CN115004860A - 动态调节的微led像素阵列 - Google Patents

动态调节的微led像素阵列 Download PDF

Info

Publication number
CN115004860A
CN115004860A CN202080094818.8A CN202080094818A CN115004860A CN 115004860 A CN115004860 A CN 115004860A CN 202080094818 A CN202080094818 A CN 202080094818A CN 115004860 A CN115004860 A CN 115004860A
Authority
CN
China
Prior art keywords
led
pixel
array
current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080094818.8A
Other languages
English (en)
Inventor
R·J·邦内
宋志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Lumileds LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumileds LLC filed Critical Lumileds LLC
Publication of CN115004860A publication Critical patent/CN115004860A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/10Automotive applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Led Devices (AREA)

Abstract

一种照明系统,包括具有多个LED像素的LED阵列和电力控制器。电力控制器基于LED阵列的一个或多个条件来调整用于向LED像素供电的供电电压。电力控制器可以基于LED阵列的工艺数据来确定供电电压。电力控制器可以基于LED像素的操作温度和驱动LED像素的电流的幅度来调整供电电压。

Description

动态调节的微LED像素阵列
相关申请的交叉引用
本申请要求2019年11月27日提交的美国临时申请第62/941123号的权益和优先权,其公开内容出于所有目的通过引用以其全部内容在此并入本文。
技术领域
本公开总体上涉及微LED像素阵列中动态电源的使用和控制。
背景技术
当前正在开发用于照明和显示应用的微发光二极管(微LED)阵列。微LED控制系统可以支持数千至数百万个微型LED像素的阵列,这些像素主动发射光并且被单独控制。如与背光LED技术相比,微LED阵列可以具有更高的亮度和能效,从而使其对各种应用(诸如电视、汽车前照灯、移动电话、住宅照明、商业照明或建筑照明)具有吸引力。为了显示图像,可以根据特定的图像、光强度或颜色配置文件(profile)来单独调整阵列上不同位置处的微LED像素的电流电平。
微LED照明系统可以包括具有n个LED像素的LED阵列矩阵,每个LED像素具有串联或并联的一个或多个LED。为了显示图像,调整阵列矩阵上不同位置处的单独的微LED像素的电流电平。LED控制系统可以使用脉宽调制(PWM)控制来进行调光和颜色调节功能。PWM控制的工作原理是以一定的频率开启和关断像素,实际上是调整导通时间和周期或循环时间之间的比率(也称为占空比)。通过像素的平均DC电流是电流幅度和占空比的乘积。
在传统的基于PWM的成像技术中,系统控制单元基于接收的图像来确定每个像素的占空比值。对于给定图像的所有像素,电流幅度可以保持相同,但是电流幅度可以在不同图像之间变化。因此,单独的占空比设置图像的模式,并且电流幅度是常数或集体变量(collective variable)以调整整个阵列的亮度,从而提供全局调光。
附图说明
图1是根据本公开的一些实施例的包括微LED组件的示例车辆头灯系统的框图;
图2图示了根据本公开的一些实施例的示例微LED组件和电源系统;
图3图示了根据本公开的一些实施例的微LED组件和电源系统的替代布置;
图4是图示根据本公开的一些实施例的两个示例性像素组件的框图;
图5是图示正向电流和正向电压之间的示例关系的图;以及
图6图示了根据本公开的一些实施例的用于动态调整LED阵列的电源的过程。
具体实施方式
概述
本公开的系统、方法和设备各有多个创新方面,其中没有一个方面单独负责本文公开的所有合期望的属性。本说明书中描述的主题的一个或多个实施方式的细节在以下描述和附图中被阐述。
出于说明本文描述的LED像素组件的目的,理解可能在具有PWM控制的微LED组件中起作用的现象可能是有用的。以下基本信息可以被视为可以适当解释本公开的基础。这样的信息仅仅是出于解释的目的而提供的,并且因此,不应该以任何方式被解释为限制本公开及其潜在应用的范围。
使用PWM控制的现有微LED阵列通常在每个像素中包括微LED、PWM开关和用作微LED的电流源的晶体管。该晶体管在其栅极处接收电流信号;电流信号用于设置微LED的电流幅度。微LED接收用于向微LED供电的固定的供电电压。在典型的PWM控制的微LED阵列中,所有微LED接收相同的电流控制信号,并且所有微LED接收相同的供电电压。供电电压通常是固定的。
然而,在操作中,微LED阵列所需的最小供电电压不是常数。代替地,它是微LED阵列的工艺扩展(process spread)的函数,例如,由生产中的变化引起的LED正向电压和电流源电压的工艺扩展。另外,LED正向电压基于温度而变化。此外,如果使用不同的电流源幅度,则LED正向电压和电流源电压也基于所选择的电流源幅度而变化。为了覆盖LED阵列和操作条件之间的所有变化,在现有的微LED阵列中,供电电压被设置在最差情况条件下的最大值,以保证操作。然而,使用高于特定操作条件实际所需的过高供电电压,需要电流源开关以损耗的形式吸收额外的电压。这些损耗降低了系统能效并且还可能导致过热或其他热问题。
本公开的实施例提供了可变电源和电源的动态控制。电源控制块检索描述LED阵列的正向电压特性和LED阵列的操作条件的条件数据(例如,温度和电流幅度)。可以在生产期间测试LED阵列,以获得描述LED正向电压和/或电流源电压的工艺扩展数据(诸如在一组基线测试条件下的最小供电电压)。工艺扩展数据可以进一步包括描述最小供电电压如何基于电流和/或温度变化的数据。电源控制块接收实时操作条件数据并且基于操作条件确定特定于LED阵列的供电电压。当操作条件随时间变化时,电源控制块动态地调整由电源提供给LED阵列的供电电压。这提高了LED阵列的效率,并且避免了由过度的电力损耗带来的LED阵列中的热问题。
在一方面中,照明系统包括LED阵列和控制块。LED阵列包括多个LED像素,每个LED像素被布置成从产生动态可调供电电压的电源接收供电电压。LED阵列进一步包括至少一个电流源以驱动多个LED。控制块被配置为耦合到电源以及基于LED阵列的至少一个条件来调整由电源产生的供电电压。
在另一方面中,用于设置LED阵列的供电电压的方法包括:接收描述包括多个LED像素的LED阵列的操作条件的操作条件数据;检索与LED阵列相关联的工艺数据(processdata),该工艺数据描述至少一种操作条件下的多个LED像素的正向电压;以及基于操作条件数据和工艺数据来确定向LED阵列供电的供电电压。
在又一方面中,LED阵列包括布置在矩阵中的多个LED像素和用于感测LED阵列的温度的至少一个温度传感器。每个LED像素包括耦合到供电电压的至少一个LED、以具有电流幅度的操作电流驱动该至少一个LED的电流源、以及用操作电流交替地驱动该至少一个LED的PWM开关。该至少一个温度传感器位于多个LED像素中的至少一个附近。
如本领域技术人员将领会的,本公开的诸方面、特别是本文描述的具有动态调节的电源的微LED像素阵列的诸方面,可以以各种方式——例如,作为方法、系统、计算机程序产品或计算机可读存储介质——被实施。因此,本公开的诸方面可以采取完全硬件实施例、完全软件实施例(包括固件、驻留软件、微代码、电路设计等)、或结合软件和硬件方面的实施例的形式,这些形式在本文中通常都可以被称为“电路”、“模块”或“系统”。本公开中描述的功能可以实现为由一个或多个计算机的一个或多个硬件处理单元(例如,一个或多个微处理器)执行的算法。在各种实施例中,本文描述的每个方法的不同步骤和步骤的部分可以由不同的处理单元来执行。此外,本公开的诸方面可以采取体现在一个或多个计算机可读介质(优选为非暂时性的)中的计算机程序产品的形式,其上体现(例如,存储)有计算机可读程序代码。在各种实施例中,这样的计算机程序可以例如被下载(更新)到现有的设备和系统,或者在制造这些设备和系统时被存储。
在以下详细描述中,可以使用本领域技术人员向本领域其他技术人员传达其工作实质时普遍采用的术语来描述说明性实施方案的各个方面。例如,术语“连接”意味着被连接的事物之间的直接电连接或磁连接,无需任何中间设备,而术语“耦合”意味着被连接的事物之间的直接电连接或磁连接,或通过一个或多个无源或有源中间设备的间接连接。术语“电路”意味着一个或多个无源和/或有源部件,它们被布置成相互协作以提供期望的功能。术语“基本上”、“靠近”、“近似”、“接近”和“大约”通常指代基于本文描述或本领域已知的特定值的上下文,在目标值的+/- 20%之内,优选在+/- 10%之内。类似地,指示各种元件的取向的术语(例如,“共面”、“垂直”、“正交”、“平行”或元件之间的任何其他角度)通常指代基于本文描述或本领域已知的特定值的上下文,在目标值的+/- 5-20%之内。
本文使用的术语(诸如“上方”、“下方”、“之间”和“上”)指代一种材料层或部件相对于其他层或部件的相对位置。例如,设置在另一层上方或下方的一层可以直接与该另一层接触,或者可以具有一个或多个中间层。此外,设置在两层之间的一层可以与两层中的一层或两层直接接触,或者可以具有一个或多个中间层。相反,被描述为在第二层“上”的第一层指代与该第二层直接接触的层。类似地,除非明确另有声明,否则设置在两个特征之间的一个特征可以与相邻特征直接接触,或者可以具有一个或多个中间层。
出于本公开的目的,短语“A和/或B”意味着(A)、(B)或(A和B)。出于本公开的目的,短语“A、B和/或C”意味着(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或(A、B和C)。当涉及测量范围使用时,术语“之间”包括测量范围的端部。如本文所使用的,符号“A/B/C”表示(A)、(B)和/或(C)。
本说明书使用短语“在一个实施例中”或“在实施例中”,它们各自可以指代相同或不同的实施例中的一个或多个。此外,关于本公开的实施例所使用的术语“包括”、“包含”、“具有”等是同义的。本公开可以使用基于透视的描述,诸如“上面”、“下面”、“顶部”、“底部”和“侧面”;这样的描述用于促进讨论,而不旨在限制所公开的实施例的应用。除非另有说明,否则顺序形容词“第一”、“第二”和“第三”等的使用描述共同的对象,仅仅指示相同对象的不同实例被引用,并且不旨在暗示如此描述的对象必须在时间上、空间上、排序上或以任何其他方式处于给定的顺序。
在以下详细描述中,参考了形成该描述一部分的附图,附图通过图示方式示出了可以实践的一些实施例。在附图中,相同的附图标记指代相同或类似的元件/材料,使得除非另有说明,否则在附图之一的上下文中提供的具有给定附图标记的元件/材料的解释可适用于其他附图(其中可以图示具有相同附图标记的元件/材料)。为了方便起见,如果存在用不同字母指定的附图集合,例如图2A-2C,则在本文中可以不用字母来指代这样的集合(例如,“图2”)。附图不必按比例绘制。此外,将理解,某些实施例可以包括比附图中图示的更多的元件,某些实施例可以包括附图中图示的元件的子集,并且某些实施例可以结合来自两个或更多个附图的特征的任何合适的组合。
各种操作可以以最有助于理解所要求保护的主题的方式依次描述为多个离散的动作或操作。然而,描述的顺序不应被解释为暗示这些操作一定是依赖于顺序的。特别地,可以不以呈现的顺序来执行这些操作。所描述的操作可以以与所描述的实施例不同的顺序来执行。在附加实施例中,可以执行各种附加操作,和/或可以省略所描述的操作。
在本文提供的一些示例中,可以依据两个、三个、四个或更多个电气部件来描述相互作用。然而,这样做仅仅是出于清楚和示例的目的。应当领会,本文描述的设备和系统可以以任何合适的方式合并。沿着类似的设计替代方案,附图中图示的部件、模块和元件中的任何一个可以以各种可能的配置进行组合,所有这些显然都在本公开的广泛范围内。在某些情况下,通过仅引用有限数量的电气元件来描述一组给定流程的一个或多个功能可能更容易。
以下详细描述呈现了特定的某些实施例的各种描述。然而,应当理解,可以利用其他实施例,并且可以在不脱离本公开的范围的情况下进行结构或逻辑的改变。一般而言,本文描述的创新可以以多种不同的方式来体现,例如,如权利要求和/或选定示例所限定和覆盖的,并且以下详细描述不应被理解为限制性意义。
微LED阵列的示例系统
微LED阵列支持受益于光分布的精细的(fine-grained)强度、空间和时间控制的应用。例如,微LED阵列可以提供来自像素块或单独的像素的发射光的精确空间图案化。取决于应用,发射的光可以在光谱上不相同、随时间自适应的、和/或环境响应的。微LED阵列可以以各种强度、空间或时间模式提供预编程的光分布。发射的光可以至少部分基于接收的传感器数据。相关联的光学器件在像素、像素块或器件级别上可以是不同的。示例微型LED阵列包括具有高强度像素和边缘像素的共同控制的中心块的设备,该高强度像素具有相关联的公共光学器件,该边缘像素具有单独的光学器件。微LED阵列支持的一些应用包括视频照明、汽车前照灯、建筑和区域照明、街道照明和信息显示。
车辆头灯或前照灯是微LED阵列的一个示例应用。由微LED组成的车辆头灯包括大量像素并且具有高数据刷新率。仅主动照亮道路的选定部分的汽车前照灯可以用于减少与迎面而来的驾驶员的眩光或眩目相关联的问题。例如,使用红外摄影机作为传感器,微LED阵列可以仅激活照亮道路所需的那些像素,而去激活可能使行人或迎面而来的车辆的驾驶员眩目的像素。作为另一示例,微LED阵列可以用于选择性地照亮道路外的行人、动物或标志以提高驾驶员的环境意识。如果微LED阵列的像素在光谱上不相同,则可以根据相应的白天、黄昏或夜晚条件来调整光的色温。一些像素可以用于光学无线车辆到车辆通信。
图1是包括微LED组件的示例车辆头灯系统100的框图。车辆头灯系统100包括电子控制单元(ECU)110和头灯130。尽管图1中示出了一个头灯130,但是应当理解,车辆包括两个或更多个类似于头灯130的头灯;其他头灯类似于头灯130并且以类似的方式操作。此外,其他车灯(例如,行车灯、雾灯等)可以以类似于图1描绘的头灯130的方式进行配置和操作。
ECU 110是车辆内的嵌入式系统,其控制车辆的电气系统或子系统(包括头灯130)。除了控制头灯之外,ECU 110可以包括例如对发动机部件、动力系统部件、门、制动器、远程信息处理(telematics)、电池管理等的控制。ECU 110可以位于发动机舱内或发动机舱附近。ECU 110例如从ECU 110可访问的存储器接收图像数据105,该存储器存储在不同设置或应用中使用的不同头灯图像。ECU 110的车辆微处理器115可以为头灯130产生或选择图像。例如,车辆微处理器115从一个或多个环境传感器接收数据,基于所感测的环境为头灯130选择图像,并且为所选择的图像检索图像数据105。车辆微处理器115基于所选择的图像产生用于头灯130的控制信号,并且将控制信号传输到序列化器120。序列化器120对控制信号进行串行化并且通过串行连接(诸如非屏蔽双绞线(UTP)或同轴连接)传输它们。序列化器120可以将控制信号转换成低电压差分信号(LVDS)格式。选择ECU 110和头灯130之间的物理连接和数据格式,使得控制信号可靠地通过车辆传输,该车辆可能经历大范围的温度变化、潮湿、噪音和其他不利条件。
头灯130包括反序列化器135,反序列化器135将控制信号重新格式化并且将控制信号传输至微LED组件155。例如,提供给微LED组件155的控制信号可以包括垂直同步信号、像素时钟、像素使能信号和多条像素数据线。微LED组件155根据控制信号输出图像。在图2和图3中更详细地示出了微LED组件155,并且在图4中示出了示例像素组件。
头灯130还包括头灯微处理器140、DC/DC转换器145和电源150。反序列化器135向头灯微处理器140提供控制信号,并且可以从头灯微处理器140接收反馈(例如,错误信息)以返回到ECU 110。在该布置中,头灯微处理器140控制电源150,电源150经由一条输出线向DC/DC转换器145供电,并且经由第二条输出线向微LED组件155供电。由电源150供应给微LED组件155的电压(称为VLED 160)用于向LED像素供电。发送到DC/DC转换器的电压用于向头灯130的内部逻辑(例如,头灯微处理器140和微LED组件155的内部逻辑)供电。DC/DC转换器145将从电源接收的直流(DC)信号转换成(用于向头灯微处理器140和微LED组件155逻辑供电的)不同的电压。DC/DC转换器145将转换后的DC电压分配给头灯微处理器140和微LED组件155。头灯微处理器140还具有到微LED组件155的接口,例如,用于交换数据、提供时钟控制、以及在故障的情况下从微LED组件155接收故障数据。
应当理解,车辆头灯系统100仅是微LED阵列的一个示例应用。在另一应用中,在照明装置中使用微LED组件155来选择性地和自适应地照亮建筑物或环境,以改善视觉显示或降低照明成本。例如,与跟踪传感器和/或摄影机结合,微LED阵列可以用于选择性地照亮行人周围的区域。作为另一示例应用,微LED阵列用于投影媒体立面(media facade)以用于装饰性运动或视频效果。在光谱上不相同的像素可以用于调整照明的色温,以及支持特定波长的园艺照明。
街道照明是受益于使用微LED阵列的另一示例应用。单一类型的发光阵列可以用于模拟各种路灯类型,例如,通过适当激活或去激活选定的像素,允许在I型线性路灯和IV型半圆形路灯之间切换。通过根据环境条件或使用时间来调整光束强度或分布,可以降低街道照明成本。例如,当不存在行人时,光强度和分布区域可能会减小。如果微LED阵列的像素在光谱上不相同,则可以根据相应的白天、黄昏或夜晚条件来调整光的色温。
微LED阵列也非常适合于支持需要直接显示或投影显示的应用。例如,警告、紧急情况或信息标志都可以使用微LED阵列来显示或投影。例如,这允许投影变色或闪烁的出口标志。如果微LED阵列由大量像素组成,则可以呈现文本或数字信息。也可以提供方向箭头或类似的指示符。
微LED阵列可以被单独使用,或者与初级或次级光学器件(包括透镜或反射器)结合使用。为了降低总体数据管理要求,可以将微LED阵列中的一些或所有像素限制为开/关功能或在相对较少的光强度级别之间切换。不必支持光强度的全像素级控制。
在操作中,(对应于微LED阵列中的像素的)图像数据用于定义微LED阵列中对应像素的响应,其中像素的强度和空间调制基于(多个)图像。为了减少数据速率问题,在一些实施例中,像素组(例如,5×5块)可以作为单个块而被控制。可以支持高速和高数据速率操作,其中来自连续图像的像素值能够以例如在30 Hz和100 Hz之间的速率(例如,以60 Hz的速率)作为图像序列中的连续帧被加载。结合脉宽调制模块,像素模块中的每个像素可以被操作来以至少部分取决于图像帧缓冲器中保存的图像的模式和强度发射光。
示例微LED组件和电源系统
图2图示了根据本公开的一些实施例的微LED组件155和电源系统的示例。电源系统包括电源150和电力控制器280,电力控制器280是设置由电源150供应给微LED组件155的电压VLED 160以向微LED供电的控制块。微LED组件155和电源系统可以用于车辆头灯应用、上述任何其他应用、或LED阵列的其他潜在应用。微LED组件155、电源150和电力控制器280可以具有与图2所示的布置不同的布置。在一些实施例中,电力控制器280被集成到微LED组件155中,例如集成到微LED控制器210中。在一些实施例中,电力控制器280被集成到电源150中。在一些实施例中,电力控制器280是图1所示的头灯微处理器140的部件。在一些实施例中,微LED组件155具有集成的电源,并且电源150和电力控制器280都被包括在微LED组件155中。在一些实施例中,存储器240位于微LED组件155的外部(例如,在电力控制器280中)。
微LED组件155包括微LED控制器210的块和像素阵列260。微LED控制器210包括脉宽调制器220、电流控制器230和存储器240。像素阵列260包括布置在矩阵中的像素组件265(例如,像素组件265a和265b)。每个像素组件265主动发射光,并且可以由微LED控制器210单独控制。尽管图2中示出了25个示例像素组件265,但是像素阵列260可以包括数千到数百万个微型LED像素组件。为了以(导致图像显示的)图案或顺序发射光,根据特定图像单独调整阵列上不同位置处的像素组件265中的微LED的电流电平。这可以使用脉宽调制(PWM)来完成,它以特定的频率开启和关断像素。在PWM操作期间,通过像素的平均DC电流是电流幅度和PWM占空比的乘积,PWM占空比是导通时间和周期或循环时间之间的比率。
脉宽调制器220产生输出至像素阵列260的PWM信号225,以控制像素的PWM占空比。在一些实施例中,脉宽调制器220为像素阵列260中的每个像素产生单独的PWM信号225。在其他实施例中,一个PWM信号可以控制多个像素(例如,像素阵列260中的特定像素子集)。在关于图1描述的车辆头灯示例中,脉宽调制器220从反序列化器135接收图像控制信号并且基于图像控制信号产生PWM信号225。在其他实施例中,微LED组件155内或另一系统中的另一控制块可以产生被馈送到脉宽调制器220的图像数据。
电流控制器230产生提供给像素阵列260的电流信号235。更特别地,电流信号235被提供给每个像素组件265内的电流源,该电流源为每个像素组件265内的微LED产生正向电流。尽管每个像素组件265接收唯一的PWM信号225,但是整个像素阵列260或者像素阵列260内的多个像素组件265的块可以接收相同的电流信号235,从而跨像素阵列260或者跨像素组件265的给定块设置相同的正向电流。电流控制器230从反序列化器135(在车辆头灯示例中)或另一数字控制接口(例如,内部集成电路(I2C)接口)接收指示电流电平的控制信号。像素组件265中的微LED基于电流信号235和PWM信号225发射光。参考图4更详细地描述了像素结构和操作。
存储器240存储由电力控制器280检索的工艺数据245。工艺数据245描述了在一种或多种操作条件下开启像素组件265所需的供电电压。基于制造差异,工艺数据245可以从一个像素阵列260到另一像素阵列进行变化。特别地,基于微LED的正向电压的工艺扩展和跨像素组件265中的其他电路元件的电压降(例如,跨每个像素组件265中的电流源的电压)的工艺扩展,最小供电电压从一个阵列到另一阵列进行变化。在制造像素组件265之后,可以执行测试程序来确定像素阵列260的工艺数据245,并且该工艺数据245被存储在存储器240中。存储器240可以是在制造过程期间被编程的非易失性存储器。
最小所需供电电压不仅在不同像素阵列之间变化,而且在给定像素阵列的不同操作条件之间变化。最小所需供电电压是多个变量(诸如像素阵列260的电流源的幅度和像素阵列260的温度)的函数。特别地,像素组件265中的微LED的温度变化影响LED正向电压,并且电流幅度的变化影响LED正向电压和电流源电压两者。图5示出了显示LED正向电流、LED正向电压和温度之间的关系的示例曲线。
工艺数据245可以从生产测试中获得,该生产测试确定操作条件的一组基线(例如,25℃的LED温度和4 mA的电流幅度)的最小供电电压。在一些实施例中,工艺数据245描述了在各种不同操作条件下的最小所需供电电压。例如,工艺数据245可以包括温度和电流幅度的不同组合(例如最大和最小电流幅度以及最大和最小操作温度)的供电电压级别。在一些示例中,工艺数据245包括用于基于温度和/或电流幅度计算供电电压VLED 160的一个或多个公式。在其他实施例中,假设用于基于操作条件调整供电电压VLED 160的公式跨一组微LED组件155是相同的,并且该公式可以被存储在电力控制器280中或其他地方。例如,电力控制器280可以被编程为相对于基线温度每升高1℃温度就以-2 mV降低供电电压,或者相对于基线温度每降低1℃就以+2 mV增加供电电压。
给定像素阵列260上的单独的像素组件265之间也可能存在工艺扩展,例如,像素组件265a的最小供电电压可能比另一像素组件265b高50 mV。然而,因为跨像素阵列260使用相同的供电电压VLED 160和电流信号235,所以跨像素阵列260的最高的最小供电电压通常决定了供应给像素阵列260的供电电压VLED 160。因此,如上所述,存储器240可以存储跨像素阵列260的最高的最小供电电压,即,使得所有或几乎所有像素组件265在一组基线条件和/或其他条件下开启的供电电压。在其他实施例中,工艺数据245包括每个单独的像素组件265的个性化数据。
电力控制器280从存储器240接收工艺数据245。在图2所示的示例中,电力控制器280还从像素阵列260接收操作数据275。在其他实施例中,例如,如图3所示,可以从微LED控制块310接收一些或全部操作数据275。操作数据275包括操作电流幅度(例如,由电流信号235指定的电流幅度),或者由像素组件265产生并在像素阵列260上测量的电流幅度(理想地,产生的电流幅度与电流信号235所指示的电流幅度相同)。
操作数据275可以进一步包括来自像素阵列260中包含的一个或多个温度传感器270的数据。温度传感器270感测像素阵列260上或像素阵列260周围的各个位置处的温度。如图2所示,两个示例温度传感器270a和270b被描绘在像素组件265的矩阵的边缘附近,并且特别地,在像素阵列260的对角上。第三示例温度传感器270c位于像素组件265的矩阵内,并且特别地,位于两个像素之间。在其他示例中,例如,在像素阵列260的其他角落中、沿着像素阵列260的边缘、或者在像素阵列260内的一个或多个附加的或替代的位置可以包括附加的温度传感器270。电力控制器280可以处理来自多个温度传感器270的温度读数,以确定跨像素阵列260的平均或最大温度,或者基于阵列几何形状来估计跨像素阵列260的温度。在一些实施例中,电力控制器280可以进一步接收图像数据(例如,PWM信号225或来自反序列化器135的图像数据),并且基于图像数据与所感测的(多个)温度的组合来估计跨像素阵列260的温度。
电力控制器280基于工艺数据245和操作数据275来确定电源150的电压设置(即,VLED 160),该电压设置使得像素阵列260中的微LED在当前条件下开启。例如,电力控制器280从工艺数据245获得像素阵列260的基线供电电压,并且基于操作数据275从基线调整供电电压。电力控制器280耦合到电源150,并且向电源150输出电压信号285。电压信号285指示电源150以确定的电压设置输出VLED 160。在许多或大多数情况下,所确定的VLED 160小于在所有操作条件下跨所有像素阵列工作的固定VLED。通过动态地选择对于给定的像素阵列260和给定的一组操作条件足够大的VLED 160,电力控制器280和可变电源150减少了能量使用,并且防止了过高的固定VLED 可能导致的过热。
如果工艺数据245包括单独的像素265的数据,则电力控制器280可以确定每个像素的最小电压,并且将所确定的最小电压值与图像数据(例如,对于给定图像,哪些像素被开启)进行比较,以确定像素阵列260的电压设置。例如,电力控制器280选择给定图像中被开启的像素的最小电压的最大值。如果电力控制器280进一步确定跨阵列的不同位置或像素的估计温度,则电力控制器280可以使用每个像素的估计温度来确定该像素的最小电压。
图3图示了根据本公开的一些实施例的微LED组件155和电源系统的替代布置。该电源系统包括电源150和电力控制器380,电力控制器380设置由电源150供应给微LED组件155的电压VLED 160,以向微LED供电。电力控制器380类似于上述电力控制器280。微LED组件155包括微LED控制器310的块和像素阵列360,像素阵列360类似于上述像素阵列260并且包括多个像素组件365和多个温度传感器370。微LED控制器310包括脉宽调制器320和电流控制器330,它们类似于上述脉宽调制器220和电流控制器230。脉宽调制器320产生PWM信号325,并且电流控制器330产生电流信号335。
微LED控制器310进一步包括一次性可编程(OTP)存储器340和随机存取存储器(RAM)350。OTP存储器340是上述存储器240的示例。在制造像素阵列360期间或之后,对OTP存储器340进行编程以存储工艺数据345。工艺数据345类似于上述工艺数据245。对于像素阵列360来说,工艺数据345在其整个寿命期间通常是固定的或被认为是固定的。
微LED控制器310从像素阵列360接收操作数据375。操作数据375可以类似于上述的操作数据275。特别地,操作数据375包括由温度传感器370感测的温度测量值和像素组件365的电流幅度。微LED控制器310将操作数据375存储在RAM 350中。在一些实施例中,电流信号335或(由电流信号335指示并且由电流控制器330或微LED控制器310的另一部件提供的)电流幅度与操作数据375一起存储在RAM 350中;可以从或可以不从像素阵列360接收附加的电流数据。
在该示例中,电力控制器380从微LED控制器310的RAM 350中访问操作数据375,而不是从图2所示的像素组件260中访问。电力控制器380处理操作数据375和工艺数据345以确定VLED 160的设置,如上文关于图2所描述。在一些示例中,电力控制器380从微LED控制器210或310接收一些操作数据,并且从像素阵列260或360接收其他操作数据。
示例像素组件
图4是根据本公开的一些实施例的示出两个像素组件的示例实施方案的电路图。图4图示了图2所示的两个像素组件265a和265b的示例电路图;这些也可以是图3所示的像素组件365a和365b的示例。微LED阵列中的附加像素组件可以被类似地配置。使用节点来显示电气连接;不具有节点的交叉没有被电连接。
每个像素组件265包括LED 410、PWM开关420和电流源晶体管430。LED 410可以是微LED或另一类型的LED。在该示例中,LED 410是共阳极LED。在其他实施例中,LED 410是共阴极LED,并且电流源晶体管430和PWM开关420被相应地重新配置。尽管在图4中每个像素组件265中示出了一个LED 410,但是在其他实施例中,每个像素组件265包括串联和/或并联连接的多个LED 410。LED 410被布置成接收由电源150提供并且由电力控制器280调整的LED供电电压VLED 160。当LED电流(例如,像素组件1 265a中的I1)流过LED 410a时,LED410a发射光,如图4中的箭头所指示。
PWM开关420从脉宽调制器接收PWM信号225(例如,像素组件1 265a中的PWM开关420a接收PWM信号1 225a,该PWM信号1 225a为脉宽调制器220提供的PWM信号225之一)。在该示例中,每个PWM开关420接收单独的PWM信号225(例如,PWM开关1 420a接收PWM信号1225a,并且PWM开关2 420b接收PWM信号2 225b)。PWM开关420根据接收的PWM信号225交替地开启和关断LED 410。特别地,PWM开关420将电流源晶体管430耦合到LED 410,以供应LED电流(例如,I1或I2)来开启LED 410,并且将电流源晶体管430与LED 410解耦以关断LED 410。
电流源晶体管430产生用于驱动LED 410的LED电流(例如,I1或I2)。电流源晶体管430是n型金属氧化物半导体(NMOS)晶体管,其栅极耦合到电流信号235,源极接地,并且漏极耦合到LED 410。由电流源晶体管430产生的LED电流的幅度基于电流信号235的电压而变化。尽管在该示例中,PWM开关420处于电流源晶体管430的漏极和LED 410之间,但是在其他实施例中,PWM开关420处于电流源晶体管430的栅极和电流信号235之间。PWM开关442根据PWM信号来打开和关闭。
示例像素组件
图5是图示三种示例温度条件下LED正向电流和LED正向电压之间的示例关系的图。LED正向电流是电流源晶体管430基于电流信号235产生的电流。LED正向电压是当LED410通电时跨LED 410的电压。绘制了三条线510、520和530。一般而言,随着LED正向电流增加,LED正向电压增加。这意味着当像素阵列260的电流增加时,使用更高的VLED 160。例如,沿着线510,3 mA的电流跨LED 410具有3.3 V的正向电压;4 mA的电流跨LED 410具有3.4 V的正向电压;并且6 mA的电流跨LED 410具有3.5 V的正向电压。注意,VLED 160通常高于LED410的正向电压,以考虑跨其他电路元件(例如,PWM开关420和电流源晶体管430)的电压。跨PWM开关420和电流源晶体管430的电压也可以以类似的方式基于电流而变化,从而随着电流幅度的增加而增加。
线510可以是基线操作温度(例如,25℃)下的正向电压曲线。线510上方的线520示出了较低温度下的(例如,最低操作温度-40℃下的)正向电压曲线。线510下方的线530示出了较高温度下的(例如,最高操作温度85℃下的)正向电压曲线。如这些曲线所图示,温度通常与LED正向电压成负相关,使得在较低的操作温度下,使用较高的VLED 160,并且在较高的操作温度下,可以使用较低的VLED 160。
对于给定的操作条件,电力控制器280将VLED 160设置为足够高。例如,如果操作温度是25℃(对应于线510)并且由电流信号235指定的正向电流被设置为4 mA,则电力控制器280选择允许跨LED 410的3.4 V的正向电压的VLED 160。如果跨每个像素组件中的其他部件(例如,PWM开关420和电流源晶体管430)的电压对于4 mA电流是0.6 V,则供电电压VLED 160可以是例如3.4 V + 0.6 V = 4.0 V。作为另一示例,如果操作温度是85℃(对应于线530)并且由电流信号235指定的正向电流被设置为6 mA,则电力控制器280选择允许跨LED 410的3.4 V的正向电压的VLED 160。如果跨每个像素组件中的其他部件(例如,PWM开关420和电流源晶体管430)的电压对于6 mA电流是0.8 V,则供电电压VLED 160可以是例如3.4 V +0.8 V = 4.2 V。
在没有动态电力控制的系统中,VLED 160通常被设置为跨像素阵列260的操作条件所需要的最大可能电压。在该示例中,如果最低操作温度是-40℃(对应于线520)并且最大电流是6 mA,则VLED 160足够高以考虑跨LED 410的3.6 V的正向电压以及跨其他像素组件部件的电压(例如,0.8 V),从而导致恒定的4.4 V VLED。通过提供动态电力控制,电源系统可以显著降低微LED组件155的功耗。
调整电源的示例过程
图6图示了根据本公开的一些实施例的用于动态调整LED阵列的电源的过程。
电力控制器280接收610描述LED阵列的操作条件的操作条件数据。特别地,电力控制器280接收来自一个或多个温度传感器270的温度数据和描述驱动LED像素组件265的电流幅度的电流数据。
电力控制器280检索620 LED阵列的工艺数据。例如,电力控制器280在一个或多个条件下(例如,在一组基线操作条件下)检索描述通过LED和其他元件的正向电压的数据。
电力控制器280基于操作条件和工艺数据来确定630像素阵列的供电电压VLED。例如,工艺数据提供了基于生产测试获得的LED阵列的基线电压设置,并且电力控制器280基于操作条件从基线电压设置调整供电电压VLED,例如,如果操作温度高于测试温度,则降低供电电压,或者如果电流幅度高于测试幅度,则提高供电电压。
电力控制器280向电源150发出指令640以产生确定的供电电压VLED。电源150向像素阵列提供该电压VLED
其他实施方案的说明、变化和应用
应当理解,根据本文描述的任何特定实施例,不必可以实现所有目的或优点。因此,例如,本领域技术人员将认识到,某些实施例可以被配置为以实现或优化本文教导的一个优点或一组优点的方式操作,而不必实现本文教导或建议的其他目的或优点。
应当领会,附图及其教导中的电路是易于扩展的并且可以容纳大量部件,以及更复杂/精密的布置和配置。因此,所提供的示例不应限制范围或抑制潜在地应用于无数其他架构的电路的广泛教导。
在一些实施例中,可以在相关联的电子设备的板上实施附图中的任意数量的电路。该板可以是通用电路板(其可以容纳电子设备的内部电子系统的各种部件),并且进一步为其他外围设备提供连接器。更具体地,该板可以提供电连接,系统的其他部件可以通过该电连接进行电通信。任何合适的处理器(包括数字信号处理器、微处理器、支持芯片组等。)、计算机可读非暂时性存储元件等可以基于特定的配置需求、处理需求、计算机设计等适当地耦合到该板。(诸如外部存储器、附加传感器、用于音频/视频显示的控制器和外围设备的)其他部件可以经由线缆作为插入卡附接到该板,或者集成到该板本身中。在各种实施例中,本文描述的功能可以以仿真形式实现为软件或固件,该软件或固件在支持这些功能的结构中布置的一个或多个可配置(例如,可编程)元件内运行。提供该仿真的软件或固件可以在(包括允许处理器执行那些功能的指令的)非暂时性计算机可读存储介质上提供。
在一些实施例中,附图的电路可以被实施为独立模块(例如,具有被配置为执行特定应用或功能的相关联的部件和电路的设备),或实施为电子设备的专用硬件中的插件模块。注意,本公开的一些实施例可以容易地部分或全部包括在片上系统(SOC)封装中。SOC代表将计算机或其他电子系统的部件集成到单个芯片中的集成电路(IC)。它可以包含数字、模拟、混合信号和通常的射频功能:所有这些都可以在单个芯片衬底上提供。其他实施例可以包括多芯片模块(MCM),其中多个单独的IC位于单个电子封装内并且被配置为通过电子封装彼此紧密交互。
本领域技术人员可以确定多种其他改变、替代、变化、变更和修改,并且意图是本公开涵盖落入所附权利要求的范围内的所有这样的改变、替代、变化、变更和修改。注意,本文描述的任何设备和系统的所有可选特征也可以相对于本文描述的方法或过程来实现,并且示例中的细节可以在一个或多个实施例中的任何地方使用。
选择的示例
示例1提供了一种照明系统,其包括LED阵列和控制块。LED阵列包括多个LED像素,每个LED像素被布置成从产生动态可调供电电压的电源接收供电电压。LED阵列进一步包括至少一个电流源以驱动多个LED。控制块被配置为耦合到电源并且基于LED阵列的至少一个条件来调整由电源产生的供电电压。
示例2包括根据示例1的照明系统,其中所述至少一个条件包括操作条件,并且控制块被配置为接收指示LED阵列的操作条件的数据并且基于LED阵列的操作条件来确定供电电压。
示例3包括根据示例2的照明系统,其中操作条件是温度,照明系统进一步包括用于感测LED阵列的温度的至少一个温度传感器。
示例4包括根据示例3或4的照明系统,其中操作条件是由至少一个电流源供应的电流的幅度。
示例5包括根据前述示例中任一示例的照明系统,进一步包括用于存储LED阵列的工艺数据的存储器,所述至少一个条件包括工艺数据的至少一部分。
示例6包括根据示例5的照明系统,其中工艺数据包括基线温度下的LED像素的正向电压,并且控制块被配置为基于基线温度下的LED像素的正向电压来确定操作温度下的LED像素的正向电压,以及基于操作温度下的LED像素的所确定的正向电压来设置供电电压。
示例7包括根据示例5或6的照明系统,其中工艺数据包括基线电流幅度下的LED像素的正向电压,并且控制块被配置为基于基线电流幅度下的LED像素的正向电压来确定操作电流幅度下的LED像素的正向电压,并且基于操作电流幅度下的LED像素的所确定的正向电压来设置供电电压。
示例8包括根据前述示例中任一示例的照明系统,其中所述多个LED像素中的每一个包括PWM开关,该PWM开关被配置为接收PWM信号并且基于PWM信号交替地开启和关断LED。
示例9提供了根据前述示例中任一示例的照明系统,进一步包括控制块,该控制块被配置为接收图像数据、基于图像数据设置驱动所述多个LED的电流幅度、以及基于图像数据设置所述多个LED像素的至少一部分的占空比,其中LED阵列的所述至少一个条件包括电流幅度。
示例10提供了一种用于设置LED阵列的供电电压的方法,包括:接收描述(具有多个LED像素的)LED阵列的操作条件的操作条件数据;检索与LED阵列相关联的工艺数据,该工艺数据描述至少一种操作条件下的多个LED像素的正向电压;以及基于操作条件数据和工艺数据来确定向LED阵列供电的供电电压。
示例11提供了根据示例10的方法,进一步包括向电源传输指令,以将提供给LED阵列的电源设置为确定的供电电压。
示例12包括根据示例10或11的方法,其中操作条件数据包括LED阵列的温度。
示例13包括根据示例12的方法,其中工艺数据包括基线温度下的LED像素的正向电压,并且确定供电电压包括:基于基线温度下的LED像素的正向电压来确定操作温度下的LED像素的正向电压,以及基于操作温度下的LED像素的所确定的正向电压来确定供电电压。
实例14包括根据示例10-13中任一示例的方法,其中操作条件数据包括供应至多个LED像素的电流的幅度。
示例15包括根据示例14的方法,其中工艺数据包括基线电流幅度下的LED像素的正向电压,并且确定供电电压包括:基于基线电流幅度下的LED像素的正向电压来确定操作电流幅度下的LED像素的正向电压,以及基于操作电流幅度下的LED像素的所确定的正向电压来确定供电电压。
示例16提供了一种LED阵列,其包括布置在矩阵中的多个LED像素和用于感测LED阵列的温度的至少一个温度传感器。每个LED像素包括耦合到供电电压的至少一个LED、以具有电流幅度的操作电流驱动该至少一个LED的电流源、以及用操作电流交替地驱动该至少一个LED的PWM开关。该至少一个温度传感器位于多个LED像素中的至少一个附近。
示例17包括根据示例16的LED阵列,其中LED阵列包括多个温度传感器,每个温度传感器沿着LED像素矩阵的边缘定位。
示例18包括根据示例16或17的LED阵列,其中LED阵列包括位于LED像素矩阵内的至少一个温度传感器,该温度传感器位于至少两个LED像素之间。
示例19包括根据示例16-18中任一示例的LED阵列,其中LED阵列被进一步配置为测量操作电流的电流幅度并且将所测量的电流幅度提供给电力控制器,电力控制器被配置为基于所测量的电流幅度来调整供电电压。
示例20包括根据示例16-19中任一示例的LED阵列,进一步包括电力控制器,该电力控制器被配置为接收所感测的温度并且基于所感测的温度来调整供电电压。

Claims (20)

1.一种照明系统,包括:
发光二极管(LED)阵列,包括:
多个LED像素,每个LED像素被布置成从产生动态可调供电电压的电源接收供电电压;和
用于驱动多个LED的至少一个电流源;以及
控制块,被配置为耦合到所述电源,所述控制块用于基于所述LED阵列的至少一个条件来调整由所述电源产生的供电电压。
2. 根据权利要求1所述的照明系统,其中所述至少一个条件包括操作条件,并且所述控制块被配置为:
接收指示所述LED阵列的操作条件的数据;以及
基于所述LED阵列的操作条件来确定供电电压。
3.根据权利要求2所述的照明系统,其中所述操作条件是温度,所述照明系统进一步包括用于感测所述LED阵列的温度的至少一个温度传感器。
4.根据权利要求2所述的照明系统,其中所述操作条件是由所述至少一个电流源供应的电流的幅度。
5.根据权利要求1所述的照明系统,进一步包括用于存储所述LED阵列的工艺数据的存储器,所述至少一个条件包括所述工艺数据的至少一部分。
6. 根据权利要求5所述的照明系统,其中所述工艺数据包括基线温度下的LED像素的正向电压,并且所述控制块被配置为:
基于基线温度下的LED像素的正向电压来确定操作温度下的LED像素的正向电压;以及
基于操作温度下的LED像素的所确定的正向电压来设置供电电压。
7. 根据权利要求5所述的照明系统,其中所述工艺数据包括基线电流幅度下的LED像素的正向电压,并且所述控制块被配置为:
基于基线电流幅度下的LED像素的正向电压来确定操作电流幅度下的LED像素的正向电压;以及
基于操作电流幅度下的LED像素的所确定的正向电压来设置供电电压。
8.根据权利要求1所述的照明系统,其中所述多个LED像素中的每一个包括脉宽调制(PWM)开关,所述脉宽调制开关被配置为接收PWM信号并且基于所述PWM信号交替地开启和关断LED。
9.根据权利要求1所述的照明系统,进一步包括控制块,所述控制块被配置为:
接收图像数据;
基于图像数据设置驱动多个LED的电流幅度;以及
基于图像数据为多个LED像素的至少一部分设置占空比;
其中LED阵列的所述至少一个条件包括电流幅度。
10.一种用于设置发光二极管(LED)阵列的供电电压的方法,包括:
接收描述包括多个LED像素的LED阵列的操作条件的操作条件数据;
检索与所述LED阵列相关联的工艺数据,所述工艺数据描述至少一种操作条件下的所述多个LED像素的正向电压;以及
基于所述操作条件数据和所述工艺数据来确定向所述LED阵列供电的供电电压。
11.根据权利要求10所述的方法,进一步包括向电源发送指令,以将提供给所述LED阵列的电源设置为所确定的供电电压。
12.根据权利要求10所述的方法,其中所述操作条件数据包括所述LED阵列的温度。
13. 根据权利要求12所述的方法,其中所述工艺数据包括基线温度下的LED像素的正向电压,并且确定供电电压包括:
基于基线温度下的LED像素的正向电压来确定操作温度下的LED像素的正向电压;以及
基于操作温度下的LED像素的所确定的正向电压来确定供电电压。
14.根据权利要求10所述的方法,其中所述操作条件数据包括供应给所述多个LED像素的电流的幅度。
15. 根据权利要求14所述的方法,其中所述工艺数据包括基线电流幅度下的LED像素的正向电压,并且确定供电电压包括:
基于基线电流幅度下的LED像素的正向电压来确定操作电流幅度下的LED像素的正向电压;以及
基于操作电流幅度下的LED像素的所确定的正向电压来确定供电电压。
16.一种发光二极管(LED)阵列,包括:
布置在矩阵中的多个LED像素,每个LED像素包括:
耦合到供电电压的至少一个LED;
电流源,用于以具有电流幅度的操作电流驱动所述至少一个LED;以及
脉宽调制(PWM)开关,用于以操作电流交替地驱动所述至少一个LED;和
用于感测温度的至少一个温度传感器,所述至少一个温度传感器位于所述多个LED像素中的至少一个附近。
17.根据权利要求16所述的LED阵列,其中所述LED阵列包括多个温度传感器,每个温度传感器沿着LED像素矩阵的边缘定位。
18.根据权利要求16所述的LED阵列,其中所述LED阵列包括位于LED像素矩阵内的至少一个温度传感器,所述温度传感器位于至少两个LED像素之间。
19.根据权利要求16所述的LED阵列,其中所述LED阵列被进一步配置为测量操作电流的电流幅度并且将所测量的电流幅度提供给电力控制器,所述电力控制器被配置为基于所测量的电流幅度来调整供电电压。
20.根据权利要求16所述的LED阵列,进一步包括电力控制器,所述电力控制器被配置为接收所感测的温度并且基于所感测的温度来调整供电电压。
CN202080094818.8A 2019-11-27 2020-11-26 动态调节的微led像素阵列 Pending CN115004860A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962941123P 2019-11-27 2019-11-27
US62/941123 2019-11-27
PCT/US2020/062452 WO2021108735A1 (en) 2019-11-27 2020-11-26 Dynamically regulated micro-led pixel array

Publications (1)

Publication Number Publication Date
CN115004860A true CN115004860A (zh) 2022-09-02

Family

ID=73856586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080094818.8A Pending CN115004860A (zh) 2019-11-27 2020-11-26 动态调节的微led像素阵列

Country Status (6)

Country Link
US (2) US11877367B2 (zh)
JP (1) JP7469470B2 (zh)
KR (1) KR20220104230A (zh)
CN (1) CN115004860A (zh)
TW (1) TW202139779A (zh)
WO (1) WO2021108735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116343658A (zh) * 2023-03-23 2023-06-27 深圳市陆百亿光电有限公司 一种用于led灯珠的智能控制方法及装置
US11877367B2 (en) 2019-11-27 2024-01-16 Lumileds Llc Dynamically regulated micro-LED pixel array

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11935461B2 (en) 2021-12-15 2024-03-19 Lumileds Llc LED driver voltage accounting for temperature estimate
DE102022115951A1 (de) * 2022-06-27 2023-12-28 HELLA GmbH & Co. KGaA Energieversorgung für eine Leuchte mit einer Matrix aus LEDs, insbesondere LED-Kraftfahrzeugscheinwerfer
DE102022118809A1 (de) * 2022-07-27 2024-02-01 Ams-Osram International Gmbh Optoelektronisches modul und verfahren zum betrieb eines optoelektronischen moduls
TWI816519B (zh) * 2022-08-19 2023-09-21 友達光電股份有限公司 畫素電路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505565A1 (en) * 2003-08-07 2005-02-09 Barco N.V. Method and system for controlling an OLED display element for improved lifetime and light output
TWI400990B (zh) * 2008-12-08 2013-07-01 Green Solution Tech Co Ltd 具溫度補償之發光二極體驅動電路及其控制器
WO2010113316A1 (ja) 2009-04-03 2010-10-07 Necディスプレイソリューションズ株式会社 Led駆動装置、およびled駆動制御方法
KR20110139499A (ko) * 2010-06-23 2011-12-29 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
EP2575411B1 (en) * 2011-09-27 2018-07-25 Infineon Technologies AG LED driver with compensation of thermally induced colour drift
CN103175624A (zh) 2011-12-22 2013-06-26 中国计量学院 一种非接触式led结温测试方法及装置
JP6277549B2 (ja) * 2014-03-10 2018-02-14 Tianma Japan株式会社 面状照明装置及び液晶表示装置
FR3076171B1 (fr) * 2017-12-22 2021-10-29 Valeo Vision Calibration d'un module lumineux a elements electroluminescents
FR3083418A1 (fr) * 2018-06-28 2020-01-03 Valeo Vision Systeme de pilotage de l'alimentation electrique d'une source lumineuse pixellisee
JP7469470B2 (ja) 2019-11-27 2024-04-16 ルミレッズ リミテッド ライアビリティ カンパニー 動的に制御されるマイクロledピクセルアレイ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11877367B2 (en) 2019-11-27 2024-01-16 Lumileds Llc Dynamically regulated micro-LED pixel array
CN116343658A (zh) * 2023-03-23 2023-06-27 深圳市陆百亿光电有限公司 一种用于led灯珠的智能控制方法及装置

Also Published As

Publication number Publication date
US20230021907A1 (en) 2023-01-26
KR20220104230A (ko) 2022-07-26
JP7469470B2 (ja) 2024-04-16
WO2021108735A1 (en) 2021-06-03
US20230007747A1 (en) 2023-01-05
US11877367B2 (en) 2024-01-16
JP2023504401A (ja) 2023-02-03
TW202139779A (zh) 2021-10-16

Similar Documents

Publication Publication Date Title
CN115004860A (zh) 动态调节的微led像素阵列
CN112930713B (zh) 用于高刷新率led阵列的动态像素诊断
CN112997242B (zh) 高速图像刷新系统
KR102650543B1 (ko) 데이터 관리가 감소된 대형 led 어레이
US11895748B2 (en) Current control for LED pixel arrays
US11191141B1 (en) Powering microLEDs considering outlier pixels
US20240032171A1 (en) Current control for led pixel arrays
US11343888B1 (en) MicroLED power considering outlier pixel dynamic resistance
KR102331664B1 (ko) 고속 이미지 리프레시 시스템
JP7248735B2 (ja) 高速画像リフレッシュシステム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination