述步骤S1中的固溶处理,固溶温度范围为800℃~1100℃,固溶时间范围为20min~120min,冷却方式为水冷。
更优地,所述步骤S2中,中温长时退火处理的温度范围为300℃~600℃,退火时间范围为2h~12h,冷却方式为水冷。
更优地,所述步骤S3中的室温多道次轧制处理,单一道次的应变量<0.1,多道次轧制量为50%~90%,每道次下轧量<5%。
更优地,所述步骤S4中的高温短时退火处理的温度范围为550℃-750℃,退火时间范围为1min-30min,冷却方式为空冷。
更优地,所述步骤S5中的时效处理温度范围为300℃-500℃,退火时间范围为0.5h-30h,冷却方式为空冷。
综上所述,相比于现有技术,本发明具有如下优点及有益效果:
1、本发明制备的界面共格纳米析出强化高强韧钢,力学特征在于:室温下其拉伸屈服强度范围为1600MPa~2000MPa,极限拉伸强度范围为1700MPa~2200MPa,拉伸均匀伸长率范围为6%~25%;本发明有效解决了现有高强钢强度和塑性不可兼得的瓶颈,通过简单有效的制备方法获得高强韧钢;
2、本发明通过时效和轧制制备了独特的界面纳米析出相结构,有效的将硬相纳米马氏体界面替换成纳米析出相。回火处理以获得更高含量的奥氏体结构;轧制过程中马氏体和奥氏体相逐渐细化至纳米尺度构造出高强度;时效处理在奥氏体/马氏体相界引入共格富Cu-9R纳米析出相完美保留了轧制过程中晶粒细化引起的强度提升,同时降低奥氏体-马氏体界面能,促进马氏体相变和防止马氏体塑性失稳,从而提高了材料的塑性。
附图说明
图1是本发明实施实例1、实施例2所制备的界面共格纳米析出强化高强韧钢的拉伸工程应力-应变曲线图,其中,虚线为实施例1,实线为实施例2;
图2为本发明实施例2所制备的界面共格纳米析出强化高强韧钢的透射电子显微镜(TEM)明场图;
图3为本发明实施例2制备的界面共格纳米析出强化高强韧钢的透射电子显微镜(TEM)高分辨图;
图4为本发明实施例2制备的界面共格纳米析出强化高强韧钢析出相的原子图和衍射图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图以及各实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
本发明两个实施例的化学元素成分及重量占比为:C为0.5%,Ni为8%,Cr为7%,Mo为3%,Mn为8%,Cu为4%,V为0.1%,Nb为0.1%和余量Fe。界面共格纳米析出强化高强韧钢中的钢组织结构为奥氏体和马氏体组织,所述奥氏体含量为80%,所述马氏体含量为20%;所述钢板马氏体组织界面由富Cu-9R纳米析出相代替,所述纳米析出相与基体共格,宽度为5nm。
以下两个实施例在时效处理上略有不同。
实施例1
本实施例提供一种界面共格纳米析出强化高强韧钢的制备方法,其具体制备步骤流程如下:
步骤1:对初始钢进行固溶处理,得到初始固溶奥氏体含量50%、马氏体含量50%的双相组织;
选用厚度10mm的均匀结构钢板,固溶处理温度为1000℃,固溶时间为30min,冷却方式为水冷;
步骤2:对步骤1所制备的钢板进行回火处理,得到奥氏体含量80%、马氏体含量20%的双相组织;
回火处理温度为500℃,固溶时间为5h,冷却方式为空冷;
步骤3:对步骤2所制备的钢板进行室温多道次轧制处理,得到冷变形的高强度奥氏体/马氏体双相纳米钢;
室温多道次轧制处理后得到厚度1mm的钢板,每道次冷轧的下轧量<5%,总累积下轧量为90%;
步骤4:对步骤3所制备的钢板进行退火处理,得到高强度奥氏体/马氏体双相纳米钢;
选用退火温度为600℃,退火时间为5min,冷却方式为空冷;
步骤5:对步骤4所制备的钢板进行时效处理,得到界面纳米析出高强高韧奥氏体/马氏体双相纳米钢;
选用时效温度为400℃,时效时间为20h,冷却方式为空冷;
步骤6:对步骤5所制备的高强韧钢在室温下进行静态单轴拉伸试验,拉伸速率为5×10-4s-1
如图1所示,图1中的虚线为本实施例所制备的高强韧钢在轧制方向上的室温温度工程应力应变曲线,其力学特征为:屈服强度为1743MPa,抗拉强度为1892MPa,均匀伸长率为17.1%。
实施例2
本实施例提供另一种界面共格纳米析出强化高强韧钢的制备方法,其与实施例1的步骤1~步骤4完全相同,后续步骤略有区别:
步骤1:对初始钢进行固溶处理,得到初始固溶奥氏体含量50%、马氏体含量50%的双相组织;
选用厚度10mm的均匀结构钢板,固溶处理温度为1000℃,固溶时间为30min,冷却方式为水冷;
步骤2:对步骤1所制备的钢板进行回火处理,得到奥氏体含量80%、马氏体含量20%的双相组织;
回火处理温度为500℃,固溶时间为5h,冷却方式为空冷;
步骤3:对步骤2所制备的钢板进行室温多道次轧制处理,得到冷变形的高强度奥氏体/马氏体双相纳米钢;
室温多道次轧制处理后得到厚度1mm的钢板,每道次冷轧的下轧量<5%,总累积下轧量为90%;
步骤4:对步骤3所制备的钢板进行退火处理,得到高强度奥氏体/马氏体双相纳米钢;
选用退火温度为600℃,退火时间为5min,冷却方式为空冷;
步骤5:对步骤4所制备的钢板进行时效处理,得到界面纳米析出高强高韧奥氏体/马氏体双相纳米钢;
选用时效温度为400℃,时效时间为1h,冷却方式为空冷;
步骤6:对步骤5所制备的高强韧钢在室温下进行静态单轴拉伸试验,拉伸速率为5×10-4s-1
如图1所示,图1中的实线为本实施例所制备的高强韧钢轧制方向上的室温温度工程应力应变曲线,其力学特征为:屈服强度为1951MPa,抗拉强度为1960MPa,均匀伸长率为20.3%。
图2是本实施例完成时效处理之后所得板材侧面的TEM明场图片,通过图2能观察到明显的奥氏体和马氏体组织,且都呈纳米片层结构。
图3是本实施例完成时效处理之后所得板材侧面的高分辨图片,可以观察到马氏体界面被纳米析出相替代,析出相的宽度为5nm。
图4是本实施例完成时效处理之后所得板材侧面的高分辨图片,可以观察到析出相的原子排布和晶体结构,析出相为富Cu-9R纳米析出相,且析出相与基体为共格关系。
通过观察图2、图3和图4的微观组织结构发现,本发明通过冷变形后退火时效处理,材料内部马氏体与奥氏体,整体呈现明显的纳米片层组织结构,纳米尺度以及高密度的位错保证了高强度。同时纳米相马氏体界面被共格富Cu-9R纳米析出相代替,拉伸过程中促进了马氏体相变,推迟了马氏体塑性失稳,从而保证材料的韧性。
本发明所述的界面共格纳米析出强化高强韧钢的超高强度和极优均匀延伸率的原因在于:(1)与初始原材料钢相比,回火处理后形成大量稳定的奥氏体;(2)室温轧制处理保证了奥氏体和马氏体结构纳米化,同时引入大量位错,有效的提高其强度;(3)退火处理使得相组织位错部分回复,为后期纳米析出相在界面析出构造基本条件;(4)时效处理在马氏体界面引入共格富Cu-9R纳米析出相,促进后期马氏体相变和延缓马氏体塑性失稳,提高塑性。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (7)

1.一种界面共格纳米析出强化高强韧钢,其特征在于,所述高强韧钢由如下重量百分比的组分组成:C为0.3%~0.6%,Ni为5.0%~10.0%,Cr为5.0%~10.0%,Mo为2.0%~6.0%,Mn为1.0%~3.0%,Cu为0.5%~4.5%,V为0.05%~0.15%,Nb为0.05%~0.15%,余量为Fe;所述高强韧钢的结构为奥氏体和马氏体组织,所述奥氏体体积含量为70%~90%,所述马氏体体积含量为10%~30%;所述马氏体的组织界面附着有富铜-9R纳米析出相,所述富铜-9R纳米析出相与马氏体基体共格,且富铜-9R纳米析出相宽度为2nm~50nm。
2.一种如权利要求1所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,包括如下步骤:
S1对钢板进行固溶处理得到固溶态钢板;
S2对步骤S1预处理的固溶态钢板进行中温长时回火处理;
S3将中温长时回火处理后的钢板进行室温多道次轧制处理;
S4对室温多道次轧制处理后的钢板进行高温短时退火处理;
S5对退火处理后的钢板进行时效处理。
3.如权利要求2所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,所述步骤S1中的固溶处理,固溶温度范围为800℃~1100℃,固溶时间范围为20min~120min,冷却方式为水冷。
4.如权利要求2所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,所述步骤S2中,中温长时退火处理的温度范围为300℃~600℃,退火时间范围为2h~12h,冷却方式为水冷。
5.如权利要求2所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,所述步骤S3中的室温多道次轧制处理,单一道次的应变量<0.1,多道次轧制量为50%~90%,每道次下轧量<5%。
6.如权利要求2所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,所述步骤S4中的高温短时退火处理的温度范围为550℃-750℃,退火时间范围为1min-30min,冷却方式为空冷。
7.如权利要求2所述的界面共格纳米析出强化高强韧钢的制备方法,其特征在于,所述步骤S5中的时效处理温度范围为300℃-500℃,退火时间范围为0.5h-30h,冷却方式为空冷。
CN202210648266.1A 2022-06-08 2022-06-08 界面共格纳米析出强化高强韧钢的制备方法 Pending CN115044837A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210648266.1A CN115044837A (zh) 2022-06-08 2022-06-08 界面共格纳米析出强化高强韧钢的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210648266.1A CN115044837A (zh) 2022-06-08 2022-06-08 界面共格纳米析出强化高强韧钢的制备方法

Publications (1)

Publication Number Publication Date
CN115044837A true CN115044837A (zh) 2022-09-13

Family

ID=83160723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210648266.1A Pending CN115044837A (zh) 2022-06-08 2022-06-08 界面共格纳米析出强化高强韧钢的制备方法

Country Status (1)

Country Link
CN (1) CN115044837A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215478A1 (zh) * 2016-06-17 2017-12-21 浙江大学 一种高强高韧不锈钢及其加工方法
CN109609848A (zh) * 2018-12-24 2019-04-12 钢铁研究总院 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
CN113073264A (zh) * 2021-03-24 2021-07-06 钢铁研究总院 一种高均匀伸长率2000MPa级超高强度钢及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215478A1 (zh) * 2016-06-17 2017-12-21 浙江大学 一种高强高韧不锈钢及其加工方法
CN109609848A (zh) * 2018-12-24 2019-04-12 钢铁研究总院 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
CN113073264A (zh) * 2021-03-24 2021-07-06 钢铁研究总院 一种高均匀伸长率2000MPa级超高强度钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王永霞,李大胜: "含铜抗菌不锈钢材料研究概况", 《盐城工学院学报(自然科学版)》 *

Similar Documents

Publication Publication Date Title
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
Xu et al. Cold deformation behavior of the Ti-15Mo-3Al-2.7 Nb-0.2 Si alloy and its effect on α precipitation and tensile properties in aging treatment
CN114086049B (zh) 2.0GPa级超高屈服强度塑性CoCrNi基中熵合金及其制备方法
CN106957943B (zh) 一种提高奥氏体耐热钢力学性能的热处理方法
WO2017215478A1 (zh) 一种高强高韧不锈钢及其加工方法
CN113174551B (zh) 一种具有异质叠层结构的双相高强高塑性钛合金及其制备方法
CN115404382B (zh) 一种高强高塑性钛合金及其制备方法
CN105648314A (zh) -80℃Akv值大于100J的中锰钢板及其制备方法
CN112575236B (zh) 一种高氮高熵合金及其制备方法
Valiev Nanostructuring of metallic materials by SPD processing for advanced properties
CN112458260B (zh) 一种高强高塑纳米结构316l不锈钢板材及其制备方法
JP5636532B2 (ja) 酸化物分散強化型鋼およびその製造方法
US20140255242A1 (en) Composite steel plate
CN115044837A (zh) 界面共格纳米析出强化高强韧钢的制备方法
Gao et al. Fabrication of ultrafine-grained Ti-15Zr-xCu alloys through martensite decompositions under thermomechanical coupling conditions
CN114686774B (zh) 一种高强高韧纳米析出强化超细晶马氏体奥氏体双相钢及其制备方法
CN113736966B (zh) 一种具有双重异质结构的FeCrAl基合金及其制备方法
CN112501504B (zh) 一种bca2级集装箱船用止裂钢板及其制造方法
RU2690257C1 (ru) Сплав на основе титана
CN111733367B (zh) 一种具有纳米、分层和亚稳骨骼组织高强钢及其制备方法
CN114774800B (zh) 一种超高强度、高塑韧性马氏体钢及其制备方法
CN115198163B (zh) 一种具有拉伸塑性的多纳米相强化ods合金的制备方法
TWI760241B (zh) 多性能中熵輕量鋼及其製造方法
CN116732297B (zh) 一种含铌高强双相钢及其制备方法和应用
CN116121666B (zh) 一种1500MPa级超高强度马氏体耐热钢及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220913