CN115017996B - 一种基于多生理参数的脑力负荷预测方法和系统 - Google Patents
一种基于多生理参数的脑力负荷预测方法和系统 Download PDFInfo
- Publication number
- CN115017996B CN115017996B CN202210670920.9A CN202210670920A CN115017996B CN 115017996 B CN115017996 B CN 115017996B CN 202210670920 A CN202210670920 A CN 202210670920A CN 115017996 B CN115017996 B CN 115017996B
- Authority
- CN
- China
- Prior art keywords
- signal
- feature
- formula
- regression
- mental workload
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003340 mental effect Effects 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000013598 vector Substances 0.000 claims abstract description 52
- 238000012545 processing Methods 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 238000012549 training Methods 0.000 claims description 28
- 238000004422 calculation algorithm Methods 0.000 claims description 22
- 238000000354 decomposition reaction Methods 0.000 claims description 18
- 210000004556 brain Anatomy 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 16
- 230000004424 eye movement Effects 0.000 claims description 15
- 238000001228 spectrum Methods 0.000 claims description 9
- 210000001747 pupil Anatomy 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 230000002146 bilateral effect Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 210000001595 mastoid Anatomy 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 235000021110 pickles Nutrition 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000013519 translation Methods 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 10
- 238000010187 selection method Methods 0.000 abstract description 3
- 230000000875 corresponding effect Effects 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Pathology (AREA)
- Human Computer Interaction (AREA)
- Ophthalmology & Optometry (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
样本1 | 样本2 | 样本3 | 样本4 | 样本5 | |
SDNN | 0.098654 | 0.088758 | 0.051926 | 0.039463 | 0.052577 |
rMSSD | 0.096675 | 0.096218 | 0.026284 | 0.027803 | 0.046526 |
SDSD | 0.088941 | 0.091221 | 0.016751 | 0.017375 | 0.039774 |
pNN50 | 0.125 | 0.067416 | 0.068681 | 0.083544 | 0.054913 |
tp | 0.59283 | 0.67162 | 0.7069 | 0.70115 | 0.69906 |
Plf | 0.00090571 | 0.00066569 | 0.00076767 | 0.00093147 | 0.00075863 |
phf | 0.00023039 | 0.00025198 | 0.00015165 | 0.00016941 | 0.0006684 |
Lfhf | 3.9312 | 2.6418 | 5.0621 | 5.4983 | 1.135 |
Sd1 | 0.021481 | 0.019163 | 0.018608 | 0.019685 | 0.01808 |
Sd2 | 0.079895 | 0.057862 | 0.070918 | 0.0523 | 0.063907 |
S | 0.0053916 | 0.0034835 | 0.0041457 | 0.0032343 | 0.0036299 |
shang | 0.061987, | 0.06344 | 0.013369 | 0.014154 | 0.019953 |
样本1 | 样本2 | 样本3 | 样本4 | 样本5 | |
Pupile_mean | 26.475 | 25.624 | 26.859 | 25.908 | 26.02 |
Pupil_std | 3.1366 | 3.1553 | 3.4928 | 3.2168 | 3.4094 |
Fix_point_num | 126 | 386 | 442 | 586 | 652 |
Fix_point_time | 923.54 | 592.31 | 676.88 | 579.98 | 463.27 |
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670920.9A CN115017996B (zh) | 2022-06-15 | 2022-06-15 | 一种基于多生理参数的脑力负荷预测方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670920.9A CN115017996B (zh) | 2022-06-15 | 2022-06-15 | 一种基于多生理参数的脑力负荷预测方法和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115017996A CN115017996A (zh) | 2022-09-06 |
CN115017996B true CN115017996B (zh) | 2023-04-28 |
Family
ID=83075405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210670920.9A Active CN115017996B (zh) | 2022-06-15 | 2022-06-15 | 一种基于多生理参数的脑力负荷预测方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115017996B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116304643B (zh) * | 2023-05-18 | 2023-08-11 | 中国第一汽车股份有限公司 | 脑力负荷检测及模型训练方法、装置、设备及存储介质 |
CN118873841B (zh) * | 2024-09-25 | 2025-02-07 | 江西华恒京兴医疗科技有限公司 | 基于多模态数据的经颅电刺激装置及系统 |
CN119896816A (zh) * | 2025-03-21 | 2025-04-29 | 北京柚果科技有限公司 | 脑机接口闭环神经调控方法、存储介质、系统和程序产品 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106650609A (zh) * | 2016-10-26 | 2017-05-10 | 太原理工大学 | 基于调q小波变换和高阶累积量的j波检测及分类方法 |
CN109009173A (zh) * | 2018-08-30 | 2018-12-18 | 北京机械设备研究所 | 一种基于脑电-眼动双模态信号的疲劳检测与调控方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104665849B (zh) * | 2014-12-11 | 2017-03-01 | 西南交通大学 | 一种基于多生理信号多模型交互的高铁调度员应激检测方法 |
CN109034545A (zh) * | 2018-06-30 | 2018-12-18 | 济宁市创启信息科技有限公司 | 基于聚类与平均熵差群的股市投资者情绪指标选择方法 |
-
2022
- 2022-06-15 CN CN202210670920.9A patent/CN115017996B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106650609A (zh) * | 2016-10-26 | 2017-05-10 | 太原理工大学 | 基于调q小波变换和高阶累积量的j波检测及分类方法 |
CN109009173A (zh) * | 2018-08-30 | 2018-12-18 | 北京机械设备研究所 | 一种基于脑电-眼动双模态信号的疲劳检测与调控方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115017996A (zh) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115017996B (zh) | 一种基于多生理参数的脑力负荷预测方法和系统 | |
CN102835955B (zh) | 一种无需设定阈值的脑电信号中眼电伪迹自动去除的方法 | |
CN111466876B (zh) | 一种基于fNIRS和图神经网络的阿尔兹海默症辅助诊断系统 | |
US8862581B2 (en) | Method and system for concentration detection | |
Fatimah et al. | Mental arithmetic task classification using fourier decomposition method | |
CN104720797B (zh) | 一种基于单通道的脑电信号中肌电噪声消除方法 | |
Saini et al. | Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal | |
CN106236080B (zh) | 基于多通道的脑电信号中肌电噪声的消除方法 | |
CN105072988A (zh) | 使用倒谱技术测量麻醉深度的方法和设备 | |
CN109480872B (zh) | 基于脑电信号频带能量比特征的驾驶疲劳检测方法 | |
CN107252313A (zh) | 一种安全驾驶的监测方法及系统、汽车、可读存储介质 | |
CN1883384A (zh) | 一种脑电信号伪迹成分的自动识别和去除方法 | |
CN113723557A (zh) | 一种基于多频带时空卷积网络的抑郁脑电分类系统 | |
CN107095669A (zh) | 一种癫痫患者脑电信号的处理方法及系统 | |
CN110123342B (zh) | 一种基于脑电波的网瘾检测方法及系统 | |
CN112057087B (zh) | 精神分裂症高风险人群自主神经功能数据处理方法及装置 | |
CN114391846B (zh) | 一种基于过滤式特征选择的情绪识别方法及系统 | |
CN105342605A (zh) | 一种去除脑电信号中肌电伪迹的方法 | |
Goshvarpour et al. | Do men and women have different ECG responses to sad pictures? | |
CN108742603A (zh) | 一种利用核函数和字典对学习模型的脑电检测方法和装置 | |
Jaffino et al. | Expectation-maximization extreme machine learning classifier for epileptic seizure detection | |
CN113143296B (zh) | 沟通障碍的智能评估方法及评估系统 | |
CN106821318A (zh) | 一种脑电信号多尺度定量分析方法 | |
Liu et al. | Remove motion artifacts from scalp single channel EEG based on noise assisted least square multivariate empirical mode decomposition | |
Dembrani et al. | Accurate detection of ECG signals in ECG monitoring systems by eliminating the motion artifacts and improving the signal quality using SSG filter with DBE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230911 Address after: No. 10, Fuxing Road, Haidian District, Beijing Patentee after: China National Railway Group Co.,Ltd. Patentee after: CHINA ACADEMY OF RAILWAY SCIENCES Corp.,Ltd. Patentee after: CHINA RAILWAY SCIENCE RESEARCH INSTITUTE GROUP Co.,Ltd. RAILWAY SCIENCE AND TECHNOLOGY RESEARCH AND DEVELOPMENT CENTER Address before: 100081 Beijing city Haidian District Daliushu Road No. 2 Patentee before: CHINA ACADEMY OF RAILWAY SCIENCES Corp.,Ltd. Patentee before: CHINA RAILWAY SCIENCE RESEARCH INSTITUTE GROUP Co.,Ltd. RAILWAY SCIENCE AND TECHNOLOGY RESEARCH AND DEVELOPMENT CENTER |
|
TR01 | Transfer of patent right |