CN115010207B - Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement - Google Patents
Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement Download PDFInfo
- Publication number
- CN115010207B CN115010207B CN202210133553.9A CN202210133553A CN115010207B CN 115010207 B CN115010207 B CN 115010207B CN 202210133553 A CN202210133553 A CN 202210133553A CN 115010207 B CN115010207 B CN 115010207B
- Authority
- CN
- China
- Prior art keywords
- copper slag
- wetland
- harmful
- toxic
- organic pollutants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010949 copper Substances 0.000 title claims abstract description 66
- 239000002893 slag Substances 0.000 title claims abstract description 58
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 54
- 239000002957 persistent organic pollutant Substances 0.000 title claims abstract description 33
- 231100000331 toxic Toxicity 0.000 title claims abstract description 31
- 230000002588 toxic effect Effects 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 10
- 238000007146 photocatalysis Methods 0.000 title claims abstract description 10
- 230000002787 reinforcement Effects 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000005446 dissolved organic matter Substances 0.000 claims abstract description 29
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 18
- 230000004913 activation Effects 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 150000001879 copper Chemical class 0.000 claims abstract description 5
- 238000000227 grinding Methods 0.000 claims abstract description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 14
- 239000002699 waste material Substances 0.000 claims description 14
- 239000002351 wastewater Substances 0.000 claims description 9
- 230000008439 repair process Effects 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 3
- 238000009360 aquaculture Methods 0.000 claims description 2
- 244000144974 aquaculture Species 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 239000010842 industrial wastewater Substances 0.000 claims description 2
- 238000005192 partition Methods 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 239000012670 alkaline solution Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 5
- 238000006731 degradation reaction Methods 0.000 abstract description 5
- 238000004064 recycling Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/20—Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/20—Total organic carbon [TOC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/023—Reactive oxygen species, singlet oxygen, OH radical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Water Treatment By Sorption (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种利用铜矿渣光催化强化修复湿地中有毒有害难降解有机污染物的方法,包括铜矿渣活化(粉碎研磨、煅烧、加酸反应、干燥,以激发铜矿渣中金属元素的活性),将活化后的铜矿渣铺于待修复湿地表层,调控铜矿渣中金属离子与湿地污染水体中溶解性有机质(DOM)浓度的比例,使污染水体中的DOM与铜矿渣中的金属离子充分络合形成DOM‑金属络合物,在太阳光照条件下,DOM‑金属络合物发生光致电子转移生成羟基自由基,从而强化降解湿地污染水体中难降解的有机污染物。本发明操作简单,成本低廉,能彻底降解湿地中有毒有害难降解的有机污染物,不易产生二次污染,且实现了铜矿渣资源循环化利用。The invention discloses a method for using copper slag photocatalysis to strengthen the restoration of toxic, harmful and refractory organic pollutants in wetlands, including copper slag activation (crushing and grinding, calcining, acid reaction, and drying to stimulate the activity of metal elements in the copper slag), spreading the activated copper slag on the surface of the wetland to be repaired, adjusting the ratio of metal ions in the copper slag to the concentration of dissolved organic matter (DOM) in wetland polluted water, so that DOM in the polluted water body and metal ions in the copper slag are fully complexed to form DOM-metal Under the condition of sunlight, DOM‑metal complex undergoes photoelectron transfer to generate hydroxyl radicals, thereby enhancing the degradation of refractory organic pollutants in wetland polluted water. The invention has simple operation and low cost, can completely degrade toxic, harmful and refractory organic pollutants in wetlands, is not easy to produce secondary pollution, and realizes the recycling of copper slag resources.
Description
技术领域technical field
本发明属于废水治理技术领域,具体涉及一种利用铜矿渣光催化强化修复湿地中有毒有害难降解有机污染物的方法。The invention belongs to the technical field of waste water treatment, and in particular relates to a method for using copper slag to photocatalyze and strengthen the restoration of toxic, harmful and refractory organic pollutants in wetlands.
背景技术Background technique
铜矿渣是铜生产过程中产生的废弃物。铜矿渣的堆放占用大量土地,环境负荷不断增大,堆存时重金属的渗透会对土壤和水资源造成污染,铜矿渣中的粉尘会对大气造成污染,危害人类身体健康。铜矿渣资源综合利用新技术开发难度大,大规模消纳和高值化资源综合利用受到限制,造成巨大的资源浪费。Copper slag is a waste product from the copper production process. The stacking of copper slag occupies a large amount of land, and the environmental load continues to increase. The infiltration of heavy metals during stockpiling will pollute soil and water resources. The dust in copper slag will pollute the atmosphere and endanger human health. It is difficult to develop new technologies for the comprehensive utilization of copper slag resources, and the large-scale consumption and comprehensive utilization of high-value resources are limited, resulting in a huge waste of resources.
湿地可通过植物-基质-微生物之间形成的物理-化学-生物复合修复机制协同去除水体中的营养物质和有机污染物,虽然具有构建使用成本低、操作维护简便、低能耗等优点,但是湿地处理污染物也存在一定的局限性,如低温环境、湿地氧含量不足等容易造成有毒有害难降解的有机污染物也无法通过湿地系统达到理想的降解效率。针对现有技术上的不足,提出了一种利用铜矿渣光催化强化修复湿地中有毒有害难降解有机污染物的方法。待修复湿地污染水体中的溶解性有机质(DOM)含有大量芳香羧基、羟基和羰基等常见发色基团,不仅能够吸收太阳辐射,产生激发三重态DOM(3DOM*)和一些活性氧物种,还能与金属离子络合,进而影响污染物降解。针对湿地中水深较浅能得到均匀的光照为光催化提供充分的光照条件以及DOM和金属离子络合之后在光照条件下会产生羟基自由基(·OH)强化降解湿地中有机污染物的特性,选择铜矿渣进行废物利用,使其活化后铺于湿地表层,之后调控铜矿渣中金属离子与湿地污染水体中DOM的TOC值的比例,DOM和金属离子络合形成DOM-金属络合物,经光照生成以·OH为主的活性氧物种,强化降解湿地污染水体中难降解的有机污染物,可以将有机废水中的有毒有害难降解污染物降解成无毒无害的小分子酸或者矿化成CO2和水。Wetlands can synergistically remove nutrients and organic pollutants in water bodies through the physical-chemical-biological composite restoration mechanism formed between plants, substrates and microorganisms. Although they have the advantages of low construction and use costs, easy operation and maintenance, and low energy consumption, wetlands also have certain limitations in the treatment of pollutants. Aiming at the deficiencies in the existing technology, a method of using copper slag photocatalysis to strengthen the restoration of toxic, harmful and refractory organic pollutants in wetlands is proposed. The dissolved organic matter (DOM) in the polluted water of the wetland to be restored contains a large number of common chromophoric groups such as aromatic carboxyl, hydroxyl and carbonyl, which can not only absorb solar radiation, generate excited triplet DOM ( 3 DOM * ) and some reactive oxygen species, but also complex with metal ions, thereby affecting the degradation of pollutants.针对湿地中水深较浅能得到均匀的光照为光催化提供充分的光照条件以及DOM和金属离子络合之后在光照条件下会产生羟基自由基(·OH)强化降解湿地中有机污染物的特性,选择铜矿渣进行废物利用,使其活化后铺于湿地表层,之后调控铜矿渣中金属离子与湿地污染水体中DOM的TOC值的比例,DOM和金属离子络合形成DOM-金属络合物,经光照生成以·OH为主的活性氧物种,强化降解湿地污染水体中难降解的有机污染物,可以将有机废水中的有毒有害难降解污染物降解成无毒无害的小分子酸或者矿化成CO 2和水。
发明内容Contents of the invention
本发明提供了一种利用铜矿渣光催化强化修复湿地中有毒有害难降解有机污染物的方法,利用待修复湿地污染水体中的溶解性有机质(DOM)与铜矿渣中的金属离子在光照条件下充分络合形成DOM-金属络合物生成·OH强化降解湿地中有毒有害难降解的有机污染物。其中,铜矿渣中金属离子的摩尔浓度与湿地污染水体中溶解性有机质的TOC值的比例尤为重要,在合适的比例范围内,DOM-金属络合物在太阳光照条件下发生光致电子转移高效生成·OH强化降解湿地中有毒有害难降解有机污染物,使有毒有害难降解污染物降解彻底,实现资源化利用,操作简单,不易产生二次污染。The invention provides a method for using copper slag photocatalysis to strengthen the repair of toxic, harmful and refractory organic pollutants in wetlands. Dissolved organic matter (DOM) in the polluted water body of the wetland to be repaired and metal ions in copper slag are fully complexed under light conditions to form DOM-metal complexes to form OH to strengthen the degradation of toxic, harmful and refractory organic pollutants in wetlands. Among them, the ratio of the molar concentration of metal ions in copper slag to the TOC value of dissolved organic matter in wetland polluted water is particularly important. Within a suitable ratio range, DOM-metal complexes can be efficiently generated by photo-induced electron transfer under sunlight conditions. OH can be enhanced to degrade toxic, harmful and refractory organic pollutants in wetlands, so that toxic, harmful and refractory pollutants can be completely degraded, resource utilization can be realized, the operation is simple, and secondary pollution is not easy to occur.
本发明是这样实现的,包括以下步骤:The present invention is achieved like this, comprises the following steps:
S1、首先将废弃铜矿渣进行活化,铜矿渣活化步骤包括粉碎研磨、煅烧、加酸反应、干燥,测定活化后铜矿渣的金属含量;S1, first activate the waste copper slag, the copper slag activation step includes crushing and grinding, calcining, acid reaction, drying, and measuring the metal content of the activated copper slag;
S2、将含有毒有害难降解有机污染物的待修复湿地中的污染水体调节pH值至5~8,测定待修复湿地污染水体中溶解性有机质的TOC值;S2. Adjust the pH value of the polluted water body in the wetland to be repaired containing toxic, harmful and refractory organic pollutants to 5-8, and measure the TOC value of the dissolved organic matter in the polluted water body of the wetland to be repaired;
S3、将经过步骤(1)活化的铜矿渣直接铺设到含有毒有害难降解有机污染物的待修复湿地表层,调控铜矿渣中金属离子与湿地污染水体中的溶解性有机质浓度的比例,使铜矿渣中的金属离子与湿地污染水体中的溶解性有机质充分络合,形成DOM-金属络合物;S3, laying the copper slag activated in step (1) directly on the surface layer of the wetland to be repaired containing toxic, harmful and refractory organic pollutants, regulating the ratio of the concentration of metal ions in the copper slag to the dissolved organic matter concentration in the wetland polluted water body, so that the metal ions in the copper slag are fully complexed with the dissolved organic matter in the wetland polluted water body to form a DOM-metal complex;
S4、湿地的进水口和出水口用隔板围挡,将经过步骤(3)铺设铜矿渣的含有毒有害难降解有机污染物的待修复湿地污染水体曝晒7~21d,经太阳光照后,待修复湿地污染水体中的DOM-金属络合物光诱导生成具有高反应活性的羟基自由基,可以无选择性地将有毒有害难降解有机污染物降解成小分子酸或者矿化成CO2和水,同时铜矿渣还可吸附部分污染物,待修复湿地中的污染水体处理完成后从出水口排出,进水口再重新排入待处理的有机废水,可实现循环处理废水。S4. The water inlet and outlet of the wetland are surrounded by partitions, and the wetland polluted water body containing toxic, harmful and refractory organic pollutants laid in step (3) is exposed to sunlight for 7-21 days. After being exposed to sunlight, the DOM-metal complex in the wetland polluted water body is photoinduced to generate highly reactive hydroxyl radicals, which can non-selectively degrade toxic, harmful and refractory organic pollutants into small molecular acids or mineralize into CO2At the same time, the copper slag can also absorb some pollutants. After the treatment of the polluted water in the restored wetland is completed, it will be discharged from the water outlet, and the water inlet will be re-discharged into the organic wastewater to be treated, which can realize the recycling of wastewater.
优选地,S1步骤中铜矿渣活化需先将废弃铜矿渣粉碎研磨至10~100目,保证铺于湿地后孔隙率为30~50%,在600~800℃下煅烧2~6h,之后再加入硫酸溶液反应活化20~60min,干燥温度为400~500℃,干燥时间为10~24h。Preferably, the copper slag activation in step S1 needs to first pulverize and grind the waste copper slag to 10-100 meshes to ensure that the porosity is 30-50% after being spread on the wetland, calcining at 600-800°C for 2-6h, and then add sulfuric acid solution for reaction activation for 20-60min, the drying temperature is 400-500°C, and the drying time is 10-24h.
进一步的,S1步骤中铜矿渣粉碎研磨粒径至30目,600℃煅烧6h,之后再加入硫酸溶液反应活化45min,干燥温度为450℃,干燥时间为18h。Further, in the step S1, the copper slag is crushed and ground to a particle size of 30 meshes, calcined at 600°C for 6 hours, and then activated by adding sulfuric acid solution for 45 minutes, the drying temperature is 450°C, and the drying time is 18 hours.
优选的,S2步骤中含有毒有害难降解有机污染物的待修复湿地中的污染水体pH值调节至7。Preferably, in step S2, the pH value of the polluted water in the wetland to be restored containing toxic, harmful and refractory organic pollutants is adjusted to 7.
优选的,S3步骤所述的铜矿渣铺于湿地表层的厚度为0.1~0.4m。Preferably, the thickness of the copper slag in step S3 spread on the wetland surface is 0.1-0.4m.
进一步的,S3步骤所述的铜矿渣铺设厚度为0.3m。Further, the thickness of the copper slag laid in step S3 is 0.3m.
优选的,S3步骤所述的含有毒有害难降解有机污染物的待修复湿地中水深为0.3~1m,从湿地进水口排入的有机废水包括养殖废水、制药废水、工业废水中的一种或多种。Preferably, the water depth in the wetland to be restored containing toxic, harmful and refractory organic pollutants in step S3 is 0.3-1m, and the organic wastewater discharged from the wetland water inlet includes one or more of aquaculture wastewater, pharmaceutical wastewater, and industrial wastewater.
优选的,所述的待修复湿地中的溶解性有机质包括能溶解于水、酸或碱溶液中的异质碳氢混合物,由含氧、氮和硫的氨基酸、芳香族、脂肪族等功能团组成。Preferably, the dissolved organic matter in the wetland to be restored includes a heterogeneous mixture of hydrocarbons that can be dissolved in water, acid or alkali solution, and is composed of functional groups such as amino acids, aromatics, and aliphatics containing oxygen, nitrogen, and sulfur.
优选的,活化后铜矿渣中的金属离子包括Fe3+、Cu2+中的一种或多种,Fe3+、Cu2+的含量为45~350mg·kg-1。Preferably, the metal ions in the activated copper slag include one or more of Fe 3+ and Cu 2+ , and the content of Fe 3+ and Cu 2+ is 45-350 mg·kg -1 .
优选的,铜矿渣中的金属离子与待修复湿地污染水体中的溶解性有机质充分络合时间为30~120min。Preferably, the full complexation time between the metal ions in the copper slag and the dissolved organic matter in the polluted water body of the wetland to be restored is 30-120 minutes.
优选的,铜矿渣中金属离子的摩尔浓度与湿地污染水体中的溶解性有机质的TOC值之比为1:1~4:1,在此比例范围内,DOM-金属络合物可高效产生·OH。Preferably, the ratio of the molar concentration of metal ions in copper slag to the TOC value of dissolved organic matter in wetland polluted water is 1:1 to 4:1. Within this ratio range, DOM-metal complexes can efficiently generate OH.
进一步的,铜矿渣中金属离子的摩尔浓度与湿地污染水体中的溶解性有机质的TOC值之比为2:1。Further, the ratio of the molar concentration of metal ions in copper slag to the TOC value of dissolved organic matter in wetland polluted water is 2:1.
优选地,S4步骤中所述的曝晒天数为15d。Preferably, the number of days of exposure in step S4 is 15d.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明充分利用光照后DOM-金属络合物发生光致电子转移生成·OH的原理,使光照条件下湿地中的溶解性有机质与铜矿渣中的重金属络合生成·OH,强化降解湿地中难降解的有机污染物,无需其他额外技术,涉及工艺简单,成本低廉,便于推广应用。1. The present invention makes full use of the principle of photoinduced electron transfer of DOM-metal complexes to generate OH after light irradiation, so that dissolved organic matter in wetlands and heavy metals in copper slag are complexed to generate OH under light conditions, and strengthens the degradation of refractory organic pollutants in wetlands. No other additional technology is required, the process involved is simple, the cost is low, and it is easy to popularize and apply.
2、本发明使用的金属离子来源为废弃铜矿渣,不仅成本低廉、原料易得,而且可以资源化利用废弃铜矿渣,践行以废治废、绿色低碳的发展理念。2. The source of metal ions used in the present invention is waste copper slag, which is not only low in cost and easy to obtain as a raw material, but also can be used as a resource to implement the development concept of treating waste with waste and green and low carbon.
3、废弃铜矿渣作为湿地中的表层填料,不仅可提供金属离子来源与DOM络合生成·OH强化降解湿地中有毒有害难降解的有机污染物,还能起到过滤、吸附污染物的作用。3. Waste copper slag as surface filler in wetlands can not only provide sources of metal ions and complex with DOM to generate OH to strengthen the degradation of toxic, harmful and refractory organic pollutants in wetlands, but also play a role in filtering and adsorbing pollutants.
4、本发明的工艺简单,对待修复湿地中有毒有害难降解有机污染物的降解彻底,是一种高效且操作简单的处理方法,具有明显的环境、经济和社会效益。4. The process of the present invention is simple, and the toxic, harmful and refractory organic pollutants in the wetland to be restored can be thoroughly degraded. It is an efficient and easy-to-operate treatment method, and has obvious environmental, economic and social benefits.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换,均属于本发明保护范围。The present invention will be further described below in conjunction with the examples, but the present invention is not limited in any way, and any transformation made based on the teaching of the present invention belongs to the protection scope of the present invention.
实施例1Example 1
本案例选用废弃铜矿渣进行活化,粉碎研磨至30目、在600℃下煅烧、加1mM硫酸反应45min,在450℃干下燥18h。将含有毒有害难降解有机污染物的待修复湿地中的污染水体调节pH值至7,测定待修复湿地的污染水体中溶解性有机质的TOC值为5mgC/L。将活化后的铜矿渣(其中Fe3+、Cu2+含量为100mg·kg-1)铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe3+、Cu2+的摩尔浓度为20μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为4:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为2.6μM,测得湿地出水中难降解有机污染物硝基苯降解率达90.7%、替硝唑降解率达91.5%。In this case, waste copper slag was selected for activation, crushed and ground to 30 mesh, calcined at 600°C, reacted with 1mM sulfuric acid for 45min, and dried at 450°C for 18h. Adjust the pH value of the polluted water in the wetland to be restored containing toxic, harmful and refractory organic pollutants to 7, and measure the TOC value of dissolved organic matter in the polluted water in the wetland to be restored to 5 mgC/L.将活化后的铜矿渣(其中Fe 3+ 、Cu 2+含量为100mg·kg -1 )铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe 3+ 、Cu 2+的摩尔浓度为20μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为4:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为2.6μM,测得湿地出水中难降解有机污染物硝基苯降解率达90.7%、替硝唑降解率达91.5%。
实施例2Example 2
本案例选用废弃铜矿渣进行活化,粉碎研磨至30目、在600℃下煅烧、加1mM硫酸反应45min,在450℃干下燥18h。将含有毒有害难降解有机污染物的待修复湿地中的污染水体调节pH值至7,测定待修复湿地的污染水体中溶解性有机质的TOC值为5mgC/L。将活化后的铜矿渣(其中Fe3+、Cu2+含量为100mg·kg-1)铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe3+、Cu2+的摩尔浓度为15μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为3:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为3.2μM,测得湿地出水中难降解有机污染物硝基苯降解率达92.8%、替硝唑降解率达93.4%。In this case, waste copper slag was selected for activation, crushed and ground to 30 mesh, calcined at 600°C, reacted with 1mM sulfuric acid for 45min, and dried at 450°C for 18h. Adjust the pH value of the polluted water in the wetland to be restored containing toxic, harmful and refractory organic pollutants to 7, and measure the TOC value of dissolved organic matter in the polluted water in the wetland to be restored to 5mgC/L.将活化后的铜矿渣(其中Fe 3+ 、Cu 2+含量为100mg·kg -1 )铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe 3+ 、Cu 2+的摩尔浓度为15μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为3:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为3.2μM,测得湿地出水中难降解有机污染物硝基苯降解率达92.8%、替硝唑降解率达93.4%。
实施例3Example 3
本案例选用废弃铜矿渣进行活化,粉碎研磨至30目、在600℃下煅烧、加1mM硫酸反应45min,在450℃干下燥18h。将含有毒有害难降解有机污染物的待修复湿地中的污染水体调节pH值至7,测定待修复湿地的污染水体中溶解性有机质的TOC值为5mgC/L。将活化后的铜矿渣(其中Fe3+、Cu2+含量为100mg·kg-1)铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe3+、Cu2+的摩尔浓度为10μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为2:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为3.8μM,测得湿地出水中难降解有机污染物硝基苯降解率达94.7%、替硝唑降解率达96.8%。In this case, waste copper slag was selected for activation, crushed and ground to 30 mesh, calcined at 600°C, reacted with 1mM sulfuric acid for 45min, and dried at 450°C for 18h. Adjust the pH value of the polluted water in the wetland to be restored containing toxic, harmful and refractory organic pollutants to 7, and measure the TOC value of dissolved organic matter in the polluted water in the wetland to be restored to 5 mgC/L.将活化后的铜矿渣(其中Fe 3+ 、Cu 2+含量为100mg·kg -1 )铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe 3+ 、Cu 2+的摩尔浓度为10μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为2:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为3.8μM,测得湿地出水中难降解有机污染物硝基苯降解率达94.7%、替硝唑降解率达96.8%。
实施例4Example 4
本案例选用废弃铜矿渣进行活化,粉碎研磨至30目、在600℃下煅烧、加1mM硫酸反应45min,在450℃干下燥18h。将含有毒有害难降解有机污染物的待修复湿地中的污染水体调节pH值至7,测定待修复湿地的污染水体中溶解性有机质的TOC值为5mgC/L。将活化后的铜矿渣(其中Fe3+、Cu2+含量为100mg·kg-1)铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe3+、Cu2+的摩尔浓度为5μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为1:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为2.8μM,测得湿地出水中难降解有机污染物硝基苯降解率达91.3%、替硝唑降解率达92.2%。In this case, waste copper slag was selected for activation, crushed and ground to 30 mesh, calcined at 600°C, reacted with 1mM sulfuric acid for 45min, and dried at 450°C for 18h. Adjust the pH value of the polluted water in the wetland to be restored containing toxic, harmful and refractory organic pollutants to 7, and measure the TOC value of dissolved organic matter in the polluted water in the wetland to be restored to 5mgC/L.将活化后的铜矿渣(其中Fe 3+ 、Cu 2+含量为100mg·kg -1 )铺于待修复湿地表层,控制铺设铜矿渣的量使得Fe 3+ 、Cu 2+的摩尔浓度为5μM,此时铜矿渣中金属离子的摩尔浓度与污染水体中DOM的TOC值之比为1:1,使铜矿渣中的金属离子与湿地污染水体中的DOM充分络合,形成DOM-金属络合物,待修复湿地污染水体停留曝晒15d,经太阳光照后,DOM-金属络合物光诱导生成·OH,·OH可与对苯二甲酸反应生成2-羟基对苯二甲酸,通过高效液相色谱仪测定2-羟基对苯二甲酸的含量进而计算得到·OH的含量为2.8μM,测得湿地出水中难降解有机污染物硝基苯降解率达91.3%、替硝唑降解率达92.2%。
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210133553.9A CN115010207B (en) | 2022-02-14 | 2022-02-14 | Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210133553.9A CN115010207B (en) | 2022-02-14 | 2022-02-14 | Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115010207A CN115010207A (en) | 2022-09-06 |
CN115010207B true CN115010207B (en) | 2023-07-21 |
Family
ID=83067890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210133553.9A Active CN115010207B (en) | 2022-02-14 | 2022-02-14 | Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115010207B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3951797A (en) * | 1975-02-21 | 1976-04-20 | Charles F. Kettering Foundation | Photooxidative destruction of organic wastes |
CN1931740A (en) * | 2006-09-29 | 2007-03-21 | 合肥工业大学 | Mining area acid water treating process in the source |
CN105948270A (en) * | 2016-07-07 | 2016-09-21 | 厦门优九生态科技有限公司 | Ecological remediation method and remediation system for natural water body |
CA3010963A1 (en) * | 2018-07-10 | 2020-01-10 | University Of Ottawa | Methods for removing mercury contaminant from aqueous solutions, and bioreactors therefor |
CN113735397A (en) * | 2021-09-17 | 2021-12-03 | 青岛科技大学 | Method for promoting degradation of perfluorinated compounds by using electron acceptor and application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7297273B2 (en) * | 2005-11-17 | 2007-11-20 | Kon Joo Lee | Method of intensified treatment for the wastewater containing excreta with highly concentrated nitrogen and COD |
-
2022
- 2022-02-14 CN CN202210133553.9A patent/CN115010207B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3951797A (en) * | 1975-02-21 | 1976-04-20 | Charles F. Kettering Foundation | Photooxidative destruction of organic wastes |
CN1931740A (en) * | 2006-09-29 | 2007-03-21 | 合肥工业大学 | Mining area acid water treating process in the source |
CN105948270A (en) * | 2016-07-07 | 2016-09-21 | 厦门优九生态科技有限公司 | Ecological remediation method and remediation system for natural water body |
CA3010963A1 (en) * | 2018-07-10 | 2020-01-10 | University Of Ottawa | Methods for removing mercury contaminant from aqueous solutions, and bioreactors therefor |
CN113735397A (en) * | 2021-09-17 | 2021-12-03 | 青岛科技大学 | Method for promoting degradation of perfluorinated compounds by using electron acceptor and application |
Non-Patent Citations (1)
Title |
---|
"Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition";Marjorie L. Brooks 等;《Hydrobiologia》;第579卷;第95–113页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115010207A (en) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101797496B (en) | Preparation method of inorganic-organic compound-type adsorbent based on clinoptilolite and application for removing Cr(VI) in industrial waste water | |
CN105923961B (en) | A kind of smelly river bottom mud repairing and treating material of urban black and preparation method thereof | |
CN101574652B (en) | Loaded photo-catalyst and preparation method and use thereof | |
CN108993475B (en) | Ternary composite material heterogeneous light Fenton catalyst and preparation and application thereof | |
CN102274716A (en) | Preparing method for compound modified and mineralized rubbish from water treatment materials | |
CN103706368A (en) | Iron-carbon catalytic filler for treating organic mixed exhaust gases and preparation method of filler | |
CN106517705B (en) | Restoration agent for polluted river bottom mud and its preparation method and application | |
CN105688814A (en) | Method for preparing phosphorus-removing adsorbent by utilizing sludge of sewage treatment plant | |
CN101519241A (en) | Method for deoxidizing hexavalent chromium in wastewater by using sludge | |
CN108609714A (en) | A method of removing incretion interferent in water removal using carbon-based magnetic metal composite material catalyzing activation persulfate | |
CN111073653B (en) | A kind of passivator for repairing soil heavy metal Cd pollution and preparation method thereof | |
CN104437389A (en) | Preparation method and application of adsorbent for treating lead-containing waste water | |
CN110484276B (en) | A method and reagent for remediating chromium-contaminated soil by coupling hexavalent chromium-reducing bacteria with nano-iron-based composite materials | |
CN105502556B (en) | A kind of method for handling organic pollutants | |
CN102603050A (en) | Method for preprocessing nitrobenzene-contained waste water by ferrous sulfide | |
CN115430452A (en) | A nitrogen-modified biochar material and its treatment method for organically polluted water | |
CN115010207B (en) | Method for repairing toxic, harmful and refractory organic pollutants in wetland by utilizing copper slag photocatalysis reinforcement | |
CN103224304A (en) | Method for removing nitrogen phosphorus from sludge fermentation liquid to improve organic acid recycling effect | |
CN106807326A (en) | A kind of load Nanoscale Iron bentone adsorbent of efficient removal Cr VI and preparation method thereof | |
CN102963943B (en) | Method for treating nitrobenzene wastewater by natural pyrrhotite | |
CN108479741A (en) | Method for preparing heterogeneous photo-Fenton catalyst from sludge, catalyst and application | |
CN118580862A (en) | Preparation method and application of a soil heavy metal passivator for inhibiting microplastic activation | |
CN101560008B (en) | Method for treating low-concentration phosphorus-containing wastewater | |
CN104624187A (en) | Ag-Ti codoped floating type environment remediation material, preparation method and application of Ag-Ti codoped floating type environment remediation material | |
CN104645990A (en) | Fe and Ti-loaded expanded perlite, preparation method and application of Fe and Ti-loaded expanded perlite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220906 Assignee: SHANGHAI YIKE GREEN ENGINEERING Co.,Ltd. Assignor: Kunming University of Science and Technology Contract record no.: X2024980013352 Denomination of invention: A method for enhancing the remediation of toxic, harmful, and recalcitrant organic pollutants in wetlands using copper mine slag photocatalysis Granted publication date: 20230721 License type: Open License Record date: 20240830 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220906 Assignee: Kunming Weilong Environmental Protection Equipment Manufacturing Co.,Ltd. Assignor: Kunming University of Science and Technology Contract record no.: X2024980021822 Denomination of invention: A method for enhancing the remediation of toxic, harmful, and recalcitrant organic pollutants in wetlands using copper mine slag photocatalysis Granted publication date: 20230721 License type: Open License Record date: 20241031 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220906 Assignee: YUNNAN XING XIAN ENVIRONMENTAL SCIENCE & TECHNOLOGY CO.,LTD. Assignor: Kunming University of Science and Technology Contract record no.: X2024980029992 Denomination of invention: A method for enhancing the remediation of toxic, harmful, and recalcitrant organic pollutants in wetlands using copper mine slag photocatalysis Granted publication date: 20230721 License type: Open License Record date: 20241129 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220906 Assignee: YUNNAN COPPER Co.,Ltd. SOUTHWEST COPPER BRANCH Assignor: Kunming University of Science and Technology Contract record no.: X2024980031087 Denomination of invention: A method for enhancing the remediation of toxic, harmful, and recalcitrant organic pollutants in wetlands using copper mine slag photocatalysis Granted publication date: 20230721 License type: Open License Record date: 20241209 |