CN115038245B - 一种基于电迁移现象辅助的柔性电子金属电路的修复方法 - Google Patents

一种基于电迁移现象辅助的柔性电子金属电路的修复方法 Download PDF

Info

Publication number
CN115038245B
CN115038245B CN202210634163.XA CN202210634163A CN115038245B CN 115038245 B CN115038245 B CN 115038245B CN 202210634163 A CN202210634163 A CN 202210634163A CN 115038245 B CN115038245 B CN 115038245B
Authority
CN
China
Prior art keywords
flexible
flexible electronic
electromigration
assistance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210634163.XA
Other languages
English (en)
Other versions
CN115038245A (zh
Inventor
孙权
鹿业波
尚豫博
张海宾
许利强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202210634163.XA priority Critical patent/CN115038245B/zh
Publication of CN115038245A publication Critical patent/CN115038245A/zh
Application granted granted Critical
Publication of CN115038245B publication Critical patent/CN115038245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种基于电迁移现象辅助的柔性电子金属电路的修复方法。主要解决市场上尚未有较为成熟的柔性电子电路修复方法的问题。包括以下步骤:步骤一、将柔性电路放置于具有圆弧面的加热体(1)上,并使柔性电路的裂纹处(2)朝外凸出;步骤二、将柔性电路中通入电流;步骤三、加热体加热,温度为200摄氏度~350摄氏度,时间为10~60分钟。本发明提供一种基于电迁移现象辅助的柔性电子金属电路的修复方法,可对受损柔性电路进行修复,增加使用寿命、降低使用成本。

Description

一种基于电迁移现象辅助的柔性电子金属电路的修复方法
技术领域
本发明涉及柔性电子电路领域,具体涉及一种基于电迁移现象辅助的柔性电子金属电路的修复方法。
背景技术
随着柔性电子技术的快速发展,越来越多的柔性电子开始进行大规模商业化应用。由于柔性电子产品在使用过程中,通常承受复杂的循环应力应变状态。在长时间的服役过程中,柔性电子电路中会产生疲劳裂纹,导致柔性电子器件性能下降或失效,只能进行报废处理,这严重降低了柔性电子产品的寿命和使用成本。目前市场上尚未有较为成熟的柔性电子电路修复方法。
发明内容
为了克服背景技术的不足,本发明提供一种基于电迁移现象辅助的柔性电子金属电路的修复方法,主要解决市场上尚未有较为成熟的柔性电子电路修复方法的问题。
本发明所采用的技术方案是:
一种基于电迁移现象辅助的柔性电子金属电路的修复方法,包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体上,并使柔性电路的裂纹处朝外凸出;
步骤二、将柔性电路中通入电流;
步骤三、加热体加热,温度为200摄氏度~350摄氏度,时间为10~60 分钟。
所述步骤二和步骤三同步进行。
所述加热体呈棒状结构。
所述柔性电路通过黏贴与所述加热体连接。
所述加热体设有多个,多个所述加热体的圆弧面的曲率不同。
本发明的有益效果是:本发明提供一种基于电迁移现象辅助的柔性电子金属电路的修复方法,可对受损柔性电路进行修复,增加使用寿命、降低使用成本。
附图说明
图1为本修复方法实施时的示意图。
图2为本修复方法的电子电路的示意图。
图3为本修复方法的电子电路在电迁移作用下微观示意图。
具体实施方式
下面结合附图对本发明作进一步说明:如图所示,一种基于电迁移现象辅助的柔性电子金属电路的修复方法,包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体1上,并使柔性电路的裂纹处2朝外凸出;
步骤二、将柔性电路中通入电流;原子在较大的电流密度下,也会产生原子迁移,在裂纹位置由于原子迁移遇到阻碍,会趋向于从裂纹的自由面溢出,形成微小的金属颗粒。可根据裂纹的大小情况,施加合适的电流值大小,从而调整电迁移的强度。根据电路导线的横截面尺寸和裂纹的大小施加合适的电流,保证导线中裂纹附近的电流密度的大小达到发生电迁移的电流阈值,对于柔性电子电路通常为 0.1MA/cm2~1MA/cm2(兆安培每平方厘米),对于无法准确估算电流密度的时,可采与先通较小的电流,观察15分线路电阻有无明显降低,若有则说明电流密度适合,有继续维持一段时间,若无,则将电流密度增大,直至电流密度合适。
步骤三、加热体加热,温度为200摄氏度~350摄氏度,时间为10~60 分钟。通过加热棒的加热,可以提高金属原子的扩散速率,从而可以再较短的时间内在裂纹处形大量的微金属颗粒来填补裂纹处的空间。当颗粒数量足够时,可以通过外部加热的方法,将裂纹部分重新熔化后固化,从而达到修复柔性电子电路的目的。
所述步骤二和步骤三同步进行。
所述加热体呈棒状结构。
所述柔性电路通过黏贴与所述加热体连接。也可以通过其他连接方式,采用粘接比较方便。
所述加热体设有多个,多个所述加热体的圆弧面的曲率不同。可以通过更换不同曲率半径的加热棒,可以调控柔性电子电路在弯曲状态的应力大小和裂纹尖端处的应力梯度分布。+
实施例1,
一种基于电迁移现象辅助的柔性电子金属电路的修复方法,包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体上,并使柔性电路的裂纹处朝外凸出;
步骤二、将柔性电路中通入电流;
步骤三、加热体加热,温度为200摄氏度,时间为60分钟。
实施例2,
一种基于电迁移现象辅助的柔性电子金属电路的修复方法,包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体上,并使柔性电路的裂纹处朝外凸出;
步骤二、将柔性电路中通入电流;
步骤三、加热体加热,温度为300摄氏度,时间为10分钟。
实施例3,
一种基于电迁移现象辅助的柔性电子金属电路的修复方法,包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体上,并使柔性电路的裂纹处朝外凸出;
步骤二、将柔性电路中通入电流;
步骤三、加热体加热,温度为250摄氏度,时间为30分钟。
本发明的原理为下文:
电迁移是传统集成电路中常见的一种失效现象,其本质是金属材料(特别是铜,银、铝等)原子在驱动力的作用下的定向移动。实验与理论研究表明电迁移的驱动力来源于四个方面:(1)电子风,(2) 温度梯度,(3)静水应力梯度,(4)原子浓度梯度。
电迁移是扩散控制的质量运输过程,原子密度的演化方程是典型的质量守恒方程,表达式如下
式中,c为正则化的原子密度,c=C/C0,C为真实的原子密度,C0为平衡状态下初始原子密度;q为正则化的总原子通量,通常由电子风力、温度梯度、应力梯度和原子密度梯度这四种驱动力引起的,组成如下:
q=qEw+qTh+qS+qc (2)
其中,由电子风力产生的正则化迁移通量可表示为
由温度梯度诱致的正则化迁移通量可表示为
由应力梯度诱致的正则化迁移通量可表示为
以上各式中,kB为Boltzmann常数,D为金属原子的有效扩散速率,D=D0exp[-Ea/(kBT)],Ea为激活能,D0为初始扩散系数,T为绝对温度;e为电子电荷,Z*为有效电荷数,ρ为温度相关电阻率,ρ=ρ0[1+α(T-T0)],α为金属材料的温度系数,ρ0为初始温度T0所对应的电阻率,j为电流密度矢量,Q*为传输热,Ω为原子体积,σH为静水应力。
由公式(5)可知,原子会在应力梯度驱动力下,金属原子会向裂纹尖端迁移,从而在裂纹的空间位置形成微小的金属颗粒。可以通过更换不同曲率半径的加热棒,可以调控柔性电子电路在弯曲状态的应力大小和裂纹尖端处的应力梯度分布。
由公式(3)可知,金属原子在较大的电流密度下,也会产生原子迁移,在裂纹位置由于原子迁移遇到阻碍,会趋向于从裂纹的自由面溢出,形成微小的金属颗粒。可根据裂纹的大小情况,施加合适的电流值大小,从而调整电迁移的强度。
参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。实施例不应视为对本发明的限制,但任何基于本发明的精神所作的改进。

Claims (5)

1.一种基于电迁移现象辅助的柔性电子金属电路的修复方法,其特征在于:包括以下步骤:
步骤一、将柔性电路放置于具有圆弧面的加热体(1)上,并使柔性电路的裂纹处(2)朝外凸出;
步骤二、将柔性电路中通入电流;
步骤三、加热体加热,温度为200摄氏度~350摄氏度,时间为10~60分钟。
2.根据权利要求1所述的一种基于电迁移现象辅助的柔性电子金属电路的修复方法,其特征在于:所述步骤二和步骤三同步进行。
3.根据权利要求1所述的一种基于电迁移现象辅助的柔性电子金属电路的修复方法,其特征在于:所述加热体呈棒状结构。
4.根据权利要求1所述的一种基于电迁移现象辅助的柔性电子金属电路的修复方法,其特征在于:所述柔性电路通过黏贴与所述加热体连接。
5.根据权利要求1所述的一种基于电迁移现象辅助的柔性电子金属电路的修复方法,其特征在于:所述加热体设有多个,多个所述加热体的圆弧面的曲率不同。
CN202210634163.XA 2022-06-07 2022-06-07 一种基于电迁移现象辅助的柔性电子金属电路的修复方法 Active CN115038245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210634163.XA CN115038245B (zh) 2022-06-07 2022-06-07 一种基于电迁移现象辅助的柔性电子金属电路的修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210634163.XA CN115038245B (zh) 2022-06-07 2022-06-07 一种基于电迁移现象辅助的柔性电子金属电路的修复方法

Publications (2)

Publication Number Publication Date
CN115038245A CN115038245A (zh) 2022-09-09
CN115038245B true CN115038245B (zh) 2023-08-11

Family

ID=83123946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210634163.XA Active CN115038245B (zh) 2022-06-07 2022-06-07 一种基于电迁移现象辅助的柔性电子金属电路的修复方法

Country Status (1)

Country Link
CN (1) CN115038245B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919971A (en) * 1988-09-23 1990-04-24 International Business Machines Corporation Self-induced repairing of conductor lines
US5019533A (en) * 1989-05-26 1991-05-28 The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Administration Thermal treatment of silicon integrated circuit chips to prevent and heal voids in aluminum metallization
US5993908A (en) * 1996-05-28 1999-11-30 Siemens Aktiengesellschaft Method of producing an aluminum film
TW526692B (en) * 2001-08-30 2003-04-01 Agilent Technologies Inc A method of repairing a printed circuit assembly on a printed circuit board by attaching a flexible circuit to said circuit board and flexible circuits for repair of a printed circuit assembly and for reparing defects in a circuit assembly
CN106549021A (zh) * 2016-12-02 2017-03-29 京东方科技集团股份有限公司 柔性显示基板、柔性显示装置及其修复方法
CN110287639A (zh) * 2019-07-04 2019-09-27 北京航空航天大学 一种无铅元器件互连焊点热电耦合仿真方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328922B1 (en) * 1999-10-28 2001-12-11 Xerox Corporation Process for post treatment of a flexible imaging member belt
US7339390B2 (en) * 2005-05-31 2008-03-04 International Business Machines Corporation Systems and methods for controlling of electro-migration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919971A (en) * 1988-09-23 1990-04-24 International Business Machines Corporation Self-induced repairing of conductor lines
US5019533A (en) * 1989-05-26 1991-05-28 The United States Of America As Represented By The Adminstrator Of The National Aeronautics And Space Administration Thermal treatment of silicon integrated circuit chips to prevent and heal voids in aluminum metallization
US5993908A (en) * 1996-05-28 1999-11-30 Siemens Aktiengesellschaft Method of producing an aluminum film
TW526692B (en) * 2001-08-30 2003-04-01 Agilent Technologies Inc A method of repairing a printed circuit assembly on a printed circuit board by attaching a flexible circuit to said circuit board and flexible circuits for repair of a printed circuit assembly and for reparing defects in a circuit assembly
CN106549021A (zh) * 2016-12-02 2017-03-29 京东方科技集团股份有限公司 柔性显示基板、柔性显示装置及其修复方法
CN110287639A (zh) * 2019-07-04 2019-09-27 北京航空航天大学 一种无铅元器件互连焊点热电耦合仿真方法

Also Published As

Publication number Publication date
CN115038245A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Oliveira Jr et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys
Kobrinsky et al. The thickness dependence of the flow stress of capped and uncapped polycrystalline Ag thin films
KR20170130280A (ko) 전자 부품들 및 차량들을 위한 연장된 초고 전도도 전기 전도체들 및 이들을 제조하기 위한 방법들
Song et al. Strengthening and toughening of extruded magnesium alloy rods by combining pre-torsion deformation with subsequent annealing
CN115038245B (zh) 一种基于电迁移现象辅助的柔性电子金属电路的修复方法
Tseng et al. Microstructure, tensile and electrical properties of gold-coated silver bonding wire
US20150064496A1 (en) Single crystal copper, manufacturing method thereof and substrate comprising the same
Chen et al. Electromigration-induced Bi segregation in eutectic SnBi solder joint
Zuo et al. Evolution of microstructure across eutectic Sn-Bi solder joints under simultaneous thermal cycling and current stressing
Zhao et al. The mechanism of pore segregation in the sintered nano Ag for high temperature power electronics applications
Zhu et al. Stress evolution during thermal cycling of copper/polyimide layered structures
Rao et al. On the growth of small fatigue cracks in aluminum-lithium alloy 2090
Orlov et al. Mechanical properties of nitrogen-doped CZ silicon crystals
Wang et al. Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method
CN112349667A (zh) 一种石墨烯/铜复合金属互连线的制备方法
Ma et al. Effects of coupled stressing and solid-state aging on the mechanical properties of Sn–58Bi–0.7 Zn solder joint
Chen et al. A novel Cu-10Zn-1.5 Ni-0.34 Si alloy with excellent mechanical property through precipitation hardening
Fanning et al. Recent developments in metastable β strip alloys
CN102569163A (zh) 一种基于AlN埋绝缘层的晶圆级单轴应变SOI晶圆的制作方法
Menzel et al. Effect of Ag-alloying addition on the stress–temperature behavior of electroplated copper thin films
Chuang et al. Surface reconstruction of an annealing twinned Ag-8Au-3Pd alloy wire under current stressing
Dong et al. Temperature-dependent electroplasticity in the Invar 36 alloy
Khazin et al. Micro and nanostructured copper films in mechanical engineering
Cochardt Abnormal after-effect of twisted metal wires upon heating
Ma et al. Effects of High Pressure Treatment on the Hardness and Electrical Resistivity of CuW Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant