CN115015150A - 一种多通道冗余型高精度可燃气体浓度传感器 - Google Patents

一种多通道冗余型高精度可燃气体浓度传感器 Download PDF

Info

Publication number
CN115015150A
CN115015150A CN202210577596.6A CN202210577596A CN115015150A CN 115015150 A CN115015150 A CN 115015150A CN 202210577596 A CN202210577596 A CN 202210577596A CN 115015150 A CN115015150 A CN 115015150A
Authority
CN
China
Prior art keywords
infrared
combustible gas
light
sensor
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210577596.6A
Other languages
English (en)
Inventor
王博强
齐跃
张义勇
李成
姜健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
703th Research Institute of CSIC
Original Assignee
703th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 703th Research Institute of CSIC filed Critical 703th Research Institute of CSIC
Priority to CN202210577596.6A priority Critical patent/CN115015150A/zh
Publication of CN115015150A publication Critical patent/CN115015150A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种多通道冗余型高精度可燃气体浓度传感器,针对可燃气体浓度传感器光路腔体发明了一种螺旋型光路结构增加光路长度,有效提高传感器的信噪比、对可燃气体浓度的检测极限及检测精度;针对传感器所用的红外热释电元件发明的元件内部复杂的光学反射结构,可有限避免因传感器光路腔体内反射元件附着杂质而引起的检测失灵、误报警等情况的发生,以提高传感器的可靠性及抗误报警能力;发明的多通道冗余型可燃气体浓度检测方式,有效提高了可燃气体检测结果的精度及可靠性。本发明有效提高了可燃气体浓度传感器对可燃气体浓度的检测极限及精度、传感器的可靠性及抗误报警能力。

Description

一种多通道冗余型高精度可燃气体浓度传感器
技术领域
本发明是一种多通道冗余型高精度可燃气体浓度传感器,对甲烷等碳氢类可燃气体化合物的浓度进行高精度、高可靠性的检测。用于石油化工厂等防爆区域、天然气气田勘探等场所的可燃气体浓度检测。
背景技术
现今,可燃气体浓度传感器多采用非色散红外传感器(NDIR)方式对可燃气体浓度进行检测。非色散红外传感器(NDIR)是一种利用不同类型气体对红外光信号光谱进行选择性吸收的特点,利用朗伯-比尔定律(即,气体浓度与对红外信号吸收情况的关系)原理检测特定气体浓度的一类气体浓度传感器。
根据朗伯-比尔定律:
IOUT(λ)=I0exp(-α(λ)CL)
式中:I0为红外光源发出的源红外信号强度;IOUT为红外气体浓度传感器检测到的红外信号强度;α(λ)为波长为λ的气体对红外信号的吸收系数;C为待检测气体的浓度;L为红外信号与待检测气体的吸收长度(即:光路长度)。
由此可以看出,如果想提高传感器对可燃气体浓度的探测极限及精度,需要提高光路长度L、或提高红外光源的发光功率以提高I0。然而一方面,提高红外光源的发光功率不光会提高传感器的功耗,甚至会减少探测器的使用寿命;另一方面,受传感器体积的限制想提高光路长度L,不能简单的增加光路的直线长度,需要专门对光路进行结构设计。
可燃气体浓度传感器随着使用时间的增加,会在光路的反光镜上不均匀的附着灰尘、水蒸气、冷凝水等污染物。将对接收端的红外敏感元件接收到的红外信号的分布产生影响,甚至会引起探测失灵、误报警等情况。因此需要为接收端的红外敏感元件设计一种红外光接收结构,使接收端的红外敏感元件不受反光镜不均匀附着物的影响。从而提高传感器的可靠性及抗误报警能力。
甲烷等碳氢类气体是一类具有易燃易爆特点的可燃性气体。因此在石油化工厂、天然气气田及天然气管路传输等场所为防止发生燃烧、爆炸等危险情况,需要对该类气体的浓度进行检测。
可燃气体浓度传感器常采用非色散红外传感器(NDIR)方式进行可燃气体浓度的检测。该类型传感器是一种利用不同类型气体对红外光信号光谱进行选择性吸收的特点,利用朗伯- 比尔定律(即,气体浓度与对红外信号吸收情况的关系)来检测可燃气体的浓度的传感器。
发明内容
本发明的目的是为了提供一种多通道冗余型高精度可燃气体浓度传感器,传感器在光路结构上采用一种螺旋结构,能有效增加光路长度提高信噪比,进而提高可燃气体浓度的检测极限及精度。在敏感元件设计上采用多通道冗余型可燃气体检测方式,可有效提高传感器的可靠性及抗误报警能力。
本发明的目的是这样实现的:传感器光路腔体为螺旋形光路结构,在光路结构的入口处是可燃气体流的进气口,在光路结构的中心末端是可燃气体浓度检测腔,可燃气体浓度检测腔内设置多通道红外热释电元件,在光路结构内壁上靠近进气口位置上设置有红外光源,在光路结构内壁上还规律设置有内凹型弧面反光镜和一球面聚光反射镜,红外光源发出的红外光信号,经过多个内凹型弧面反光镜的反射形成被反射的红外光线,反射过程中被反射的红外光线被可燃气体充分吸收对应特征波长的红外信号;其余在可燃气体特征吸收波长外的红外信号经球面聚光反射镜的反射,射向可燃气体浓度检测腔,并由多通道红外热释电元件检测可燃气体的浓度。
本发明还包括这样一些结构特征:
1.多通道红外热释电元件包括元件窗口、元件引脚、金字塔分光镜矩阵、四个红外光学滤光片及红外热释电敏感元件、内部红外反射镜,内部红外反射镜位于元件窗口内侧,对由元件入口射向多通道红外热释电元件内部的红外光信号具有高通过性,对由金字塔分光镜矩阵及四个红外光学滤光片反射的信号具有全光谱高反射性;红外光信号是由红外光源受PWM 控制信号控制产生的周期性脉冲红外光信号;由四路红外热释电敏感元件接收到的红外信号强度数据来计算可燃气体的浓度。
2.由红外光源射出的红外光线A、B通过元件窗口射入传感器内部;当光射到金字塔分光镜时发生反射并射向红外光学滤光片,被反射的光中只有带通波长范围内的光被允许通过红外光学滤光片,射向其后面的红外热释电敏感元件;其余不在带通波长范围内的光将被全部反射到内部红外反射镜上,并在其上发生二次反射;内部红外反射镜具有全光谱高反射性,所有光线将全部发生二次反射;二次反射的光将被反射到对向的红外光学滤光片,并重复上述光路反射过程。
3.金字塔反光镜组成的金字塔分光镜阵列位于传感器内部的正中心,每个红外光学滤光片后安装一个红外热释电敏感元件,且分别布置在平行于金字塔分光镜阵列四条边的位置上;红外光学滤光片A1、A2只通过中心波长为待检测可燃气体红外吸收特征波长且半波宽度为 0.1um的红外信号;红外光学滤光片B1、B2只通过中心波长为与可燃气体红外吸收特征波长不重合的一个波长且半波宽度为0.1um的红外信号;红外光学滤波片A1、A2、B1、B2对其允许通过的特征波长外的红外光信号具有全光谱高反射性。
与现有技术相比,本发明的有益效果是:1、针对传感器光路腔体发明的螺旋型光路结构:可有效增加红外光信号与可燃气体接触所需的光路长度,从而提高可燃气体浓度传感器的检测极限与检测精度;2、针对传感器所用的红外热释电元件发明的元件内部复杂的光学反射结构:可有效避免因传感器光路腔体内的反射镜附着杂质而引起的传感器检测失灵、误报警等情况的发生。有效提高了传感器的可靠性及抗误报警能力;3、发明的多通道冗余型可燃气体浓度检测方式:通过各浓度检测通道与参考通道的浓度检测冗余组合计算出的可燃气体浓度更加精确可靠。有效的提高了可燃气体传感器检测结果的可靠性。
综上,本发明对可燃气体浓度传感器的检测极限及检测精度、可靠性、抗误报警能力等都有极大的提高。
附图说明
图1是可燃气体浓度传感器光路结构示意图。
图2是多通道红外热释电元件内部结构示意图。
图3是多通道红外热释电元件剖面图。
图4是多通道红外热释电元件内部俯视图。
图1,可燃气体浓度传感器光路结构是一种螺旋型光路结构,螺旋型结构在有限的空间内有效增加了光路长度,使可燃气体与红外光线充分接触。
图2,是一种多通道红外热释电元件内部的实例,总红外通道数为4,其中包含两路测量波段、两路参考波段,中央分光矩阵为金字塔形分光镜。总红外通道数还可为5、6、7等;中央分光镜矩阵类型还可为半球形、多棱锥形等。
图3,说明了红外光信号在多通道红外热释电元件内的反射传递过程。
图4,说明了金字塔分光镜矩阵、四路红外光学滤光片及其对应红外热释电元件在多通道红外热释电元件内部空间的布置情况。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明针对可燃气体浓度传感器的光路特点设计了一种螺旋型光路结构。能够有效增加可燃气体吸收红外光信号所需的光路长度,提高了可燃气体浓度传感器的信噪比。从而提高了可燃气体浓度传感器对可燃气体浓度的检测极限。提高了传感器的信噪比、检测极限及检测精度;针对传感器所用的红外热释电元件发明了一种内部复杂的光学反射结构,有效提高了传感器的可靠性及抗误报警能力;针对可燃气体浓度检测方式,发明了一种多通道冗余型的可燃气体浓度检测方式,有效提高了可燃气体浓度检测结果的精度及可靠性。
本发明针对可燃气体浓度传感器所用的红外热释电元件,设计了一种多通道冗余型红外热释电元件。其中包含数个可燃气体浓度检测通道和数个参考通道,通过各通道的冗余比较,计算得到的可燃气体浓度将更加可靠。有效的提高了可燃气体浓度传感器的可靠性。
本发明针对可燃气体浓度传感器所用的红外热释电元件,设计了一种在元件中央布置一组分光镜矩阵(分光镜矩阵可选择由半球形分光镜、多棱锥分光镜等分光镜构成)、垂直于分光镜各边布置立式红外光学滤光片、以及内部红外反射镜等构成的元件内部光路结构。通过红外光信号在分光镜矩阵、内部红外反射镜、红外光学滤光片间的复杂光学反射过程,使每路红外热释电敏感元件接收到的红外光束是均匀的。能够有效防止因传感器光路腔体内的反射元件附着杂质,使红外热释电敏感元件接收到的红外光信号不均匀,而引起可燃气体浓度传感器的检测失灵、误报警等情况的发生,从而提高传感器的可靠性。能够将红外光信号均匀的反射到各红外热释电敏感元件上。从而避免因传感器光路腔体内反光元件附着杂质,导致各红外热释电元件上接收到的红外信号不均匀,而引起的传感器检测失灵、误报警等情况的发生。有效的提高了传感器的可靠性及抗误报警能力。
在红外热释电元件内,布置数个用于检测可燃气体浓度的红外热释电敏感元件,以及数个用于参考(非可燃气体吸收波段)的红外热释电敏感元件。通过各检测通道与参考通道的浓度冗余组合计算出可燃气体的浓度值。可有效提高可燃气体浓度计算结果的精度及可靠性。
图1所示的可燃气体浓度传感器光路结构示意图,可燃气体流1通过布置在进气口3前端的防虫网2,流入传感器光路腔体9内。安装于镀金聚光罩杯内的红外光源4发出的红外光信号,经过多个内凹型弧面反光镜5的反射形成被反射的红外光线8。在上述反射过程中被反射的红外光线8被可燃气体充分吸收对应特征波长的红外信号。其余在可燃气体特征吸收波长外的红外信号经球面聚光反射镜10的反射,射向可燃气体浓度检测腔6。由多通道红外热释电元件7检测可燃气体的浓度。
图2所示的多通道红外热释电元件由元件窗口11、元件引脚14、金字塔分光镜矩阵15、四个红外光学滤光片(A1、A2、B1、B2)及红外热释电敏感元件(12、13、16、17)、内部红外反射镜18组成。内部红外反射镜18位于元件窗口11内侧,对由元件入口11射向多通道红外热释电元件内部的红外光信号19具有高通过性,对由金字塔分光镜矩阵15及四个红外光学滤光片(A1、A2、B1、B2)反射的信号具有全光谱高反射性。红外光信号19是由红外光源 4受PWM控制信号20控制产生的周期性脉冲红外光信号。由四路红外热释电敏感元件接收到的红外信号强度数据来计算可燃气体的浓度。
图3所示,由红外光源4射出的红外光线A、B(21、27),通过元件窗口11射入传感器内部。当光射到金字塔分光镜26时发生反射并射向红外光学滤光片1、2(22、25)。被反射的光中只有带通波长范围内的光被允许通过红外光学滤光片1、2(22、25),射向其后面的红外热释电敏感元件1、2(23、24)。其余不在带通波长范围内的光将被全部反射到内部红外反射镜18上,并在其上发生二次反射。由于内部红外反射镜18具有全光谱高反射性,因此所有光线将全部发生二次反射。二次反射的光将被反射到对向的红外光学滤光片,并重复上述光路反射过程。
图3中只显示了两束光A与B(21、27)在两个红外光学滤光镜片1、2(22、25)与内部红外反射镜18间的光路反射过程,实际在传感器内将是一束光在金字塔分光镜阵列、四个红外光学滤光片A1、A2、B1、B2与内部红外反射镜18之间的复杂反射过程。这个复杂的反射过程将使得四个红外光学滤光片A1、A2、B1、B2都被提供了各自传输范围内相对应的所有光束,这样有利于防止由内凹型弧面反光镜5及球面聚光反光镜10附着杂质(灰尘、水蒸气、冷凝水等),引起红外热释电敏感元件接收到的红外信号不均匀,进而引起可燃气体浓度传感器的检测失灵、误报警等情况的发生。以提高传感器的精度及可靠性。
图4所示多通道红外热释电元件内部俯视图,由金字塔反光镜26组成的金字塔分光镜阵列15位于传感器内部的正中心。四个红外光学滤光片A1、A2、B1、B2(12a、13a、14a、16a),每个红外光学滤光片后安装一个红外热释电敏感元件(12b、13b、14b、16b),分别布置在平行于金字塔分光镜阵列15四条边的位置上。其中红外光学滤光片A1、A2只通过中心波长为待检测可燃气体红外吸收特征波长(通常为3.4um),且半波宽度为0.1um的红外信号。即用于对待检测可燃气体进行检测的波段。B1、B2只通过中心波长为与可燃气体红外吸收特征波长不重合的一个波长(通常为3.91um),且半波宽度为0.1um的红外信号。即参考波段。红外光学滤波片A1、A2、B1、B2(12a、13a、14a、16a)对其允许通过的特征波长外的红外光信号具有全光谱高反射性。
综上,本发明是一种多通道冗余型高精度可燃气体浓度传感器,有效提高了可燃气体浓度传感器对可燃气体浓度的检测极限及精度、传感器的可靠性及抗误报警能力。针对可燃气体浓度传感器光路腔体发明了一种螺旋型光路结构增加光路长度,有效提高传感器的信噪比、对可燃气体浓度的检测极限及检测精度;针对传感器所用的红外热释电元件发明的元件内部复杂的光学反射结构,可有限避免因传感器光路腔体内反射元件附着杂质而引起的检测失灵、误报警等情况的发生,以提高传感器的可靠性及抗误报警能力;发明的多通道冗余型可燃气体浓度检测方式,有效提高了可燃气体检测结果的精度及可靠性。

Claims (4)

1.一种多通道冗余型高精度可燃气体浓度传感器,其特征在于:传感器光路腔体为螺旋形光路结构,在光路结构的入口处是可燃气体流的进气口,在光路结构的中心末端是可燃气体浓度检测腔,可燃气体浓度检测腔内设置多通道红外热释电元件,在光路结构内壁上靠近进气口位置上设置有红外光源,在光路结构内壁上还规律设置有内凹型弧面反光镜和一球面聚光反射镜,红外光源发出的红外光信号,经过多个内凹型弧面反光镜的反射形成被反射的红外光线,反射过程中被反射的红外光线被可燃气体充分吸收对应特征波长的红外信号;其余在可燃气体特征吸收波长外的红外信号经球面聚光反射镜的反射,射向可燃气体浓度检测腔,并由多通道红外热释电元件检测可燃气体的浓度。
2.根据权利要求1所述的一种多通道冗余型高精度可燃气体浓度传感器,其特征在于:多通道红外热释电元件包括元件窗口、元件引脚、金字塔分光镜矩阵、四个红外光学滤光片及红外热释电敏感元件、内部红外反射镜,内部红外反射镜位于元件窗口内侧,对由元件入口射向多通道红外热释电元件内部的红外光信号具有高通过性,对由金字塔分光镜矩阵及四个红外光学滤光片反射的信号具有全光谱高反射性;红外光信号是由红外光源受PWM控制信号控制产生的周期性脉冲红外光信号;由四路红外热释电敏感元件接收到的红外信号强度数据来计算可燃气体的浓度。
3.根据权利要求2所述的一种多通道冗余型高精度可燃气体浓度传感器,其特征在于:由红外光源射出的红外光线A、B通过元件窗口射入传感器内部;当光射到金字塔分光镜时发生反射并射向红外光学滤光片,被反射的光中只有带通波长范围内的光被允许通过红外光学滤光片,射向其后面的红外热释电敏感元件;其余不在带通波长范围内的光将被全部反射到内部红外反射镜上,并在其上发生二次反射;内部红外反射镜具有全光谱高反射性,所有光线将全部发生二次反射;二次反射的光将被反射到对向的红外光学滤光片,并重复上述光路反射过程。
4.根据权利要求3所述的一种多通道冗余型高精度可燃气体浓度传感器,其特征在于:金字塔反光镜组成的金字塔分光镜阵列位于传感器内部的正中心,每个红外光学滤光片后安装一个红外热释电敏感元件,且分别布置在平行于金字塔分光镜阵列四条边的位置上;红外光学滤光片A1、A2只通过中心波长为待检测可燃气体红外吸收特征波长且半波宽度为0.1um的红外信号;红外光学滤光片B1、B2只通过中心波长为与可燃气体红外吸收特征波长不重合的一个波长且半波宽度为0.1um的红外信号;红外光学滤波片A1、A2、B1、B2对其允许通过的特征波长外的红外光信号具有全光谱高反射性。
CN202210577596.6A 2022-05-25 2022-05-25 一种多通道冗余型高精度可燃气体浓度传感器 Pending CN115015150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210577596.6A CN115015150A (zh) 2022-05-25 2022-05-25 一种多通道冗余型高精度可燃气体浓度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210577596.6A CN115015150A (zh) 2022-05-25 2022-05-25 一种多通道冗余型高精度可燃气体浓度传感器

Publications (1)

Publication Number Publication Date
CN115015150A true CN115015150A (zh) 2022-09-06

Family

ID=83068859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210577596.6A Pending CN115015150A (zh) 2022-05-25 2022-05-25 一种多通道冗余型高精度可燃气体浓度传感器

Country Status (1)

Country Link
CN (1) CN115015150A (zh)

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101212A (zh) * 1985-04-01 1987-01-24 日探株式会社 光传输型吸烟敏感器
US5300778A (en) * 1991-10-09 1994-04-05 Ultrakust Electronic Gmbh Multispectral sensor
DE10005923A1 (de) * 2000-02-10 2001-08-23 Draeger Sicherheitstech Gmbh Infrarotoptische Gasmessvorrichtung und Gasmessverfahren
GB0228398D0 (en) * 2002-12-05 2003-01-08 E2V Technologics Ltd Gas sensors
JP2005337879A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd ガスセンサ
CN101105449A (zh) * 2007-08-08 2008-01-16 天地科技股份有限公司 双光源双敏感元件红外多气体检测传感器
CN101825566A (zh) * 2010-03-24 2010-09-08 郑州炜盛电子科技有限公司 高分辨率红外气体传感器
JP2010276427A (ja) * 2009-05-27 2010-12-09 National Institute Of Advanced Industrial Science & Technology ガスセンサ
US20120143515A1 (en) * 2006-09-28 2012-06-07 Smiths Detection Inc. Multi-detector gas identification system
CN102507490A (zh) * 2011-09-29 2012-06-20 热映光电股份有限公司 气体侦测器
CN203241337U (zh) * 2013-04-28 2013-10-16 西安科技大学 用于红外甲烷浓度检测的传感结构
CN103822893A (zh) * 2014-02-28 2014-05-28 江苏物联网研究发展中心 一种ndir气体传感器
CN103842801A (zh) * 2011-09-23 2014-06-04 煤矿安全设备公司 具有用于气体测量的多个源的红外传感器
EP2746820A1 (de) * 2012-12-20 2014-06-25 Leuze electronic GmbH + Co KG Optischer Sensor
CN203798729U (zh) * 2014-05-11 2014-08-27 西安安通测控技术有限公司 一种微型红外气体检测传感器
US20150129767A1 (en) * 2013-11-11 2015-05-14 General Electric Company Optical gas sensor
CN105973831A (zh) * 2016-06-30 2016-09-28 电子科技大学 一种四通道测量气体成分的热释电红外探测器
CN106404705A (zh) * 2016-12-15 2017-02-15 电子科技大学 一种高精度红外多气体检测装置
US20170122101A1 (en) * 2015-10-29 2017-05-04 Iball Instruments Llc Multigas Multisensor Redundant Mudlogging System
US20170138918A1 (en) * 2014-08-08 2017-05-18 Imx S.R.L. Gas detection system for toxic and/or flammable gas
CN107860737A (zh) * 2017-11-02 2018-03-30 杭州麦乐克科技股份有限公司 红外气体传感器
JP2018128323A (ja) * 2017-02-07 2018-08-16 新コスモス電機株式会社 光学式ガスセンサおよびガス検知器
US20190120754A1 (en) * 2016-05-09 2019-04-25 Infrasolid Gmbh Measuring device and method for sensing different gases and gas concentrations
CN109839364A (zh) * 2019-03-22 2019-06-04 山东微感光电子有限公司 一种基于多点反射螺旋光路的气体传感器探头及检测装置
KR20190105374A (ko) * 2018-03-05 2019-09-17 건국대학교 산학협력단 나선형 광로를 갖는 ndir 분석기 및 상기 분석기를 이용한 측정방법
CN209624375U (zh) * 2019-01-24 2019-11-12 深圳市美克森电子有限公司 一种具有螺旋腔体的气体传感器
CN210221810U (zh) * 2019-03-19 2020-03-31 南京信息工程大学 一种带恒温控制功能的高灵敏多气体检测系统
CN210626326U (zh) * 2019-08-15 2020-05-26 深圳市诺安环境安全股份有限公司 多气体浓度检测装置及报警装置
US20200200676A1 (en) * 2018-12-21 2020-06-25 Dräger Safety AG & Co. KGaA Alcohol detection device with redundant measuring channels and method for detecting alcohol in breathing air
CN112067572A (zh) * 2020-09-14 2020-12-11 深圳市诺安环境安全股份有限公司 一种高稳定的小型红外气体传感器及制作、实现方法
EP3757544A1 (en) * 2019-06-24 2020-12-30 CSEM Centre Suisse D'electronique Et De Microtechnique SA Gas measurement sensor
DE102019210163A1 (de) * 2019-07-10 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optische messanordnung und gassensor mit derselben
CN113155178A (zh) * 2020-01-22 2021-07-23 恩德莱斯和豪瑟尔分析仪表两合公司 传感器系统和方法
US20210239605A1 (en) * 2018-04-27 2021-08-05 Ecole Polytechnique Federale De Lausanne (Epfl) Method and spectrometer apparatus for investigating an infrared absorption of a sample
CN114174806A (zh) * 2019-07-18 2022-03-11 汉密尔顿医疗股份公司 具有折射和/或衍射分束器的非色散多通道传感器组件
CN216160458U (zh) * 2021-06-23 2022-04-01 河南福申电子科技有限公司 一种多反射面红外传感器
CN115112593A (zh) * 2022-05-25 2022-09-27 中国船舶重工集团公司第七0三研究所 一种多通道冗余型可燃气体浓度检测方法

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101212A (zh) * 1985-04-01 1987-01-24 日探株式会社 光传输型吸烟敏感器
US5300778A (en) * 1991-10-09 1994-04-05 Ultrakust Electronic Gmbh Multispectral sensor
DE10005923A1 (de) * 2000-02-10 2001-08-23 Draeger Sicherheitstech Gmbh Infrarotoptische Gasmessvorrichtung und Gasmessverfahren
US20010015408A1 (en) * 2000-02-10 2001-08-23 Burkhard Stock Infrared optical gas-measuring device and gas-measuring process
GB0228398D0 (en) * 2002-12-05 2003-01-08 E2V Technologics Ltd Gas sensors
JP2005337879A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd ガスセンサ
US20120143515A1 (en) * 2006-09-28 2012-06-07 Smiths Detection Inc. Multi-detector gas identification system
CN101105449A (zh) * 2007-08-08 2008-01-16 天地科技股份有限公司 双光源双敏感元件红外多气体检测传感器
JP2010276427A (ja) * 2009-05-27 2010-12-09 National Institute Of Advanced Industrial Science & Technology ガスセンサ
CN101825566A (zh) * 2010-03-24 2010-09-08 郑州炜盛电子科技有限公司 高分辨率红外气体传感器
CN103842801A (zh) * 2011-09-23 2014-06-04 煤矿安全设备公司 具有用于气体测量的多个源的红外传感器
CN102507490A (zh) * 2011-09-29 2012-06-20 热映光电股份有限公司 气体侦测器
EP2746820A1 (de) * 2012-12-20 2014-06-25 Leuze electronic GmbH + Co KG Optischer Sensor
CN203241337U (zh) * 2013-04-28 2013-10-16 西安科技大学 用于红外甲烷浓度检测的传感结构
US20150129767A1 (en) * 2013-11-11 2015-05-14 General Electric Company Optical gas sensor
CN103822893A (zh) * 2014-02-28 2014-05-28 江苏物联网研究发展中心 一种ndir气体传感器
CN203798729U (zh) * 2014-05-11 2014-08-27 西安安通测控技术有限公司 一种微型红外气体检测传感器
US20170138918A1 (en) * 2014-08-08 2017-05-18 Imx S.R.L. Gas detection system for toxic and/or flammable gas
US20170122101A1 (en) * 2015-10-29 2017-05-04 Iball Instruments Llc Multigas Multisensor Redundant Mudlogging System
US20190120754A1 (en) * 2016-05-09 2019-04-25 Infrasolid Gmbh Measuring device and method for sensing different gases and gas concentrations
CN105973831A (zh) * 2016-06-30 2016-09-28 电子科技大学 一种四通道测量气体成分的热释电红外探测器
CN106404705A (zh) * 2016-12-15 2017-02-15 电子科技大学 一种高精度红外多气体检测装置
JP2018128323A (ja) * 2017-02-07 2018-08-16 新コスモス電機株式会社 光学式ガスセンサおよびガス検知器
CN107860737A (zh) * 2017-11-02 2018-03-30 杭州麦乐克科技股份有限公司 红外气体传感器
KR20190105374A (ko) * 2018-03-05 2019-09-17 건국대학교 산학협력단 나선형 광로를 갖는 ndir 분석기 및 상기 분석기를 이용한 측정방법
US20210239605A1 (en) * 2018-04-27 2021-08-05 Ecole Polytechnique Federale De Lausanne (Epfl) Method and spectrometer apparatus for investigating an infrared absorption of a sample
US20200200676A1 (en) * 2018-12-21 2020-06-25 Dräger Safety AG & Co. KGaA Alcohol detection device with redundant measuring channels and method for detecting alcohol in breathing air
CN209624375U (zh) * 2019-01-24 2019-11-12 深圳市美克森电子有限公司 一种具有螺旋腔体的气体传感器
CN210221810U (zh) * 2019-03-19 2020-03-31 南京信息工程大学 一种带恒温控制功能的高灵敏多气体检测系统
GB202003977D0 (en) * 2019-03-22 2020-05-06 Laser Inst Of Shandong Academy Of Science A gas sensor probe and a detection apparatus based on spiral light path with multiple-point reflection
CN109839364A (zh) * 2019-03-22 2019-06-04 山东微感光电子有限公司 一种基于多点反射螺旋光路的气体传感器探头及检测装置
EP3757544A1 (en) * 2019-06-24 2020-12-30 CSEM Centre Suisse D'electronique Et De Microtechnique SA Gas measurement sensor
DE102019210163A1 (de) * 2019-07-10 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optische messanordnung und gassensor mit derselben
CN114174806A (zh) * 2019-07-18 2022-03-11 汉密尔顿医疗股份公司 具有折射和/或衍射分束器的非色散多通道传感器组件
CN210626326U (zh) * 2019-08-15 2020-05-26 深圳市诺安环境安全股份有限公司 多气体浓度检测装置及报警装置
CN113155178A (zh) * 2020-01-22 2021-07-23 恩德莱斯和豪瑟尔分析仪表两合公司 传感器系统和方法
CN112067572A (zh) * 2020-09-14 2020-12-11 深圳市诺安环境安全股份有限公司 一种高稳定的小型红外气体传感器及制作、实现方法
CN216160458U (zh) * 2021-06-23 2022-04-01 河南福申电子科技有限公司 一种多反射面红外传感器
CN115112593A (zh) * 2022-05-25 2022-09-27 中国船舶重工集团公司第七0三研究所 一种多通道冗余型可燃气体浓度检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尤政;: "智能传感器技术的研究进展及应用展望", 科技导报, no. 17, 13 September 2016 (2016-09-13), pages 74 - 80 *

Similar Documents

Publication Publication Date Title
US6469303B1 (en) Non-dispersive infrared gas sensor
US5734165A (en) Microstructured infrared absorption photometer
FI95322B (fi) Spektroskooppinen mittausanturi väliaineiden analysointiin
US20020105650A1 (en) Gas sensor
US20220170851A1 (en) Measuring device for measuring the absorption of gases
US20210164893A1 (en) Species specific sensor for exhaust gases and method thereof
WO2012093952A2 (ru) Газоанализатор и оптический блок, используемый в нем
US4988195A (en) Internal reflectance apparatus and method using cylindrical elements
CN110632013A (zh) 一种气体光谱分析仪
US8610066B2 (en) Device for radiation absorption measurements and method for calibration thereof
US5475222A (en) Ruggedized gas detector
CN114910432A (zh) 具有用于发射窄带宽的光的led发射体的光学气体传感器
CN112924399A (zh) 气体浓度检测装置及检测方法
GB2391310A (en) Gas sensors
CN102103071A (zh) 一种在位式吸收光谱气体分析系统
US7851762B2 (en) Optical analysis device
CN108535191B (zh) 基于菱形腔镜的激光拉曼气体检测装置
CN102230882B (zh) 一种采用Herroitt多次反射样品室的气体检测平台
KR20090086766A (ko) 광학식 가스센서
US6166383A (en) Non-dispersive infrared gas analyzer
KR101381618B1 (ko) 비분산 자외선 흡수법을 이용한 멀티가스 분석장치
CN115015150A (zh) 一种多通道冗余型高精度可燃气体浓度传感器
CN205786294U (zh) 多波段多气体检测装置
KR20180103760A (ko) 침착물 센서를 구비한 광 센서
CN101625306B (zh) 一种用于气体浓度测量的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination