CN115031223A - 一种锅炉并汽自动加负荷方法 - Google Patents

一种锅炉并汽自动加负荷方法 Download PDF

Info

Publication number
CN115031223A
CN115031223A CN202210606708.6A CN202210606708A CN115031223A CN 115031223 A CN115031223 A CN 115031223A CN 202210606708 A CN202210606708 A CN 202210606708A CN 115031223 A CN115031223 A CN 115031223A
Authority
CN
China
Prior art keywords
pressure bypass
bypass valve
low
axial displacement
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210606708.6A
Other languages
English (en)
Inventor
李德丰
王雪炎
桂宏桥
刘喜
储开建
邵明军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangda Environmental Protection Energy Jiangyin Co ltd
Original Assignee
Guangda Environmental Protection Energy Jiangyin Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangda Environmental Protection Energy Jiangyin Co ltd filed Critical Guangda Environmental Protection Energy Jiangyin Co ltd
Priority to CN202210606708.6A priority Critical patent/CN115031223A/zh
Publication of CN115031223A publication Critical patent/CN115031223A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Turbines (AREA)

Abstract

本发明具体涉及一种用于发电行业的中间再热机组高、低压旁路控制系统,本高、低压旁路控制系统包括:高低压旁路系统负荷控制模块、轴向位移锁存计算模块、机组检测模块、高压旁路阀和低压旁路阀;根据汽轮机运行状态锁定当前轴向位移数值,并控制相应旁路阀执行加负荷或减负荷动作;所述轴向位移锁存计算模块适于计算轴向位移变化量,所述机组检测模块适于检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,即交替控制高压旁路阀和低压旁路阀执行相应动作;本发明具备锅炉并、解汽期间汽轮机加减负荷期间对高、低压旁路自动控制功能,并且克服传统高、低压旁路系统在正常减负荷停机期间发生烧推力瓦事故的问题。

Description

一种锅炉并汽自动加负荷方法
本申请是分案申请,原申请的申请号为202110020910.6,申请日2021年1月8日,发明名称“一种用于发电行业的中间再热机组高、低压旁路控制系统”的分案申请。
技术领域
本发明属于再热机组技术领域,具体涉及一种用于发电行业的中间再热机组高、低压旁路控制系统。
背景技术
随着我国城市化率和人们对生活环境关注度不断提高,垃圾焚烧发电行业市场竞争激烈,垃圾处理费越来越低,同时环保排放指标越来越严,导致运行成本越来越高,利润空间越来越窄。目前国内常规垃圾发电项目全厂热效率在21%左右。江阴三期项目在行业内采用两炉一机母管制再热技术,经第三方功能测试,全厂热效率达28.69%,入炉吨垃圾发电量595kW.h/t。但母管制再热机组旁路系统控制存在诸多技术问题,阻碍该技术推广使用,具体如下:高、低压旁路系统布置复杂,运行操作复杂;锅炉并、解汽期间汽轮机加减负荷操作难度大,事故率高。传统母管制再热机组旁路系统控制在正常减负荷停机期间发生烧推力瓦事故;经调研,国外越南煤电项目运行的两炉一机母管制再热机组同样出现锅炉并、解汽期间汽轮机加减负荷操作难度大,出现过烧推力瓦事故。
因此,亟需开发一种新的用于发电行业的中间再热机组高、低压旁路控制系统,以解决上述问题。
发明内容
本发明的目的是提供一种用于发电行业的中间再热机组高、低压旁路控制系统。
为了解决上述技术问题,本发明提供了一种用于发电行业的中间再热机组高、低压旁路控制系统,包括:高低压旁路系统负荷控制模块、与所述高低压旁路系统负荷控制模块电性相连的轴向位移锁存计算模块、机组检测模块、高压旁路阀和低压旁路阀;其中所述高低压旁路系统负荷控制模块适于根据汽轮机运行状态锁定当前轴向位移数值,所述轴向位移锁存计算模块适于通过锁定的当前轴向位移数值计算轴向位移变化量,所述机组检测模块适于检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力;以及所述高低压旁路系统负荷控制模块在锅炉启动并汽后,通过反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零,即控制汽轮机加负荷;以及所述高低压旁路系统负荷控制模块在给定待解列停运锅炉后,通过反复交替控制高压旁路阀和低压旁路阀逐渐开大,直至高压旁路阀全开和低压旁路阀全开,即控制汽轮机减负荷。
进一步的,锅炉启动并汽后,所述高低压旁路系统负荷控制模块适于锁定当前汽轮机轴向位移数值,并按设定速率控制高压旁路阀逐渐关小;所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,所述高低压旁路系统负荷控制模块适于控制高压旁路阀停止关小并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移增大量与锁定的轴向位移数值的差值,当差值达到设定值时所述高低压旁路系统负荷控制模块适于控制高压旁路阀保持当前开度,并开始关小低压旁路阀;所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀停止关小并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移减小量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀保持当前开度,并开始关小高压旁路阀,即所述高低压旁路系统负荷控制模块适于反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零。
进一步的,给定待解列停运锅炉后,所述高低压旁路系统负荷控制模块适于锁定当前汽轮机轴向位移数值,并按设定速率逐渐开大低压旁路阀;所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷下降率、缸温下降率、胀差变化量以及机组应力,当任一个参数达到相应设定数值时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀停止开大并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移减小量与锁定的轴向位移数值的差值,当差值达到设定值时所述高低压旁路系统负荷控制模块适于控制低压旁路阀保持当前开度,并开始开大高压旁路阀;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移增大量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,所述高低压旁路系统负荷控制模块适于控制高压旁路阀保持当前开度,并开始开大低压旁路阀,即所述高低压旁路系统负荷控制模块适于反复交替控制高压旁路阀和低压旁路阀逐渐开大,直至高压旁路阀全开和低压旁路阀全开。
进一步的,每台汽轮机配备有两台锅炉,每台锅炉通过相应高压旁路阀直接将该锅炉内过热器产生的主蒸汽减温、减压后直接并入再热冷端母管,以送至相应锅炉再热器,即各再热器产生的再热蒸汽输送至汽轮机的中低压缸。
进一步的,每台锅炉设置有相应低压旁路阀,即所述低压旁路阀将相应锅炉再热器产生的再热蒸汽直接减温减压后输送至凝汽器中。
另一方面,本发明提供一种锅炉并汽自动加负荷方法,其包括:锅炉启动并汽后,锁定汽轮机当前轴向位移数值,并按设定速率逐渐关小高压旁路阀;实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,高压旁路阀停止关小并保持在该开度进行暖机;计算轴向位移增大量与锁定的轴向位移数值的差值,当差值达到设定值时控制高压旁路阀保持当前开度,并开始关小低压旁路阀;实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,低压旁路阀停止关小并保持在该开度进行暖机;计算轴向位移减小量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,控制低压旁路阀保持当前开度,并开始关小高压旁路阀;反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零。
进一步,适于采用如上述的用于发电行业的中间再热机组高、低压旁路控制系统进行工作。
第三方面,本发明提供一种锅炉解列自动减负荷方法,其包括:给定待解列停运锅炉后,锁定汽轮机当前轴向位移数值,并按设定速率逐渐开大对应的低压旁路阀;实时检测机组负荷下降率、缸温下降率、胀差变化量以及机组应力,当任一个参数达到相应设定数值时,低压旁路阀停止开大并保持在该开度进行暖机;计算轴向位移减小量与锁定的轴向位移数值的差值,当差值达到设定值时控制低压旁路阀保持当前开度,并开始开大高压旁路阀;计算轴向位移增大量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,控制高压旁路阀保持当前开度,并开始开大低压旁路阀;反复交替控制高压旁路阀和低压旁路阀逐渐开大,直至高压旁路阀全开和低压旁路阀全开。
进一步,适于采用如上述的用于发电行业的中间再热机组高、低压旁路控制系统进行工作。
本发明的有益效果是,本发明具备锅炉并、解汽期间汽轮机加减负荷期间对高、低压旁路自动控制功能,能够实现两炉一机母管制再热生产,并且克服传统高、低压旁路系统在正常减负荷停机期间发生烧推力瓦事故的问题。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的用于发电行业的中间再热机组高、低压旁路控制系统的原理框图;
图2是本发明的汽轮机加负荷的控制逻辑框图;
图3是本发明的汽轮机减负荷的控制逻辑框图;
图4是本发明的两炉一机母管制再热机组的结构图;
图5是本发明的锅炉并汽自动加负荷方法的流程图;
图6是本发明的锅炉解列自动减负荷方法的流程图。
图中:
高压旁路阀1、低压旁路阀2、主蒸汽母管3、再热冷端母管4、再热蒸汽5。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
图1是本发明的用于发电行业的中间再热机组高、低压旁路控制系统的原理框图。
在本实施例中,如图1所示,本实施例提供了一种用于垃圾发电行业的高、低压旁路控制系统,其包括:高低压旁路系统负荷控制模块、与所述高低压旁路系统负荷控制模块电性相连的轴向位移锁存计算模块、机组检测模块、高压旁路阀和低压旁路阀;其中所述高低压旁路系统负荷控制模块适于根据汽轮机运行状态锁定当前轴向位移数值,并控制相应旁路阀执行加负荷或减负荷动作;所述轴向位移锁存计算模块适于通过锁定的当前轴向位移数值计算轴向位移变化量,所述机组检测模块适于检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,即所述高低压旁路系统负荷控制模块适于根据轴向位移变化量、机组负荷上升率、缸温上升率、胀差变化量以及机组应力交替控制高压旁路阀和低压旁路阀执行相应动作,以实现汽轮机加负荷或减负荷。
在本实施例中,轴向位移锁存计算模块通过有功功率、轴向位移、轴振、主蒸汽和再热蒸汽压力计算轴向位移变化量。
在本实施例中,本实施例具备锅炉并、解汽期间汽轮机加减负荷期间对高、低压旁路自动控制功能,能够实现两炉一机母管制再热生产,并且克服传统高、低压旁路系统在正常减负荷停机期间发生烧瓦事故的问题。
在本实施例中,所述高低压旁路系统负荷控制模块在锅炉启动并汽后控制汽轮机加负荷;以及所述高低压旁路系统负荷控制模块在给定待解列停运锅炉后控制汽轮机减负荷。
图2是本发明的汽轮机加负荷的控制逻辑框图。
在本实施例中,锅炉启动并汽后,汽轮机处于“压力控制”模式,由加负荷按钮向高低压旁路系统负荷控制模块发出加负荷指令后,高低压旁路系统负荷控制模块自动锁定当前轴向位移数值,并按设定速率(在本实施例中设定为热态2MW/min、温态0.5MW/min、冷态0.25MW/min)控制高压旁路阀逐渐关小(在本实施例中设定高压旁路阀关小速率0.5%/min),汽轮机检测到主蒸汽压力升高后,汽轮机DEH系统开大汽轮机高压调门,增加汽轮机负荷,维持主蒸汽压力不变。此时高低压旁路系统负荷控制模块自动执行进行如下控制:
在本实施例中,如图2所示,锅炉启动并汽后,所述高低压旁路系统负荷控制模块适于锁定当前汽轮机轴向位移数值,并按设定速率(在本实施例中设定为热态2MW/min、温态0.5MW/min、冷态0.25MW/min)控制高压旁路阀逐渐关小(在本实施例中设定高压旁路阀关小速率0.5%/min);所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷上升率、缸温上升率(在本实施例中为2℃/min)、胀差变化量(在本实施例中为>3mm、<2.7mm)以及机组应力(预设曲线红线),当缸温上升率、胀差变化量达到设定数值时,所述高低压旁路系统负荷控制模块适于控制高压旁路阀停止关小并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移增大量与锁定的轴向位移数值的差值,当差值达到设定值(在本实施例中设定值为≥0.05mm)时所述高低压旁路系统负荷控制模块适于控制高压旁路阀保持当前开度,并开始关小低压旁路阀(在本实施例中设定低压旁路阀关小速率0.5%/min),低压旁路阀关小后,再热蒸汽压力上升,汽轮机负荷自动上升;所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀停止关小并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移减小量与锁定的轴向位移数值的差值,当差值恢复至锁定值(在本实施例中设定值为≥-0.05mm)时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀保持当前开度,并开始关小高压旁路阀,即所述高低压旁路系统负荷控制模块适于反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零,并自动设定高低旁控制参数后投入高低旁自动控制,自动加负荷执行完毕。
图3是本发明的汽轮机减负荷的控制逻辑框图。
在本实施例中,给定待解列停运锅炉后,高低压旁路系统负荷控制模块自动锁定当前轴向位移数值,并设定速率逐渐开大低压旁路阀,再热蒸汽压力降低,中低压缸进汽量减少,汽轮机负荷下降。此时高低压旁路系统负荷控制模块自动执行进行如下控制:
在本实施例中,如图3所示,给定待解列停运锅炉后,所述高低压旁路系统负荷控制模块适于锁定当前汽轮机轴向位移数值,并按设定速率逐渐开大低压旁路阀(在本实施例中设定低压旁路阀开大速率1%/min);所述高低压旁路系统负荷控制模块适于通过机组检测模块检测机组负荷下降率(在本实施例中为2MW/min)、缸温下降率(在本实施例中为2℃/min)、胀差变化量(在本实施例中为>3mm、<2.7mm)以及机组应力(预设曲线红线),当任一个参数达到相应设定数值时,所述高低压旁路系统负荷控制模块适于控制低压旁路阀停止开大并保持在该开度进行暖机;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移减小量与锁定的轴向位移数值的差值,当差值达到设定值时(在本实施例中设定值为≥-0.05mm)所述高低压旁路系统负荷控制模块适于控制低压旁路阀保持当前开度,并开始开大高压旁路阀(在本实施例中设定高压旁路阀开大速率0.8%/min),高压旁路阀开大后,主蒸汽压力下降,汽轮机DEH系统关小汽轮机高压调门,减少汽轮机负荷,维持主蒸汽压力不变;所述高低压旁路系统负荷控制模块适于通过轴向位移锁存计算模块计算轴向位移增大量与锁定的轴向位移数值的差值,当差值(在本实施例中为>0.05mm)恢复至锁定值时,所述高低压旁路系统负荷控制模块适于控制高压旁路阀保持当前开度,并开始开大低压旁路阀,即所述高低压旁路系统负荷控制模块适于反复交替控制高压旁路阀和低压旁路阀逐渐开大,直至高压旁路阀全开和低压旁路阀全开,并自动关闭该台锅炉的主蒸汽、再热冷端、再热热端隔离门,解列该台锅炉,高低旁炉自动减负荷执行完毕。
图4是本发明的两炉一机母管制再热机组的结构图。
在本实施例中,如图4所示,每台汽轮机配备有两台锅炉,每台锅炉通过相应高压旁路阀1直接将该锅炉内过热器产生的主蒸汽减温、减压后直接并入再热冷端母管4,以送至相应锅炉再热器,即各再热器产生的再热蒸汽5输送至汽轮机的中低压缸继续做功。
在本实施例中,每台锅炉设置有相应低压旁路阀2,即所述低压旁路阀2将相应锅炉再热器产生的再热蒸汽5直接减温减压后输送至凝汽器中。
实施例2
图5是本发明的锅炉并汽自动加负荷方法的流程图。
在实施例1的基础上,如图5所示,本实施例提供一种锅炉并汽后中间再热机组自动加负荷方法,其包括:锅炉启动并汽后,锁定汽轮机当前轴向位移数值,并按设定速率逐渐关小对应的高压旁路阀;实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,高压旁路阀停止关小并保持在该开度进行暖机;计算轴向位移增大量与锁定的轴向位移数值的差值,当差值达到设定值时控制高压旁路阀保持当前开度,并开始关小对应的低压旁路阀;实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,低压旁路阀停止关小并保持在该开度进行暖机;计算轴向位移减小量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,控制低压旁路阀保持当前开度,并开始关小高压旁路阀;反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零。
在本实施例中,适于采用如实施例1所提供的用于发电行业的中间再热机组高、低压旁路控制系统进行工作。
在本实施例中,用于发电行业的中间再热机组高、低压旁路控制系统已在实施例1中阐述清楚。
实施例3
图6是本发明的锅炉解列自动减负荷方法的流程图。
在上述实施例的基础上,如图6所示,本实施例提供一种锅炉解列自动减负荷方法,其包括:给定待解列停运锅炉后,锁定汽轮机当前轴向位移数值,并按设定速率逐渐开大对应的低压旁路阀;实时检测机组负荷下降率、缸温下降率、胀差变化量以及机组应力,当任一个参数达到相应设定数值时,低压旁路阀停止开大并保持在该开度进行暖机;计算轴向位移减小量与锁定的轴向位移数值的差值,当差值达到设定值时控制低压旁路阀保持当前开度,并开始开大对应的高压旁路阀;计算轴向位移增大量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,控制高压旁路阀保持当前开度,并开始开大低压旁路阀;反复交替控制高压旁路阀和低压旁路阀逐渐开大,直至高压旁路阀全开和低压旁路阀全开。
在本实施例中,适于采用如上述实施例所提供的用于发电行业的中间再热机组高、低压旁路控制系统进行工作。
在本实施例中,用于发电行业的中间再热机组高、低压旁路控制系统已在上述实施例中阐述清楚。
综上所述,本发明具备锅炉并、解汽期间汽轮机加减负荷期间对相应的高、低压旁路自动控制功能,能够实现两炉一机母管制再热生产,并且克服传统高、低压旁路系统在正常减负荷停机期间发生烧瓦事故的问题。
本申请中选用的各个器件(未说明具体结构的部件)均为通用标准件或本领域技术人员知晓的部件,其结构和原理都为本技术人员均可通过技术手册得知或通过常规实验方法获知。并且,本申请所涉及的软件程序均为现有技术,本申请不涉及对软件程序作出任何改进。
在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (1)

1.一种锅炉并汽自动加负荷方法,其特征在于,包括:
锅炉启动并汽后,锁定汽轮机当前轴向位移数值,并按设定速率逐渐关小高压旁路阀;
实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,高压旁路阀停止关小并保持在该开度进行暖机;
计算轴向位移增大量与锁定的轴向位移数值的差值,当差值达到设定值时控制高压旁路阀保持当前开度,并开始关小低压旁路阀;
实时检测机组负荷上升率、缸温上升率、胀差变化量以及机组应力,当缸温上升率、胀差变化量达到设定数值时,低压旁路阀停止关小并保持在该开度进行暖机;
计算轴向位移减小量与锁定的轴向位移数值的差值,当差值恢复至锁定值时,控制低压旁路阀保持当前开度,并开始关小高压旁路阀;
反复交替控制高压旁路阀和低压旁路阀逐渐关小,直至高压旁路阀关至零和低压旁路阀关至零。
CN202210606708.6A 2021-01-08 2021-01-08 一种锅炉并汽自动加负荷方法 Pending CN115031223A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210606708.6A CN115031223A (zh) 2021-01-08 2021-01-08 一种锅炉并汽自动加负荷方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110020910.6A CN112833380B (zh) 2021-01-08 2021-01-08 一种用于发电行业的中间再热机组高、低压旁路控制系统
CN202210606708.6A CN115031223A (zh) 2021-01-08 2021-01-08 一种锅炉并汽自动加负荷方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202110020910.6A Division CN112833380B (zh) 2021-01-08 2021-01-08 一种用于发电行业的中间再热机组高、低压旁路控制系统

Publications (1)

Publication Number Publication Date
CN115031223A true CN115031223A (zh) 2022-09-09

Family

ID=75928372

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202210606708.6A Pending CN115031223A (zh) 2021-01-08 2021-01-08 一种锅炉并汽自动加负荷方法
CN202210614775.2A Pending CN115031224A (zh) 2021-01-08 2021-01-08 一种锅炉解列自动减负荷方法
CN202110020910.6A Active CN112833380B (zh) 2021-01-08 2021-01-08 一种用于发电行业的中间再热机组高、低压旁路控制系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202210614775.2A Pending CN115031224A (zh) 2021-01-08 2021-01-08 一种锅炉解列自动减负荷方法
CN202110020910.6A Active CN112833380B (zh) 2021-01-08 2021-01-08 一种用于发电行业的中间再热机组高、低压旁路控制系统

Country Status (1)

Country Link
CN (3) CN115031223A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113565580A (zh) * 2021-07-08 2021-10-29 广东惠州天然气发电有限公司 一种分轴联合循环机组汽轮机负荷控制系统
CN113565593B (zh) * 2021-07-15 2023-08-15 广东惠州天然气发电有限公司 一种分轴联合循环机组启动阶段的负荷自适应控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206203A (ja) * 1986-03-07 1987-09-10 Hitachi Ltd 蒸気タ−ビン運転制御方法
CN104594959B (zh) * 2014-11-07 2016-05-25 贵州电力试验研究院 一种中压缸启动汽轮机自动切缸控制系统
CN107060917A (zh) * 2016-12-16 2017-08-18 大唐东北电力试验研究所有限公司 利用机组旁路供热提高热电联产机组深度调峰系统及方法
KR102196876B1 (ko) * 2019-09-03 2020-12-30 정계갑 증기 터빈 과속 방지 장치

Also Published As

Publication number Publication date
CN112833380B (zh) 2022-06-17
CN112833380A (zh) 2021-05-25
CN115031224A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN112833380B (zh) 一种用于发电行业的中间再热机组高、低压旁路控制系统
CN106382615A (zh) 超超临界机组多次再热汽温控制策略验证系统及方法
CN107165686A (zh) 一种二次再热火电机组旁路控制方法和系统
CN113404551A (zh) 一种燃气-蒸汽联合循环供热机组轴封供汽系统及运行方法
CN108104888A (zh) 一种基于调频旁路的电网调频系统及方法
CN108361683B (zh) 一种全负荷段再热气温智能控制系统
CN113669717A (zh) 一种给水自动控制的方法、装置、及存储介质
CN110955141A (zh) 一种基于神经网络逆模型再热汽温控制方法
Ahluwalia et al. Dynamic modeling of a combined-cycle plant
CN112855289B (zh) 一种汽轮机旁路自动控制方法
CN112031883B (zh) 适用于中调阀参与调节提升工业供汽参数的两级调节系统
CN114046183A (zh) 一种高背压运行边际条件的确定方法
CN112902023A (zh) 一种蒸汽管道增压系统及其全自动控制方法
CN211011382U (zh) 一种垃圾焚烧发电旁路回收系统
LU504141B1 (en) Adjustment method for raise feed wat temperature under deep peak regulation working condition of coal-fired unit
CN114562344A (zh) 适用于垃圾发电行业的多炉多机母管再热发电系统及方法
CN219605361U (zh) 一种火电灵活性机组管控系统
CN217441592U (zh) 超高温、超高压、干熄焦余热发电蒸汽压力调节系统
CN110593962B (zh) 一种超临界汽轮机发电机组并网后的自动升负荷控制方法
CN214406119U (zh) 火力发电机组启动氧化皮蒸汽吹扫系统
CN220890274U (zh) 汽轮发电机组低压加热器疏水系统及汽轮发电机组
CN114576605B (zh) 一种采用再热蒸汽加热给水实现深度调峰的系统及方法
Qiu et al. Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control
CN216110877U (zh) 一种燃气-蒸汽联合循环供热机组轴封供汽系统
Che et al. Analysis of the influence of peak adjustment and low load operation on turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination