CN115034435B - 基于数值模型的目标观测指数预报方法、存储介质及终端 - Google Patents

基于数值模型的目标观测指数预报方法、存储介质及终端 Download PDF

Info

Publication number
CN115034435B
CN115034435B CN202210492829.2A CN202210492829A CN115034435B CN 115034435 B CN115034435 B CN 115034435B CN 202210492829 A CN202210492829 A CN 202210492829A CN 115034435 B CN115034435 B CN 115034435B
Authority
CN
China
Prior art keywords
observation
air quality
target
point
forecast information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210492829.2A
Other languages
English (en)
Other versions
CN115034435A (zh
Inventor
谭钦文
陆成伟
陈曦
杨欣悦
王源程
张恬月
张蕾
邓也
宋丹林
陶红群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Academy Of Environmental Sciences
Original Assignee
Chengdu Academy Of Environmental Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Academy Of Environmental Sciences filed Critical Chengdu Academy Of Environmental Sciences
Priority to CN202210492829.2A priority Critical patent/CN115034435B/zh
Publication of CN115034435A publication Critical patent/CN115034435A/zh
Application granted granted Critical
Publication of CN115034435B publication Critical patent/CN115034435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了基于数值模型的目标观测指数预报方法、存储介质及终端,属于预报技术领域,方法包括以下步骤:计算观测点与目标点之间的观测路径上各点位置信息,判断观测路径是否被遮挡;提取观测所需的气象预报信息及空气质量预报信息;确定满足观测条件的气象数据阈值及空气质量阈值;判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,得到观测指数预报结果实现了目标点观测指数的准确预测,填补了目标观测指数预测和应用的技术空白,促进了气象预测以及空气质量预测能力的提升。

Description

基于数值模型的目标观测指数预报方法、存储介质及终端
技术领域
本发明涉及预报技术领域,尤其涉及一种基于数值模型的目标观测指数预报方法、存储介质及终端。
背景技术
目前对远处目标观测概率预测方面的研究上存在较大的空白。多数研究都集中在能见度的预报上,侧重于考虑“雾、霾、雨、雪”等要素及其产生的视程障碍预报,体现的是视力正常的人能将目标物从背景中识别出来的最大距离,且通常关注对象为近地面,实际为对不同气象要素的开展消光性预报,同时,能见度只考虑小区域气象要素,能见度预报通常不具备方向性,且覆盖范围具有局限性(定义能见度超过10Km即为“很好”,超过19Km即为“非常好”),一方面难以覆盖观测点位与观测目标的距离,另一方面,难以通过能见度指标对特定方向、特定高度的目标是否可观测进行明确判断,此外我们的研究发现,对特定对象如雪山群的观测,其可观测性往往受多个因素复合影响,近地面边界层内主要受空气质量影响,边界层外受气象要素影响为主,观测目标所在区域的气象和空气质量也与可见性密切相关,现有研究并未直接针对能否在某地看见某一具体远处目标观测如雪山观测这一问题进行阐述,建立目标观测指数时,以雪山观测为例,通常情况下观测路径长,且往往涉及地面及高空多种气象和环境要素的综合判断,单方面考虑能见度及少数气象因子对观雪山的不确定性较大,缺少系统性的技术方法规范,不能提供较好的技术支撑,在此基础上需迫切提出一种远处目标观测概率的精准预报方法。
发明内容
本发明的目的在于克服现有技术中无法实现远处目标观测概率的精准预报的问题,提供了了基于数值模型的目标观测指数预报方法、存储介质及终端。
本发明的目的是通过以下技术方案来实现的:基于数值模型的目标观测指数预报方法,方法包括以下步骤:
计算观测点与目标点之间的观测路径上各点位置信息,判断观测路径是否被遮挡;
提取观测所需的气象预报信息及空气质量预报信息;
确定满足观测条件的气象数据阈值及空气质量阈值;
判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,得到观测指数预报结果。
在一示例中,所述计算观测点与目标点之间的观测路径上各点位置信息具体包括:
建立包含观测点、目标点的模型网格;
计算观测路径上网格的经纬度信息及坐标信息。
在一示例中,所述计算观测路径上网格的经纬度信息及坐标信息具体包括:
计算观测路径上网格间隔的经纬度差值;
计算每个网格间隔的经纬度得到观测路径的经纬度点集;
根据经纬度点集与网格的对应关系得到观测路径上网格的坐标信息。
在一示例中,所述判断观测路径是否被遮挡具体包括:
基于观测点、目标点构建的直角三角形计算观测路径的网格与目标点间的高度关系,进而明确观测路径涉及的水平及垂直网格是否被遮挡,分析对应网格气象、环境要素是否满足观测条件,从而实现目标观测指数预报。
在一示例中,所述提取观测所需的气象预报信息及空气质量预报信息具体包括:
通过气象预报模型、空气质量数值预报模型提取观测路径上网格的气象预报信息及空气质量预报信息。
在一示例中,所述气象预报信息包括辐射强度、总云覆盖率、云水混合比、水汽混合比、垂直逆温;空气质量预报信息包括消光系数、颗粒物浓度。
在一示例中,所述确定满足观测条件的气象数据阈值及空气质量阈值具体包括:
基于气象预报信息、空气质量预报信息的参数取值范围,随机生成给定数量的气象预报信息及空气质量预报信息的随机组合数据;
基于随机组合数据生成目标观测模拟结果;
基于实际观测结果对目标观测模拟结果进行评价,将评价结果大于第一阈值对应的随机组合数据中的气象预报信息、空气质量预报信息分别作为气象数据阈值和空气质量阈值。
在一示例中,所述基于实际观测结果对目标观测模拟结果进行评价具体包括:
计算目标观测模拟结果的预报准确率、空报率和漏报率。
需要进一步说明的是,上述各示例对应的技术特征可以相互组合或替换构成新的技术方案。
本发明还包括一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述任一示例或多个示例组成形成的所述基于数值模型的目标观测指数预报方法的步骤。
本发明还包括一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行任一示例或多个示例组成形成的所述基于数值模型的目标观测指数预报方法的步骤。
与现有技术相比,本发明有益效果是:
(1)在一示例中,本发明通过分析观测点路径是否遮挡、气象及空气质量是否满足观测条件两个方面进行计算分析,基于现有气象预报技术以及空气质量预报技术实现了目标点观测指数的准确预测,填补了目标观测指数预测和应用的技术空白,为人们的休闲生活开展提供了数据支撑,进一步促进了气象预测以及空气质量预测能力的提升。
(2)在一示例中,通过判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,能够判断观测路径是否满足观测阈值;进一步地,通过随机生成的气象要素阈值及空气质量要素阈值的随机组合数据生成目标观测模拟结果,通过分析观测模拟结果和实际观测情况确定适用于对应时间段、对应地点的观测阈值,无需判断单一气象参数或者空气质量参数对目标观测的影响即可实现目标观测指数的预报,大大降低了整个指数预报前期开发和运行工作量。
(3)在一示例中,基于预报准确率、空报率和漏报率对目标观测模拟结果进行评价,能够快速、精准地确定气象数据阈值以及空气质量阈值,保证了本发明方法的有效性与可靠性。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明,此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,在这些附图中使用相同的参考标号来表示相同或相似的部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明一示例中的方法流程图;
图2为本发明一示例中的观雪山指数预报结果展示图;
图3为本发明一示例中的目标观测指数预报系统的运行流程图。
具体实施方式
下面结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,属于“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系为基于附图所述的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,属于“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本发明目标观测指数预报是气象预报、空气质量预报与地形遮挡判断的综合应用,本发明实施例以雪山能够在某一观测点观察到为例进行说明,将其细分为雪山本身是否具备被看见的条件,以及观测点位能否顺利看见两方面,前者主要依赖雪山所在地的天空状况,需考虑当地云覆盖率及地面辐射强度,后者则需对观测路径上的云覆盖情况进行判断和分析,确保观测路径的通畅,同时需考虑观测点位的消光系数和辐射强度水平,明确观察环境状况,能观测到雪山是多个指标同时满足条件的综合结果。
在一示例中,基于数值模型的目标观测指数预报方法,如图1所示,具体包括以下步骤:
S1:计算观测点与目标点之间的观测路径上各点位置信息,判断观测路径是否被遮挡;其中,观测点即人们观察雪山时的位置;目标点即雪山的位置;观测路径即目标点与观测点间的连线,优选雪山最高点位置与观测点之间的连线;各点位置信息为各地理位置点的经纬度信息和坐标信息。
S2:提取观测所需的气象预报信息及空气质量预报信息;
S3:确定满足观测条件的气象数据阈值及空气质量阈值;具体地,气象数据阈值、空气质量阈值表示不影响人们观察雪山的最低气象数据值及空气质量值,当然为保证雪山观测体验,可以将阈值进行调整为观察雪山时最优的气象数据值及空气质量值。
S4:判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,得到观测指数预报结果。具体地,通过判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,能够判断观测路径是否被气象和/或空气质量遮挡(影响),如观测路径上是否有云遮挡导致无法观察或者清楚观察到雪山,具体雪山观察效果(是否能够清楚观察雪山)取决于气象数据阈值、空气质量阈值的设定。
在本示例中,通过分析观测点路径是否遮挡、气象及空气质量是否满足观测条件两个方面进行计算分析,基于现有气象数值预报技术以及空气质量数值预报技术实现了雪山观测指数的准确预测,避免了模型的重复建设,节约了经济成本和时间成本开销,且在技术难度相对较低,易于推广;同时,本发明雪山观测指数预测方法还填补了目标观测指数预测和应用的技术空白,从科学角度对观赏雪山提出建议,为人们的休闲生活开展提供了数据支撑,提高人民生活幸福感,让人民切身感受到空气质量改善在自身生活上带来的福利,具有良好的应用前景,如将上述方法应用于公共服务领域、旅游业等,以旅游业为例,通过本发明方法为不同用户提供不同数值预测结果,为各用户旅游出行提供参考依据,当然也可通过本发明方法提供未来一段时间内各时间段最佳观测点位置信息,便于公众直接前往对应地点观测雪山,为旅游业提供了一种新型商业发展模式;同时也进一步促进了气象预测以及空气质量预测能力的提升,也城市目标观察建设提供参考,进一步推动社会对清洁空气行动的关注和支持。
需要说明的是,本发明方法通过步骤S1-S4进行实施,仅为其中一种实施方式,各步骤间的执行顺序可调换,例如可优先执行步骤S3,再执行其他步骤。
在一示例中,所述计算观测点与目标点之间的观测路径上各点位置信息具体包括:
S11:建立包含观测点、目标点的模型网格;其中,模型网格将包括观测点、目标点地理位置图进行网格化处理得到,通过网格辅助计算观测点、目标点之间的路径坐标、高度差等参数,那么为实现观雪山观测指数的预报,需要明确观察者和雪山之间的路径与模型网格的对应关系。
S12:计算观测路径上网格的经纬度信息及坐标信息。
在一示例中,所述计算观测路径上网格的经纬度信息及坐标信息具体包括:
S121:计算观测路径上网格间隔的经纬度差值;
S122:计算每个网格间隔的经纬度得到观测路径的经纬度点集;
S123:根据经纬度点集与网格的对应关系得到观测路径上网格的坐标信息。
具体地,步骤S121计算过程具体为,令雪山点位的经纬度分别为lon1、lat1,海拔高度为hgt1;并令需预报的观测点位的经纬度分别为lon2、lat2,海拔高度为hgt2,在较短的距离内(通常在百公里左右),可忽略地球曲率造成的形变,从而认为二者之间的经纬度可视作等差变化,如下式所示:
Figure GDA0003782147240000081
Figure GDA0003782147240000082
其中,△lat表示雪山点位与观测点位之间的经度差;△lon表示雪山点位与观测点位之间的纬度差;breaks表示观测路径的观测点位(网格)数量。
进一步地,步骤S122中还具体包括:
利用雪山点位、观测点位的经度差和纬度差计算得到每个网格间隔的经纬度差值,并计算每个网格间隔的经纬度:
lati=lat2+(i-1)×△lat
loni=lon2+(i-1)×△lon
其中,i表示观测路径上的第i个网格。进一步地,基于每个网格间隔的经纬度得到观测路径上网格的经纬度点集。
进一步地,在步骤S123中,具体通过判断经纬点集中的每个经纬度坐标与模型网格的关系并去重后得到所需提取的网格(观测路径上的网格)坐标。
更进一步地,为便于后续的计算,以网格的经纬度信息以及其在模型网格中的坐标信息建立表格并存储,如表1所示:
表1观测路径上网格的经纬度点集
Figure GDA0003782147240000091
上表,X,Y,Z分别表示观测路径上网格在模型网格中的坐标,对应观测路径上网格的坐标信息。
在一示例中,判断观测路径是否被遮挡具体包括:
基于观测点、目标点构建的直角三角形计算观测路径的网格与目标点间的高度关系,进而判断观测路径是否被遮挡。具体地,利用雪山点位的海拔高度和观测点位的海拔高度建立直角形,二者之间的距离记作Dis,具体计算公式为:
Figure GDA0003782147240000092
其中,R表示地球半径。进一步地,观测路径上某模拟网格到观测点位的距离记作Disi,通过三角相似关系确定模拟网格所需提取的距地高度hgti,具体计算公式为:
Figure GDA0003782147240000093
在此基础上,进一步结合模型垂直分层情况判断所需提取的垂直层次,进而实现遮挡判断,当然也可通过高度hgti进行地形遮挡判断。
在一示例中,提取观测所需的气象预报信息及空气质量预报信息具体包括:
通过空气质量模型提取观测路径上网格的气象预报信息及空气质量预报信息。具体地,通过对历史观测结果进行分析,能够观测到雪山需具备的气象条件包括观看无云遮挡、大气含水量处于较低水平,且需雪山山顶具备明显的太阳辐射强度以提供充足的光照,同时配合观测点位消光系数、颗粒物浓度(含高空沙尘浓度)等因素进行综合考虑,从而确定是否存在观测雪山的可能性。本示例中,结合观测路径上的网格坐标,读取存储有气象数据、空气质量数据的NetCDF文件,进而提取所需变量(气象数据及空气质量数据),并按时间进行存储。本示例使用R语言结合RNetCDF包进行NetCDF格式文件的读取,通过open.nc函数打开空气质量模型的模拟结果文件(MCIP、CCTM),使用var.get.nc函数提取对应的变量,并通过观测路径网格坐标信息提取对应位置的数据结果,不同的变量需从不同的文件中获取,如下表:
表2观雪山指数预报所需模拟变量表
文件来源 文件名 变量 说明
MCIP METCRO2D RGRND 辐射强度
MCIP METCRO2D CFRAC 总云覆盖率
MCIP METCRO2D T2 地面2m气温
MCIP METCRO3D QC 云水混合比
MCIP METCRO3D QV 水气混合比
MCIP METCRO3D T 垂直气温
MCIP METCRO3D ZF 垂直高度
CCTM AEROVIS EXT_Mie 消光系数
CCTM ACONC PM2.5 颗粒物浓度
进一步地,提取变量时,需明确数据排列方法,空气质量模型的模拟结果以四维网格存储,包括经度方向、纬度方向和垂直高度三个空间维度和时间维度。需要进一步说明的是,虽然考虑到雪山海拔和到观测点位的距离,观测路线与地面的夹角可能较小,但观测点位和雪山点位之间的连线实际为斜线,因此需要计算不同距离对应的垂直高度,并通过与ZF变量进行对比,确定不同距离下应该提取的模拟数据对应层数。垂直气温T用于计算是否存在垂直逆温Kl,观测路径是否穿透逆温层将影响雪山点位的观测,某一层(对应观测路径上的网格)是否存在垂直逆温则通过以下公式进行判断(当l=1时,Tl-1取T2,ZFl-1则取2),以进一步提升预测精准度,具体判断公式如下:
Figure GDA0003782147240000111
在一示例中,所述确定满足观测条件的气象数据阈值及空气质量阈值具体包括:
S31:基于气象预报信息、空气质量预报信息的不同参数取值范围,采用随机函数按照给定数量随机生成气象要素阈值及空气质量要素阈值的随机组合数据;其中,随机组合数据为单一且随机产生的有效辐射阈值、总云覆盖率阈值、云水混合比阈值、水汽混合比阈值、消光系数阈值以及颗粒物浓度阈值。为保证后期模拟工作使用的数据一致,并减少后期计算量,将生成的随机组合数据存储为文件。进一步地,本步骤通过随机生成的气象要素阈值及空气质量要素阈值的随机组合数据生成目标观测模拟结果,无需判断单一气象参数或者空气质量参数对目标观测的影响即可实现目标观测指数的预报,大大降低了整个指数预报前期开发和运行的工作量。利用程序对提取的不同时间、不同距离和高度的数值模型历史气象要素及空气质量要素进行对比,判断不同要素数值与对应阈值的关系,得到目标观测指数,并将该观测指数与实际观测情况进行对比,判断最优气象要素阈值与空气质量要素阈值,并将最优气象要素阈值与空气质量要素阈值用于建立目标观测指数预报模型。
S31:基于随机组合数据生成雪山观测模拟结果;具体地,目标观测指数预报模型中读取包含随机组合数据的文件,使用文件中的参数取值进行计算,判断该参数取值是否存在观雪山条件(雪山观测模拟结果)。需要说明的是,预报模型根据历史观雪山数据中气象数据参数、空气质量参数与实际观雪山结果之间的关系进行建立。
S31:基于实际观测结果对目标观测模拟结果进行评价,将评价结果大于第一阈值对应的随机组合数据中的气象预报信息、空气质量预报信息分别作为气象数据阈值和空气质量阈值。本示例,对目标观测模拟结果进行评价具体根据雪山观测模拟结果的预报准确率、空报率和漏报率进行评价。其中,准确率为模型预报具备观雪山条件,同时实际也观测到雪山的天数占总预报天数的比例:
Figure GDA0003782147240000121
空报率为模型预报具备观雪山条件,但实际并未观测到雪山的天数占总预报天数的比例:
Figure GDA0003782147240000122
漏报率为模型预报不具备观雪山条件,但实际观测到雪山的天数占总预报天数的比例:
Figure GDA0003782147240000123
通过预报准确率、空报率和漏报率对目标观测模拟结果进行评价,能够快速、精准地确定气象数据阈值以及空气质量阈值,保证了本发明方法的有效性与可靠性,优选准确率高、空报率和漏报率均较低的气象预报信息、空气质量预报信息参数组合作为气象数据阈值和空气质量阈值,作为一示例,随机生成的参数阈值(气象数据阈值和空气质量阈值)文件如下:
表3参数阈值文件示例
Figure GDA0003782147240000131
进一步地,本发明气象数据阈值和空气质量阈值为人们能够观察到雪山的最低气象数据值及空气质量值,也可调整为观察雪山时最优的气象数据值及空气质量值,为保证不同观雪山需求,方法还包括:
基于评价结果对观测指数预报结果进行观测指数分级处理。具体地,通过计算不同观测点位对不同雪山的可观性,按一定的规范进行分级,即可得到城市观雪山指数。在本发明中,定义观雪山指数0级指不具备观雪山的条件;1级指可看到雪山的观测点位占比在30%以内;指数2级至可看到雪山的观测点位占比在30%(含)-60%(不含)之间;指数3级则指可看到雪山的观测点位占比超过60%。
进一步地,步骤S4中利用得到的气象数据阈值及空气质量阈值,基于空气质量预报模型提供的预报气象场数据和空气质量数值预报结果(气象预报信息及空气质量预报信息),提取相关变量进行阈值判断,形成预报结果,并用于业务预报工作中,即本发明开发了一个可嵌入空气质量预报系统的雪山指数预报模型。
更进一步地,本发明提出了一种观雪山指数预报结果的展示形式如图2所示,以时间为横轴,直观展示雪山客观性指标,“□”表示雪山可观性为否;“■”表示具备观雪山的客观条件,雪山可观性为是;
Figure GDA0003782147240000141
表示具备雪山的客观条件且不存在地形遮挡,
Figure GDA0003782147240000142
表示具备雪山的客观条件,但雪山观测路径上存在其他山脉遮挡,可能无法观测到雪山,仅具备看到其前方山脉的可能性,进而是人们更加直观、清晰了解雪山观测可行性。需要说明的是,图2仅用于示意本发明方法的预测效果,并不进一步限定本发明的保护范围。
本实施例提供了一种存储介质,与上述任一示例或多个示例组合形成的基于数值模型的目标观测指数预报方法具有相同的发明构思,其上存储有计算机指令,所述计算机指令运行时执行上述任一示例或多个示例组合形成的所述基于数值模型的目标观测指数预报方法的步骤。
基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还包括一种终端,与上述基于数值模型的目标观测指数预报方法对应的任一示例或多个示例组合具有相同的发明构思,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述基于数值模型的目标观测指数预报方法的步骤。处理器可以是单核或者多核中央处理单元或者特定的集成电路,或者配置成实施本发明的一个或者多个集成电路。
在一示例中,终端即电子设备以通用计算设备的形式表现,电子设备的组件可以包括但不限于:上述至少一个处理单元(处理器)、上述至少一个存储单元、连接不同系统组件(包括存储单元和处理单元)的总线。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元执行,使得所述处理单元执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。例如,所述处理单元可以执行上述基于数值模型的目标观测指数预报方法。
存储单元可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)3201和/或高速缓存存储单元,还可以进一步包括只读存储单元(ROM)。
存储单元还可以包括具有一组(至少一个)程序模块的程序/实用工具,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备也可以与一个或多个外部设备(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备交互的设备通信,和/或与使得该电子设备能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口进行。并且,电子设备还可以通过网络适配器与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器通过总线与电子设备的其它模块通信。应当明白,可以结合电子设备使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本示例性实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行本申请示例性实施例的方法。
本发明还包括一种目标观测指数预报系统,系统具体包括:
路径遮挡判断单元,用于计算观测点与目标点之间的观测路径上各点位置信息,进而判断观测路径是否被遮挡;
参数提取单元,用于提取观测路径上各点的气象预报信息及空气质量预报信息;
参数阈值确定单元,用于确定满足观测条件的气象数据阈值及空气质量阈值;
观测指数预报单元,用于判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,得到观测指数预报结果,即本申请基于该观测指数预报单元(数值模型)实现目标点的观测指数预报。
作为一优选项,本发明系统的运行流程如图3所示,具体包括:
S1’:路径遮挡判断单元将观测点、雪山点引入模型网格系统中,生成观测路上各网格的经纬度点集,并计算观测路径上网格的坐标信息;
S12’:参数提取单元分别从METCRO2D文件中提取观测路径上的总云覆盖率(CFRAC)、辐射强度(RGRND)和地面2m气温(T2),从METCRO3D文件中提取观测路径上云水混合比(QC)、水气混合比(QV)和垂直气温(T),从AEROVIS文件中提取观测路径上消光系数(EXT_Mie),从ACONC文件中提取观测路径上不同高度的含沙尘在内的颗粒物浓度(PM2.5);
S13’:观测指数预报单元判断步骤S12’中提取的总云覆盖率、总云覆盖率、云水混合比、水气混合比、消光系数、颗粒物浓度与参数阈值(气象数据阈值及空气质量阈值)之间的关系,同时路径遮挡判断单元基于观测点、雪山点构建的直角三角形计算观测路径的网格与雪山点间的高度关系,进而判断观测路径是否被遮挡;
S14’:观测指数预报单元得到各区域各时间段的观雪山指数。
以上具体实施方式是对本发明的详细说明,不能认定本发明的具体实施方式只局限于这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演和替代,都应当视为属于本发明的保护范围。

Claims (10)

1.基于数值模型的目标观测指数预报方法,其特征在于:方法包括以下步骤:
计算观测点与目标点之间的观测路径上各点位置信息,判断观测路径是否被遮挡;
提取观测所需的气象预报信息及空气质量预报信息;
确定满足观测条件的气象数据阈值及空气质量阈值;
判断气象预报信息是否达到气象数据阈值、空气质量预报信息是否达到空气质量阈值,得到观测指数预报结果;
计算不同距离对应的垂直高度,并通过与垂直高度ZF进行对比,确定不同距离下提取的模拟数据对应层数;
利用雪山点位的海拔高度和观测点位的海拔高度建立直角形,二者之间的距离记作Dis,计算公式为:
Figure FDA0004146901620000011
其中,R表示地球半径;lon1、lat1分别为雪山点位的经纬度,hgt1为雪山点位的海拔高度;lon2、lat2分别为需预报的观测点位的经纬度,hgt2为观测点位的海拔高度;通过三角相似关系确定模拟网格所需提取的距地高度hgti,计算公式为:
Figure FDA0004146901620000012
计算是否存在垂直逆温Kl,观测路径是否穿透逆温层将影响雪山点位的观测,垂直逆温Kl的计算式为:
Figure FDA0004146901620000013
其中,T表示垂直气温;ZF表示垂直高度;当l=1时,Tl-1取T2,ZFl-1则取2。
2.根据权利要求1所述的基于数值模型的目标观测指数预报方法,其特征在于:所述计算观测点与目标点之间的观测路径上各点位置信息具体包括:
建立包含观测点、目标点的模型网格;
计算观测路径上网格的经纬度信息及坐标信息。
3.根据权利要求2所述的基于数值模型的目标观测指数预报方法,其特征在于:所述计算观测路径上网格的经纬度信息及坐标信息具体包括:
计算观测路径上网格间隔的经纬度差值;
计算每个网格间隔的经纬度得到观测路径的经纬度点集;
根据经纬度点集与网格的对应关系得到观测路径上网格的坐标信息。
4.根据权利要求1所述的基于数值模型的目标观测指数预报方法,其特征在于:所述判断观测路径是否被遮挡具体包括:
基于观测点、目标点构建的直角三角形计算观测路径的网格与目标点间的高度关系,进而确定观测路径上水平及垂直网格是否被遮挡。
5.根据权利要求1所述的基于数值模型的目标观测指数预报方法,其特征在于:所述提取观测所需的气象预报信息及空气质量预报信息具体包括:
通过气象预报模型、空气质量数值预报模型提取观测路径上网格的气象预报信息及空气质量预报信息。
6.根据权利要求1所述的基于数值模型的目标观测指数预报方法,其特征在于:所述气象预报信息包括辐射强度、总云覆盖率、云水混合比、水汽混合比、垂直逆温;空气质量预报信息包括消光系数、颗粒物浓度。
7.根据权利要求1所述的基于数值模型的目标观测指数预报方法,其特征在于:所述确定满足观测条件的气象数据阈值及空气质量阈值具体包括:
基于气象预报信息、空气质量预报信息的参数取值范围,随机生成给定数量的气象预报信息及空气质量预报信息的随机组合数据;
基于随机组合数据生成目标观测模拟结果;
基于实际观测结果对目标观测模拟结果进行评价,将评价结果大于第一阈值对应的随机组合数据中的气象预报信息、空气质量预报信息分别作为气象数据阈值和空气质量阈值。
8.根据权利要求7所述的基于数值模型的目标观测指数预报方法,其特征在于:所述基于实际观测结果对目标观测模拟结果进行评价具体包括:
计算目标观测模拟结果的预报准确率、空报率和漏报率。
9.一种存储介质,其上存储有计算机指令,其特征在于:所述计算机指令运行时执行权利要求1-8任意一项所述的基于数值模型的目标观测指数预报方法的步骤。
10.一种终端,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,其特征在于:所述处理器运行所述计算机指令时执行权利要求1-8任意一项所述的基于数值模型的目标观测指数预报方法的步骤。
CN202210492829.2A 2022-05-07 2022-05-07 基于数值模型的目标观测指数预报方法、存储介质及终端 Active CN115034435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210492829.2A CN115034435B (zh) 2022-05-07 2022-05-07 基于数值模型的目标观测指数预报方法、存储介质及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210492829.2A CN115034435B (zh) 2022-05-07 2022-05-07 基于数值模型的目标观测指数预报方法、存储介质及终端

Publications (2)

Publication Number Publication Date
CN115034435A CN115034435A (zh) 2022-09-09
CN115034435B true CN115034435B (zh) 2023-05-12

Family

ID=83118824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210492829.2A Active CN115034435B (zh) 2022-05-07 2022-05-07 基于数值模型的目标观测指数预报方法、存储介质及终端

Country Status (1)

Country Link
CN (1) CN115034435B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184816B1 (en) * 1998-07-06 2001-02-06 Alliedsignal Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
CN110030968A (zh) * 2019-04-16 2019-07-19 武汉大学 一种基于星载立体光学影像的地面遮挡物仰角测量方法
CN114153832A (zh) * 2021-12-06 2022-03-08 国网湖南省电力有限公司 电力微气象观测数据与气象行业传统数据融合方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274250B2 (en) * 2008-11-13 2016-03-01 Saint Louis University Apparatus and method for providing environmental predictive indicators to emergency response managers
US10345483B2 (en) * 2015-06-10 2019-07-09 Escaype Observer-based meteorology and image identification
CN111737603B (zh) * 2020-06-22 2023-09-22 北京百度网讯科技有限公司 判断兴趣点是否可视的方法、装置、设备以及存储介质
CN112699205B (zh) * 2021-01-15 2024-04-02 北京心中有数科技有限公司 大气能见度预报方法、装置、终端设备和可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184816B1 (en) * 1998-07-06 2001-02-06 Alliedsignal Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
CN110030968A (zh) * 2019-04-16 2019-07-19 武汉大学 一种基于星载立体光学影像的地面遮挡物仰角测量方法
CN114153832A (zh) * 2021-12-06 2022-03-08 国网湖南省电力有限公司 电力微气象观测数据与气象行业传统数据融合方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Climate change in mountains: a review of elevation dependent warming and its possible causes;Imtiaz Rangwala等;《Climatic Change》;全文 *
基于SRTM地形数据天气雷达地形遮挡分析系统开发及应用;周嘉健等;热带气象学报;全文 *

Also Published As

Publication number Publication date
CN115034435A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN109738970B (zh) 基于雷电数据挖掘实现雷电预警的方法、装置和存储介质
Balk et al. The distribution of people and the dimension of place: methodologies to improve the global estimation of urban extents
Klouček et al. How does data accuracy influence the reliability of digital viewshed models? A case study with wind turbines
CN108646319B (zh) 一种短时强降雨预报方法及系统
CN109933637B (zh) 一种洪水风险动态展示及分析系统
CN110716935A (zh) 基于网约车出行的轨迹数据分析与可视化方法及系统
Mitsova et al. Using enhanced dasymetric mapping techniques to improve the spatial accuracy of sea level rise vulnerability assessments
Lee et al. Solar radiation over the urban texture: LIDAR data and image processing techniques for environmental analysis at city scale
CN111898315A (zh) 基于分形—机器学习混合模型的滑坡易发性评估方法
Zambrano et al. A spatial model for evaluating the vulnerability of water management in Mexico City, Sao Paulo and Buenos Aires considering climate change
Li et al. Using reverse geocoding to identify prominent wildfire evacuation trigger points
KR102422300B1 (ko) 도심항공교통의 포트 선정을 위한 기후정보 제공 방법 및 시스템
CN107944089A (zh) 一种基于现状视廊的地块限高分析系统及其分析方法
Thompson et al. Developing effective sampling designs for monitoring natural resources in Alaskan national parks: An example using simulations and vegetation data
CN115034435B (zh) 基于数值模型的目标观测指数预报方法、存储介质及终端
Parent et al. Rapid viewshed analyses: A case study with visibilities limited by trees and buildings
KARIMIPOUR et al. Introduction to a quantitative method for assessment of visual impacts of Tehran Towers
Walsh et al. A reservoir siting tool for North Carolina: System design & operations for screening and evaluation
JP3656852B1 (ja) 防災事業計画支援方法とそのシステム
CN114511239A (zh) 土壤重金属污染风险区划分方法、装置、电子设备及介质
CN108597013B (zh) 一种特定区域气象水文资料抽点填图方法
Grozavu et al. GIS applications for landslide susceptibility assessment: a case study in Iaşi County (Moldavian Plateau, Romania)
Knight et al. Evaluation of the potential of friction surface analysis in modelling hurricane wind damage in an urban environment
Cloete Optimizing visibility analysis for visual impact assessment
Saleh et al. GIS for planning a sustainable and inclusive community: multi-criteria suitability analysis for siting low-income housing in a sustainable community and suitable neighborhood in Buffalo Metropolitan Area, New York

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant