CN115006552A - 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用 - Google Patents

基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用 Download PDF

Info

Publication number
CN115006552A
CN115006552A CN202210508250.0A CN202210508250A CN115006552A CN 115006552 A CN115006552 A CN 115006552A CN 202210508250 A CN202210508250 A CN 202210508250A CN 115006552 A CN115006552 A CN 115006552A
Authority
CN
China
Prior art keywords
seq
nucleotide sequences
sequences shown
rap1gds1
miro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210508250.0A
Other languages
English (en)
Other versions
CN115006552B (zh
Inventor
刘磊
熊颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Medical University
Original Assignee
Capital Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Medical University filed Critical Capital Medical University
Priority to CN202210508250.0A priority Critical patent/CN115006552B/zh
Publication of CN115006552A publication Critical patent/CN115006552A/zh
Application granted granted Critical
Publication of CN115006552B publication Critical patent/CN115006552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基因手段在干扰RAP1GDS1与Miro相互作用在制备缓解钙超载及衰老过程中的线粒体功能障碍药物中的应用。本发明采用上述的一种基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用,针对调控线粒体形态及运输的明星分子Miro与辅助蛋白Vimar(Rap1Gds1其哺乳动物同源物)之间的相互作用位点,通过siRNA、病毒(crispr‑cas9‑KO)、小分子物质等来下调Rap1Gds1或者干扰Rap1Gds1与Miro相互作用从而延缓衰老、治疗衰老相关疾病。

Description

基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功 能药物中的应用
技术领域
本发明涉及医药技术领域,尤其是涉及一种基因手段干扰 RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用。
背景技术
目前,线粒体功能障碍是各类神经退行性疾病及衰老的重要原因之一,如何维持在疾病情况下线粒体功能,对于缓解疾病进程及衰老具有重要作用。目前,关于线粒体功能调节的分子的研究筛查中发现 Miro蛋白,锚定在线粒体外膜上参与多种线粒体自身调节过程对于维护线粒体稳态具有重要作用,其基本结构是两个GTPase结构域及其中间的两个EF-hands基序及C端跨膜结构域组成。
对线粒体功能的调控,主要通过以下两类过程:1)调节线粒体在微管微丝上的运动,这对于神经元异常重要,由于神经元具有较长的轴突,且神经元内各区域耗能不均等,因此线粒体的定向运输有利于维持神经元正常的生理功能;2)调节线粒体形态,通过参与线粒体的断裂机制,来调节线粒体形态,线粒体的断裂一方面可以使得线粒体将有害或者无法修复的物质分离出来并且激活线粒体自噬对其进行消化降解;另一方面,在正常情况下,线粒体的轻微断裂有助于稳定细胞内供能状态,当线粒体过度断裂时会导致线粒体氧化呼吸链受损从而导致供能不足,且产生ROS、细胞色素c等物质继而损伤细胞功能甚至导致细胞死亡。Miro参与的线粒体的动力学(运输及形态变化)调控过程的为定进行对于维持线粒体自身健康具有十分重要的意义。
帕金森疾病是目前常见的线粒体障碍导致的疾病,目前也有研究表明,在PD细胞及果蝇、小鼠等模型中改善线粒体功能有助于缓解多巴胺神经元的丢失改善果蝇及小鼠模型的PD症状及病理改变。在近期研究中,发现在对于帕金森疾病患者iPSCs的分析中发现Miro 是PD患者的第三个病理标记物,当使用RNAi敲低机体内Miro时能够挽救帕金森疾病患者iPSCs及PD的动物模型中DA神经元的丢失,为了更好的使此靶点更好的开展临床研究(鉴于RNAi的不稳定性),已经开展对抑制Miro功能的小分子物质的筛选。
针对Miro开发的小分子物质,能够有效的缓解小鼠及果蝇帕金森疾病的相关症状且能够保护多巴胺神经元且易透过血脑屏障在在外周循环内不易被讲解的优势。目前,已知的Miro的小分子物质是针对Miro蛋白上GTPase结构域做出的干扰小分子,但是由于Miro调控线粒体功能不仅仅只有GTPase结构域起作用,EF-hands基序也参与其中,EF-hands基序能够作为钙离子结合点识别线粒体内钙离子浓度,抑制线粒体在微管微丝上的定向运输,且还能调节Miro蛋白与线粒体内膜的单向钙通道MCU蛋白结合使得MCU N-端被水解酶切割诱导钙通道开放导致钙离子大量涌入线粒体内并损伤线粒体功能。因此,找到一个更加功能全面且易操控的位点来调控Miro功能迫在眉睫。
Miro作为小GTPases家族成员,其无法自身主动完成GTP-GDP 的转换,履行其GTPases的功能,在果蝇模型中进行大量的遗传筛选发现Vimar,能够通过调控MiroGTPases功能,从而调节线粒体在轴突上的定向运输,还能够通过调节Miro/MCU通道调节线粒体形态的变化。因此,Vimar可以作为调节Miro功能的最优分子,针对这个靶点对Miro功能进行调节具有更加突出的意义,调整特异性更强。
发明内容
本发明的目的是提供一种基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用。
为实现上述目的,本发明提供了一种基因手段在干扰RAP1GDS1 与Miro相互作用在制备缓解钙超载及衰老过程中的线粒体功能障碍药物中的应用。
优选的,基因手段包括但不限于小分子物质、RNA干扰、基因敲除的方法。
优选的,RNA干扰是小核酸干扰、反义RNA或其它抑制 Rap1Gds1 mRNA转录及蛋白翻译的方法。
优选的,RNA干扰选自以下任一对或任意两对以上的组合:
SEQ ID NO.1和SEQ ID NO.2所示的核苷酸序列;
SEQ ID NO.3和SEQ ID NO.4所示的核苷酸序列;
SEQ ID NO.5和SEQ ID NO.6所示的核苷酸序列;
SEQ ID NO.7和SEQ ID NO.8所示的核苷酸序列;
SEQ ID NO.9和SEQ ID NO.10所示的核苷酸序列;
SEQ ID NO.11和SEQ ID NO.12所示的核苷酸序列;
SEQ ID NO.13和SEQ ID NO.14所示的核苷酸序列;
SEQ ID NO.15和SEQ ID NO.16所示的核苷酸序列;
SEQ ID NO.17和SEQ ID NO.18所示的核苷酸序列;
SEQ ID NO.19和SEQ ID NO.20所示的核苷酸序列;
SEQ ID NO.21和SEQ ID NO.22所示的核苷酸序列;
SEQ ID NO.23和SEQ ID NO.24所示的核苷酸序列;
SEQ ID NO.25和SEQ ID NO.26所示的核苷酸序列;
SEQ ID NO.27和SEQ ID NO.28所示的核苷酸序列;
SEQ ID NO.29和SEQ ID NO.30所示的核苷酸序列;
SEQ ID NO.31和SEQ ID NO.32所示的核苷酸序列。
优选的,小分子物质的氨基酸序列如SEQ ID NO.33所示。
一种实现Rap1Gds1在神经元及肌肉细胞中低表达在制备治疗神经退行性疾病、肌肉萎缩、肌功能障碍药物中的应用,神经退行性疾病包括但不限于帕金森疾病、阿尔茨海默症、老年性痴呆。
因此,本发明采用上述一种基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用,针对调控线粒体形态及运输的明星分子Miro与辅助蛋白Vimar(Rap1Gds1其哺乳动物同源物)之间的相互作用位点,通过siRNA、病毒(crispr-cas9-KO)、小分子物质等来下调Rap1Gds1或者干扰Rap1Gds1与Miro相互作用从而延缓衰老、治疗衰老相关疾病。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1是siRNA敲低Rap1Gds1的凝胶图;
图2是加入siRNA不同时间后挽救线粒体断裂的细胞成像图;
图3是加入siRNA不同时间后挽救线粒体断裂的柱形图;
图4是加入siRNA能够有效抑制钙超载诱导的线粒体钙内流的线形图;
图5是小分子物质的结构图;
图6是Rap1Gds1与Miro相互作用位点序列图;
图7是小分子物质的氨基酸结构图;
图8是小分子物质抑制ionomycin诱导细胞内钙超载导致的线粒体断裂成像图;
图9是不同浓度的小分子物质能够提高ionomycin处理后的细胞的ATP水平示意图;
图10是正常小鼠衰老过程中出现Rap1Gds1与Miro之间相互作用增强的现象示意图;
图11是评分标准示意图;
图12是转基因小鼠敲低Rap1Gds1的效果示意图;
图13是D半乳糖诱导衰老的模型中敲低Rap1Gds1的蛋白水平与小鼠衰老进程的关系示意图。
具体实施方式
以下通过附图和实施例对本发明的技术方案作进一步说明。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的主旨或基本特征的情况下,能够以其它的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其它实施方式。这些其它实施方式也涵盖在本发明的保护范围内。
还应当理解,以上所述的具体实施例仅用于解释本发明,本发明的保护范围并不限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明/发明的保护范围之内。
本发明中使用的“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其它要素的可能。术语“内”、“外”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。在本发明中,除非另有明确的规定和限定,术语“附着”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。本发明中使用的术语“约”具有本领域技术人员公知的含义,优选指该术语所修饰的数值在其±50%,±40%,±30%,±20%,±10%,±5%或±1%范围内。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用词典中定义的术语应当被理解为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非本文有明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作为详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本发明说明书中引用的现有技术文献所公开的内容整体均通过引用并入本发明中,并且因此是本发明公开内容的一部分。
实施例一
siRNA能够挽救钙超载情况下的线粒体断裂
试验方法:根据NCBI检索到的RAP1GDS1序列,并分为4个片段,其核苷酸序列如SEQID NO.34-37所示。
1.培养细胞系U87-MG
完全培养基配方:DMEM+10%胎牛血清+1%青霉素/链霉素
培养条件:37℃,5%CO2细胞培养箱
细胞传代:弃去培养基,使用DMEM清洗一次后加入1ML(10cm 培养皿)0.25%胰酶,当观察到有细胞呈“沙”样脱落时加入2mL完全培养基吹打重悬细胞后将细胞悬浊液转移到5mL离心管, 1000rpm,常温,5min后弃上清加入2mL完全培养基重悬细胞,正常时1:3传代,做转染实验时将细胞悬浊液稀释至25万/mL后加入 29mm confocal培养皿中(1mL),轻轻摇晃皿使细胞均匀分布。
细胞siRNA转染:于转染前8小时将细胞铺好板。
使用辅助转染试剂lipo-8000(碧云天):整个过程中使用的EP管和枪头均为RNAase-free,具体为DMEM(25μL)+siRNA(20pmol) +lipo 8000(0.8μL)轻轻混匀后室温孵育30分钟后均匀加入细胞培养皿中,轻轻混匀细胞培养基,放入37℃,5%CO2细胞培养箱,24小时补液,48小时后进行相关试验。
2.Ionomycin处理后观察线粒体形态
首先使用mito-tracker dsred(Thermo),工作浓度为200nM。孵育细胞30分钟后弃上清使用PBS小心清洗细胞2次后加入无酚红 DMEM 500μL,于莱卡SP8共聚焦显微镜下观察线粒体形态后加入 ionomycin使其工作浓度为7μM,选择好视野点击xyt模式(每1分钟拍照一次持续30分钟)。
3.检测细胞内线粒体钙浓度的变化
检测细胞线粒体内钙离子浓度时使用Rhod-2 AM作为细胞内线粒体钙离子指示剂,具体操作过程如下:于观察试验前一天将细胞铺种于confocal皿中(每孔约25w个细胞),用PBS清洗细胞两次以去除细胞碎片,加入含有5μM Rhod-2 AM的DMEM溶液中(为防止染料酯化故不使用完全培养基),37℃细胞培养箱孵育1小时后,用含有30μg/mL洋地黄皂苷DMEM培养基洗一次,PBS清洗3次后加入无酚红活细胞成像溶液(含有7μM ionomycin)。使用莱卡SP8 共聚焦显微镜获取细胞线粒体钙离子信号图像,激发光波长为552 nm,发射光波长范围为570-590nm,使用Image J软件针对荧光强度进行分析。
结果发现,如图1所示,siRNA分别为SEQ ID NO.1-8所示的4 对siRNA,细胞转染siRNA后敲低Rap1Gds1,其中,图中数字代表 Rap1Gds1蛋白水平的表达量。
如图2、3所示,siRNA能够有效挽救细胞系中加ionomycin诱导细胞内钙超载导致的线粒体断裂现象。
如图4所示,使用siRNA能够有效抑制钙超载诱导的线粒体钙内流现象。
实施例二
小分子物质能够挽救钙超载情况下的线粒体断裂
试验方法:
1.细胞培养及检测线粒体形态
完全培养基配方:DMEM+10%胎牛血清+1%青霉素/链霉素培养条件:37℃,5%CO2细胞培养箱
细胞传代:弃培养基后使用DMEM清洗一次后加入1mL(10cm 培养皿)0.25%胰酶,当观察到有细胞呈“沙”样脱落时加入2mL完全培养基吹打重悬细胞后将细胞悬浊液转移到5mL离心管, 1000rpm,常温,5min后弃上清。加入2mL完全培养基重悬细胞,正常1:3传代,做实验时,将细胞悬浊液稀释至25万/mL后加入29mm confocal培养皿中,轻轻摇晃皿使细胞均匀分布。
8小时候给予细胞细胞相应浓度的小分子物质预处理细胞6小时,使用mito-tracker dsred(Thermo),工作浓度为200nM,孵育细胞 30分钟后弃上清使用PBS小心清洗细胞2次后加入无酚红DMEM 500μL,于莱卡SP8共聚焦显微镜下观察线粒体形态后加入ionomycin 使其工作浓度为7μM,于莱卡SP8共聚焦显微镜下观察线粒体形态。
2.ATP水平的检测
使用Promega公司的ATP检测试剂盒测量组织ATP总含量,其基本操作过程如下:将24孔板内加入等培养基体积ATP检测试剂,在摇床上避光孵育十分钟,使用酶标仪检测荧光强度,荧光强度值代表样本内ATP含量。
3.蛋白间相互作用
取脑皮层中央前回区或海马区,加入500μL裂解液(WB及IP 裂解液+蛋白酶抑制剂)后冰上匀浆1分钟,后转移至干净的1.5mL EP管中冰上裂解30分钟后12000rpm,4℃,15min。小心将上清液转移至新的EP管中,使用BCA法检测蛋白浓度后调整各样本蛋白浓度至2mg/mL。根据试验需要,将样本分成两份,其中一份加入对照IgG(Thermo Fisher)另一份加入Rap1gds1抗体,置于4℃垂直摇床过夜孵育。用PBS清洗蛋白A/G琼脂糖珠子3次,3000rpm 5分钟,然后加入蛋白抗体混合液,置于4℃垂直摇床孵育6小时,使抗体蛋白复合物能够充分吸附在琼脂糖珠子上,低速低温离心混合物,使吸附了蛋白样本的琼脂糖珠子沉淀,转移部分上清至新的1.5mL EP管中,在用裂解液清洗沉淀5次。最后加入100μL 1*SDS上样缓冲液加入沉淀,及在上清管中加入1/3体积的4*SDS上样缓冲液,混匀后 95℃煮沸5分钟,离心收集上清液。通过SDS-PAGE对蛋白样本进行电泳后转膜到PVDF膜上,最后利用抗体识别进行免疫印迹染色进行蛋白定量分析。
如图8所示,小分子物质会能够加ionomycin诱导细胞内钙超载导致的线粒体断裂情况。
如图9所示,使用不同浓度(μM)的小分子物质能够提高ionomycin处理后的细胞的ATP水平,其中Control为正常细胞,0-100 均加入ionomycin处理4小时。
如图10所示,正常小鼠衰老过程中出现Rap1Gds1与Miro之间相互作用增强的现象。图中A表示在正常小鼠衰老过程中Rap1Gds1 蛋白水平随年龄的增加而增加;B图为正常小鼠衰老过程中出现 Rap1Gds1与Miro之间相互作用增强。
实施例三
1.构建D半乳糖诱导小鼠衰老的模型
从第1天到第70天,3个月大的RAP1GDS1杂合子敲除 (MAP2-Cre-ERT2+/-;RAP1GDS1+/-)注射D-半乳糖(100mg/kg iv),一天一次,持续70天;在第20天,加他莫昔芬诱导RAP1GDS1敲除(75mg/kg ip),一天一次,持续7天。
2.筑巢实验
将2克0.5厘米宽度5厘米长度的纸条均匀洒在鼠笼后上面铺满玉米芯垫料,每只鼠笼放一只小鼠,次日观察小鼠筑巢是否完成并且评分。评分标准如图11,其中,当纸条遍布超过笼底1/2记为0分。
3.旷场实验
小鼠置于50厘米*50厘米的方形笼中,先将小鼠放入其中后适应5分钟后,纪录小鼠在笼中的行动轨迹。
4.新物体识别
实验前将小鼠置于50厘米*50厘米的方形笼中适应30分钟后在框中两个位置放两个相同形状的物体待小鼠探索5分钟,连续训练两天后,将其中一个物品更换为新的物品后观察小鼠对新物体探索的此时,其计算公式为:新物体实验时接触B处的次数/(新物体实验时接触B处的次数+老物体训练时接触B处的次数)。
5.ATP水平的检测
使用Promega公司的ATP检测试剂盒测量组织ATP总含量,其基本操作过程如下:将20mg目的样本组织使用200μL WB及IP裂解液匀浆研磨后,转移至干净的中冰上裂解30分钟后4℃4000rpm 15分钟,小心转移上清至新的1.5mL EP管,取100μL到96空白板中加入100μLATP检测试剂,在摇床上避光孵育十分钟,使用酶标仪检测荧光强度,荧光强度值代表样本内ATP含量。
6.柠檬酸合酶活性的检测
取50mg小鼠脑组织加入250μL冰浴的裂解液(WB及IP裂解液,碧云天,P0013)冰上匀浆约2min,4000rpm,4℃,15min,收集上清至新的EP管中,取一部分使用BCA法检测蛋白浓度,在96孔板中加入20μL样本后再70μL工作液(100mM Tris-Hcl、PH 8.0、 100μM DTNB、50μM acetyl coenzyme A、0.1%Triton X-100、250μM Oxaloacetate)迅速混匀后使用酶标仪412nm波长下检测,记录每10 秒的吸光值总记录时间为5分钟,计算斜率再使用蛋白浓度进行定量。
7.vdac1标记线粒体
小鼠使用戊巴比妥钠深度麻醉后,经心尖灌流冰浴生理盐水后迅速取脑,使用OCT包埋后使用异戊烷液氮速冻约40s后将样本保留在-20℃,过夜后使用莱卡冰冻切片机将样本切至8μm厚贴片,然后使用-20℃丙酮打孔加固定5分钟,使用PBS清洗3次 (15min/time),3%双氧水处理10分钟,再次PBS清洗3次 (15min/time),用含5%的驴血清和0.2%BSA的PBST溶液对组织切片进行封闭,1小时后用孵育vdac1(1:250),4℃过夜。回收一抗后,PBST清洗组织3次(15min/time),在孵育荧光二抗(1:1000)室温避光4小时后,使用5μg/mLDAPI室温避光孵育5min后PBST清洗组织3次(15min/time),染色完成后封片,使用莱卡SP8共聚焦显微镜获取图像。
8.高尔基染色
本操作严格按照FD高尔基染色试剂盒说明书操作,禁止使用任何金属器械接触脑样本。具体操作如下:于24小时前避光配置A和 B液混合液体,小心混匀后避光静置;小鼠立即经断颈处死后迅速取出脑组织,将脑组织置于无菌超纯水中使用不带针头的5mL注射器冲洗血迹;用塑料平口镊将脑组织夹起后用滤纸将水吸净;将脑组织置于AB混合液中(一只小鼠脑加10mL混合液);室温避光静置14 天,期间保持绝对静置;用C液置换混合液后避光室温静置24小时后换新C液继续室温避光静置7天;将小鼠脑捞出后滤纸片吸干液体;异戊烷-液氮速冻(无包埋);置于-20℃复温24小时;冰冻切片机将脑组织切150μm后贴片;置于超纯水中清洗10min*2次(清洗时间可以适当延长);置于配好的D E混合液中室温避光10min;将片捞出后置于超纯水中清洗10min*2次(清洗时间可以适当延长);50%-75%-95%-100%乙醇溶液中梯度脱水(各5min);二甲苯透明 10min(时间可能适当延长);中性树胶封片;全自动切片扫描仪收集样本图片,或使用莱卡SP8共聚焦显微镜Z-stack明场收集图片。
9.转棒实验
实验前三天给予小鼠4rpm转速适应训练5分钟/天,实验时给予小鼠一5分钟内4-40rpm加速期间纪录小鼠掉棒时的时间及速度。
10.生存曲线
加入d半乳糖后纪录在一定时间内小鼠死亡的数量及时间。
结果如下:如图12所示,在小鼠中使用flox/loxp方法条件性敲除Rap1Gds1能够有效延缓D-半乳糖诱导的小鼠衰老。其中,数字代表Rap1Gds1蛋白水平的表达量,Tamoxifen为条件性敲除的诱导物质。
如图13所示,A)图中所示为D-半乳糖诱导早衰实验示意图。从第1天到第70天,3个月大的RAP1GDS1杂合子敲除 (MAP2-Cre-ERT2+/-;RAP1GDS1+/-)注射D-半乳糖(100mg/kgiv),一天一次,持续70天;在第20天,加他莫昔芬诱导RAP1GDS1敲除(75mg/kg ip),一天一次,持续7天。在第90天进行衰老相关行为测定。在第120天处死这些动物。
B)降表达Rap1Gds1对小鼠筑巢试验的影响,其中N=6。
C)小鼠在旷场试验中运动轨迹图(左)。旷场实验中小鼠的定量停留在中心区域(右),其中N=6。
D)新的物体识别分析;其中N=6;(E-F)降表达Rap1Gds1对小鼠的转棒试验的影响,基本过程如下:经过三天训练后,开始正式试验,试验条件为:在5分钟内转棒速度从4rpm加速至40rpm,其中N=6。
E)在转棒实验中,小鼠能够达到的最大速度。
F)转棒实验中,小鼠在转棒上坚持的时间。
G)降表达Rap1Gds1对小鼠前额区外分子层神经元形态的影响,使用高尔基染色标记神经元轴突树突,图片经ImageJ处理。(下)图为神经元轴突上树突密度统计图,其中N=6。
H)用VDAC1进行免疫染色以染色前额区外分子层中的线粒体 (左),bar=5μm。线粒体体积大小统计图(右),一只鼠中取20个神经元中线粒体的平均体积大小,将D-半乳糖组小鼠神经元内线粒体大小的平均值定义为1显示了量化结果,然后将其他小鼠线粒体大小与之相比得到相对值,其中N=6。
I)转基因小鼠脑组织中ATP水平的变化,将D-半乳糖处理小鼠脑组织中ATP水平的平均值定义为1,然后将其他各只小鼠脑中ATP 水平与D-半乳糖处理组ATP水平平均值相比得到相对值,其中N=6 (D-半乳糖组)8(D-半乳糖+他莫昔芬处理组)。
J)转基因小鼠脑组织中柠檬酸合酶活性的变化,将D-半乳糖处理小鼠脑组织中柠檬酸合酶活性的平均值定义为1,然后将其他各只小鼠脑中柠檬酸合酶活性与D-半乳糖处理组柠檬酸合酶活性平均值相比得到相对值,其中N=6(D-半乳糖组)8(D-半乳糖+他莫昔芬处理组)。
K)小鼠生存曲线。其中N=9(D-半乳糖组),N=8(D-半乳糖+ 他莫昔芬处理组)。
在细胞实验中证明,敲低及干扰Rap1Gds1与Miro之间的相互作用能够有效抑制线粒体的断裂现象,且能够有效维持线粒体的正常功能。在正常小鼠衰老过程中Rap1Gds1蛋白水平随年龄的增加而增加;且Rap1Gds1与Miro之间相互作用随年龄的增加而增强。
在小鼠中使用D半乳糖诱导衰老的模型中,验证敲低Rap1Gds1 的蛋白水平能够有效的延缓小鼠的衰老进程,因此,可以得出抑制 Rap1Gds1的蛋白水平及干扰Rap1Gds1与Miro之间的相互作用能够有效提高线粒体功能延缓小鼠衰老进程的发展。
因此,本发明采用上述一种基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用,针对Rap1Gds1对Miro 的控制能够有效的延缓衰老进程、提高衰老过程中伴随的神经和肌肉功能障碍的现象,对于新药的研究具有重要意义。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。
序列表
<110> 首都医科大学
<120> 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用
<160> 37
<170> SIPOSequenceListing 1.0
<210> 1
<211> 21
<212> RNA
<213> artificial series
<400> 1
uaucuucagc uucuucaagg u 21
<210> 2
<211> 21
<212> RNA
<213> artificial series
<400> 2
cuugaagaag cugaagauaa c 21
<210> 3
<211> 21
<212> RNA
<213> artificial series
<400> 3
augauguuag cuacuuuggc u 21
<210> 4
<211> 21
<212> RNA
<213> artificial series
<400> 4
ccaaaguagc uaacaucaua g 21
<210> 5
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 5
gcaugcaugu gauguucuat t 21
<210> 6
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 6
uagaacauca caugcaugct t 21
<210> 7
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 7
ccauaaccgu ucucuuguat t 21
<210> 8
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 8
uacaagagaa cgguuauggt t 21
<210> 9
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 9
ccaaugcucu uacucuuuat t 21
<210> 10
<211> 21
<212> DNA/RNA
<213> artificial series
<400> 10
uaaagaguaa gagcauuggt t 21
<210> 11
<211> 21
<212> RNA
<213> artificial series
<400> 11
auuacaucuu uugauuuacu g 21
<210> 12
<211> 21
<212> RNA
<213> artificial series
<400> 12
guaaaucaaa agauguaauu a 21
<210> 13
<211> 21
<212> RNA
<213> artificial series
<400> 13
uuacauguuc acuaguugcc a 21
<210> 14
<211> 21
<212> RNA
<213> artificial series
<400> 14
gcaacuagug aacauguaau a 21
<210> 15
<211> 21
<212> RNA
<213> artificial series
<400> 15
auuacauguu cacuaguugc c 21
<210> 16
<211> 21
<212> RNA
<213> artificial series
<400> 16
caacuaguga acauguaaua a 21
<210> 17
<211> 21
<212> RNA
<213> artificial series
<400> 17
acuucaaaaa ucauuucucu c 21
<210> 18
<211> 21
<212> RNA
<213> artificial series
<400> 18
gagaaaugau uuuugaaguu c 21
<210> 19
<211> 21
<212> RNA
<213> artificial series
<400> 19
ugaacaaucu cuaguagaca c 21
<210> 20
<211> 21
<212> RNA
<213> artificial series
<400> 20
gucuacuaga gauuguucag c 21
<210> 21
<211> 21
<212> RNA
<213> artificial series
<400> 21
aucuucuuug ucacuaucca c 21
<210> 22
<211> 21
<212> RNA
<213> artificial series
<400> 22
ggauagugac aaagaagaug a 21
<210> 23
<211> 21
<212> RNA
<213> artificial series
<400> 23
ucuuaucaug uucuauuugu u 21
<210> 24
<211> 21
<212> RNA
<213> artificial series
<400> 24
caaauagaac augauaagag a 21
<210> 25
<211> 21
<212> RNA
<213> artificial series
<400> 25
uaugaauaca auuugcauca u 21
<210> 26
<211> 21
<212> RNA
<213> artificial series
<400> 26
gaugcaaauu guauucauau g 21
<210> 27
<211> 21
<212> RNA
<213> artificial series
<400> 27
uuacauuucc aucuucuaca u 21
<210> 28
<211> 21
<212> RNA
<213> artificial series
<400> 28
guagaagaug gaaauguaac a 21
<210> 29
<211> 21
<212> RNA
<213> artificial series
<400> 29
acuaacuuaa cauucuuucc c 21
<210> 30
<211> 21
<212> RNA
<213> artificial series
<400> 30
gaaagaaugu uaaguuagug g 21
<210> 31
<211> 21
<212> RNA
<213> artificial series
<400> 31
auucucauug cuauaguuca u 21
<210> 32
<211> 21
<212> RNA
<213> artificial series
<400> 32
gaacuauagc aaugagaaug a 21
<210> 33
<211> 22
<212> PRT
<213> artificial series
<400> 33
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Arg Lys His
1 5 10 15
Ile Ser Asp Gly Val Ala
20
<210> 34
<211> 348
<212> DNA
<213> Rap1Gds1
<400> 34
actgccaaaa tgcagctctt acagaaatgt gtcttgttgc atttggtaat ttagcagaac 60
ttgagtcaag taaagaacag tttgccagta caaacattgc tgaagagcta gtaaaactct 120
tcaagaaaca aatagaacat gataagagag aaatgatttt tgaagttctt gctccattgg 180
cagaaaatga tgctattaaa ctacagctgg ttgaagcagg cctagtagag tgtctactag 240
agattgttca gcaaaaagtg gatagtgaca aagaagatga tattactgag ctcaaaactg 300
gttcagatct catggtttta ttacttcttg gagatgaatc catgcaga 348
<210> 35
<211> 354
<212> DNA
<213> Rap1Gds1
<400> 35
ggcatcaagc atctagttac catggcaact agtgaacatg taataatgca gaatgaagct 60
cttgttgctt tggcattaat agcagcttta gaattgggca ctgctgagaa agatctagaa 120
agtgctaaac ttgtacagat tttacataga ctgctagcag atgagagaag tgctcctgaa 180
atcaaatata attccatggt cctgatatgt gctcttatgg gatctgaatg tctacacaag 240
gaagtacagg atttggcttt tctagatgtc gtatccaaac ttcgcagtca tgagaacaaa 300
agtgttgccc agcaggcctc tctcacagag cagagactta ctgtggaaag ctga 354
<210> 36
<211> 420
<212> DNA
<213> Rap1Gds1
<400> 36
atggataatc tcagtgatac cttgaagaag ctgaagataa cagctgttga caagactgag 60
gatagtttag aaggatgctt ggattgtctg cttcaagccc tggctcaaaa taatacggaa 120
acaagtgaaa aaatccaagc aagtggaata cttcagctgt ttgcaagtct gttgactcca 180
cagtcttcct gcaaagccaa agtagctaac atcatagcag aagtagccaa aaatgagttt 240
atgcgaattc catgtgtgga tgctggattg atttcaccac tggtgcagct gctaaatagc 300
aaagaccagg aagtgctgct tcaaacgggc agggctctag gaaacatatg ttacgatagc 360
catgagggca gaagtgcagt tgaccaagca ggtggtgcac agattgtaat tgaccattta 420
<210> 37
<211> 420
<212> DNA
<213> Rap1Gds1
<400> 37
aatccatgca gaagttattt gaaggaggaa aaggtagtgt atttcaaagg gtactctctt 60
ggatcccatc aaataaccac cagctacagc ttgctggagc attggcaatt gcaaattttg 120
ccagaaatga tgcaaattgt attcatatgg tagacaatgg gattgtagaa aaacttatgg 180
atttactgga cagacatgta gaagatggaa atgtaacagt acagcatgca gcactaagtg 240
ccctcagaaa cctggccatt ccagttataa ataaagcaaa gatgttatca gctggggtca 300
cagaggcagt tttgaaattt cttaaatctg aaatgcctcc tgttcagttc aaacttctgg 360
gaacattaag aatgttaata gatgcacaag cagaagctgc tgaacaattg ggaaagaatg 420

Claims (6)

1.一种基因手段在干扰RAP1GDS1与Miro相互作用在制备缓解钙超载及衰老过程中的线粒体功能障碍药物中的应用。
2.根据权利要求1所述的基因手段,其特征在于:基因手段包括但不限于小分子物质、RNA干扰、基因敲除的方法。
3.根据权利要求2所述的RNA干扰,其特征在于:RNA干扰是小核酸干扰、反义RNA或其它抑制Rap1Gds1 mRNA转录及蛋白翻译的方法。
4.根据权利要求3所述的RNA干扰,其特征在于,RNA干扰选自以下任一对或任意两对以上的组合:
SEQ ID NO.1和SEQ ID NO.2所示的核苷酸序列;
SEQ ID NO.3和SEQ ID NO.4所示的核苷酸序列;
SEQ ID NO.5和SEQ ID NO.6所示的核苷酸序列;
SEQ ID NO.7和SEQ ID NO.8所示的核苷酸序列;
SEQ ID NO.9和SEQ ID NO.10所示的核苷酸序列;
SEQ ID NO.11和SEQ ID NO.12所示的核苷酸序列;
SEQ ID NO.13和SEQ ID NO.14所示的核苷酸序列;
SEQ ID NO.15和SEQ ID NO.16所示的核苷酸序列;
SEQ ID NO.17和SEQ ID NO.18所示的核苷酸序列;
SEQ ID NO.19和SEQ ID NO.20所示的核苷酸序列;
SEQ ID NO.21和SEQ ID NO.22所示的核苷酸序列;
SEQ ID NO.23和SEQ ID NO.24所示的核苷酸序列;
SEQ ID NO.25和SEQ ID NO.26所示的核苷酸序列;
SEQ ID NO.27和SEQ ID NO.28所示的核苷酸序列;
SEQ ID NO.29和SEQ ID NO.30所示的核苷酸序列;
SEQ ID NO.31和SEQ ID NO.32所示的核苷酸序列。
5.根据权利要求2所述的小分子物质,其特征在于:小分子物质的氨基酸序列如SEQ IDNO.33所示。
6.一种实现Rap1Gds1在神经元及肌肉细胞中低表达在制备治疗神经退行性疾病、肌肉萎缩、肌功能障碍药物中的应用,神经退行性疾病包括但不限于帕金森疾病、阿尔茨海默症、老年性痴呆。
CN202210508250.0A 2022-05-10 2022-05-10 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用 Active CN115006552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210508250.0A CN115006552B (zh) 2022-05-10 2022-05-10 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210508250.0A CN115006552B (zh) 2022-05-10 2022-05-10 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用

Publications (2)

Publication Number Publication Date
CN115006552A true CN115006552A (zh) 2022-09-06
CN115006552B CN115006552B (zh) 2023-10-27

Family

ID=83068275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210508250.0A Active CN115006552B (zh) 2022-05-10 2022-05-10 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用

Country Status (1)

Country Link
CN (1) CN115006552B (zh)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAURA KAY等: "Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders", MOLECULAR NEUROBIOLOGY, vol. 55, pages 7352, XP036561057, DOI: 10.1007/s12035-018-0927-x *
LIANGGONG DING等: "Vimar Is a Novel Regulator of Mitochondrial Fission through Miro", PLOS GENETICS, vol. 12, no. 10, pages 1 - 21 *

Also Published As

Publication number Publication date
CN115006552B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US9611465B2 (en) Pharmaceutical composition containing core factor involved in proliferation and differentiation of central nervous cell
Ma et al. Dual branch-promoting and branch-repelling actions of Slit/Robo signaling on peripheral and central branches of developing sensory axons
Wei et al. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents
CN110430899A (zh) 光感受灵敏度的抑制或减弱剂
CN115006552A (zh) 基因手段干扰RAP1GDS1、Miro在制备缓解钙超载及线粒体功能药物中的应用
Nuñez Rodriguez et al. Characterization of R-ras3/m-ras null mice reveals a potential role in trophic factor signaling
Davis et al. The rax homeobox gene is mutated in the eyeless axolotl, Ambystoma mexicanum
GB2411403A (en) Transgenic animals with altered NCS-1 expression
Neufeld Chapter Thirty‐Six Genetic Manipulation and Monitoring of Autophagy in Drosophila
Sanchez et al. Proximity labeling at non-centrosomal microtubule-organizing centers reveals VAB-10B and WDR-62 as distinct microtubule regulators
Lyu et al. Deficiency of FRMD5 results in neurodevelopmental dysfunction and autistic-like behavior in mice
Zheng et al. KIF2C regulates synaptic plasticity and cognition by mediating dynamic microtubule invasion of dendritic spines
Ali Mef2c transcription factor is required for the development of medium spiny neurons of the mouse striatum
Havrilak et al. Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis
CN108495928A (zh) 用于从细胞获得指示剂信号的方法
Eguchi et al. Monitoring Autophagic Activity In Vitro and In Vivo Using the GFP-LC3-RFP-LC3ΔG Probe
Ali Role of Neuroligin-2 and its Interacting Inhibitory Synapse Organizers in the Circuits of Fear Learning and Anxiety
Loganathan Unraveling the cell type-specific effects and mechanisms of cross-disorder risk gene CACNA1C
Lusk et al. Increased Netrin downstream of overactive Hedgehog signaling disrupts optic fissure formation
Shumate Functional outcomes of Cadps A-to-I RNA editing in the nervous and endocrine systems
Khursheed Development of a chick embryo model to study important regulatory domains of human genes implicated in Motor Neurone Disease
Bone Environmental and Genetic Factors That Alter Embryonic Laterality and Development in C. elegans
Lamoureux Current research in animal physiology
Saunders Regulation of Neuronal Microtubule Function by Acetylation and Acetyltransferases
CN118120703A (zh) 一种rb1突变体在神经退行性疾病中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant