CN114994739A - SiPM time signal reader - Google Patents

SiPM time signal reader Download PDF

Info

Publication number
CN114994739A
CN114994739A CN202210653983.3A CN202210653983A CN114994739A CN 114994739 A CN114994739 A CN 114994739A CN 202210653983 A CN202210653983 A CN 202210653983A CN 114994739 A CN114994739 A CN 114994739A
Authority
CN
China
Prior art keywords
signal
sipm
output
time signal
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210653983.3A
Other languages
Chinese (zh)
Inventor
黄秋
赵指向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202210653983.3A priority Critical patent/CN114994739A/en
Publication of CN114994739A publication Critical patent/CN114994739A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)

Abstract

The object of the present invention is to provide a SiPM time signal reader, comprising: the device comprises a signal leading-out module, a signal buffering module and a signal summing module; the signal leading-out module comprises an array formed by a plurality of SiPMs, each SiPM comprises two output ends, and a first output end is connected with a detection resistor in series; the signal directly led out from the first output end is used as a time signal output by the SiPM; a signal led out after the first output end is connected with the detection resistor in series is used as a first output signal, and a signal led out from a second output end of the SiPM is used as a second output signal; the signal buffer module comprises a plurality of radio frequency amplifiers; the time signal output by each SiPM is introduced into one radio frequency amplifier; the signal summation module comprises an addition amplifying circuit, the output signal of each radio frequency amplifier is connected to the addition amplifying circuit for combination, and the combined signal is used as the time signal of the SiPM array.

Description

SiPM time signal reader
Technical Field
The invention relates to the technical field of medical imaging equipment, in particular to an SiPM time signal merging and reading circuit based on a radio frequency amplifier.
Background
Positron Emission Tomography (PET) has been the first diagnostic imaging technique for diseases such as tumors, and its principle is to perform image reconstruction by measuring the energy, time and other information of gamma photon events.
Currently, a Silicon Photomultiplier (SiPM) PET system based on a Silicon semiconductor has gradually become the mainstream. Sipms are composed of hundreds or thousands of self-quenched single photon avalanche photodiodes (SPADs) operating in geiger mode, whose logical structure is schematically shown in fig. 1.
One of the bottlenecks of the existing SiPM technology is its time signal reading circuit. Since the number of sipms in a PET system can reach as many as ten thousand, if output signals of ten thousand sipms are read one-to-one, hardware resources used by an electronics part of the PET system are quite huge, and the PET system is low in feasibility. The solution of many current systems is to short-circuit and combine signals of multiple sipms into fewer channels for measurement by a subsequent electronic system, and although this method can reduce the number of required measurement channels, combining direct signals of sipms will cause attenuation of time signals of the sipms and mix more noise into the signals, thereby causing degradation of time performance. Therefore, the time signal merging and reading circuit capable of reducing attenuation of the merged SiPM time signal and not introducing excessive noise is significant to exerting the advantages of the SiPM and realizing higher time resolution
Disclosure of Invention
In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide an SiPM time signal reader comprising: the device comprises a signal leading-out module, a signal buffering module and a signal summing module; the signal leading-out module comprises an array formed by a plurality of SiPMs, each SiPM comprises two output ends, and a first output end is connected with a detection resistor in series; the signal directly led out from the first output end is used as a time signal output by the SiPM; a signal led out after the first output end is connected with the detection resistor in series serves as a first output signal, and a signal led out from a second output end of the SiPM serves as a second output signal; the signal buffer module comprises a plurality of radio frequency amplifiers; the time signal output by each SiPM is introduced into one radio frequency amplifier; the signal summation module comprises an addition amplifying circuit, the output signal of each radio frequency amplifier is connected to the addition amplifying circuit for combination, and the combined signal is used as the time signal of the SiPM array.
The present invention also provides an SiPM time signal reader comprising: the device comprises a signal leading-out module, a signal buffering module and a signal summing module; the signal leading-out module comprises a plurality of SiPMs, each SiPM comprises a plurality of SPADs, each SPAD is provided with a cathode output end and an anode output end, the anode output ends of the SPADs are connected with a quick output capacitor in series, and the cathode input ends of the SPADs are connected in parallel to be used as the cathode output end of the SiPM; the anode output ends of the SPADs are connected in parallel to serve as the anode output end of the SiPM, the output ends of the rapid output capacitors are connected in parallel to serve as the rapid output end of the SiPM, and the time signal is led out from the rapid output end of the SiPM; the signal buffer module comprises a plurality of radio frequency amplifiers; each of said time signals is introduced into one of said radio frequency amplifiers; the signal summation module comprises an addition amplifying circuit, the output signal of each radio frequency amplifier is connected to the addition amplifying circuit for combination, and the combined signal is used as the SiPM time signal. The SiPM time signal reader of claim 1, wherein an output of the SiPM comprises a cathode or an anode of the SiPM.
Preferably, in the SiPM time signal reader, the first and/or second output signal is connected to a bias power supply, or connected to an energy readout circuit, or used for locating a signal source.
Preferably, in the SiPM time signal reader, the first output terminal is a cathode, and the second output terminal is an anode.
Preferably, in the SiPM time signal reader, the second output terminal is a cathode, and the first output terminal is an anode.
Preferably, in the SiPM time signal reader, a first capacitor is disposed at an input end of the radio frequency amplifier.
Preferably, in the SiPM time signal reader, the output end of the radio frequency amplifier is provided with a second capacitor.
Preferably, in the SiPM time signal reader, the summing and amplifying circuit includes an operational amplifier, a plurality of independent input resistors, and a feedback resistor; the output signal of each radio frequency amplifier is connected to the operational amplifier through one input resistor; the feedback resistor Rf is connected across the inverting input terminal and the output terminal of the operational amplifier.
Preferably, in the SiPM time signal reader, an output signal of each of the radio frequency amplifiers is connected to an inverting input terminal of the operational amplifier through one of the input resistors.
Preferably, in the SiPM time signal reader, a non-inverting input terminal of the operational amplifier is connected to a reference voltage signal.
Preferably, in the SiPM time signal reader, the cathode output end and/or the anode output end are/is connected with a bias power supply, or connected with an energy readout circuit, or used for positioning a signal source.
Drawings
FIG. 1 is a simplified schematic of the logical structure of a prior art SiPM;
FIG. 2 is a circuit diagram of a first embodiment of the present invention;
FIG. 3 is a circuit diagram of a second embodiment of the present invention;
FIG. 4 is a schematic diagram of a SPAD structure adopted in the third embodiment of the present invention;
fig. 5 is a circuit diagram of a third embodiment of the present invention.
Detailed Description
The embodiments of the present invention are described below with reference to specific embodiments, and other advantages and effects of the present invention will be easily understood by those skilled in the art from the disclosure of the present specification. The invention is capable of other and different embodiments and of being practiced or of being carried out in various ways, and its several details are capable of modification in various respects, all without departing from the spirit and scope of the present invention.
FIG. 2 is a circuit diagram of an embodiment of the present invention. The SiPM signal reader comprises a signal leading-out module 1, a signal buffering module 2 and a signal summing module 3. The signal extraction module 1 comprises several sipms. Each SiPM includes a cathode terminal and an anode terminal connected in series with a sense resistor Rs. The signal directly drawn from the anode terminal is used as the time signal output by the SiPM, the signal drawn from the anode terminal after being connected in series with the detection resistor Rs is used as the anode signal of the SiPM, and the signal drawn from the cathode terminal is used as the cathode signal of the SiPM. The time signal output by each SiPM is connected to the signal buffer module 2. The cathode signal or anode signal of each SiPM can be connected with a bias power supply to supply power for the SiPM, or connected to an energy readout circuit to measure the energy of the SiPM signal. The cathodic signal or anodic signal can also be used to determine from which SiPM in the array the signal came.
The signal buffer module 2 comprises a plurality of radio frequency amplifiers 21, and the time signal output by each SiPM is independently introduced into one radio frequency amplifier 21, so that the signal is buffered and amplified in the shortest distance, and meanwhile, the interference among the output signals of the SiPMs can be isolated by utilizing the good reverse cut-off characteristic of the radio frequency amplifier, and the signal quality is improved. In order to isolate the dc and low frequency components in the signal and reduce the introduction of noise, capacitors C1 and C2 are further disposed at the input and output of the rf amplifier 21, respectively.
The SiPM signals buffered by the signal buffering module 2 are sent to the signal summing module 3. The signal summing module 3 includes an addition amplifying circuit including an operational amplifier, a plurality of independent input resistors Rin, and a feedback resistor Rf. The time signal output from the capacitor C2 is connected to the inverting input terminal of the operational amplifier through the independent input resistor Rin. The non-inverting input of the operational amplifier may be grounded, and a reference voltage signal Vref may be input when a dc bias is required to be provided for the signal. The feedback resistor Rf is connected across the inverting input terminal and the output terminal of the operational amplifier. The time signals output by the SiPMs are sent to an addition amplifying circuit to be combined. Different amplification can be achieved by parameter setting of Rin and Rf, and the combined signal is used as the time signal of the SiPM array. It should be noted that the time signal output from the capacitor C2 can also be connected to the non-inverting input terminal of the operational amplifier through a separate input resistor Rin for in-phase addition and combination, but in contrast, it is more preferable to connect the inverting input terminal.
FIG. 3 is a circuit diagram of a second embodiment of the present invention. The difference from the embodiment of fig. 1 is that the cathode terminal of each SiPM is connected in series with a detection resistor Rs, a signal directly extracted from the cathode terminal is used as a time signal output by the SiPM, a signal extracted after the cathode terminal is connected in series with the detection resistor Rs is used as an anode signal of the SiPM, and a signal extracted from the anode terminal is used as a cathode signal of the SiPM. The time signal output by each SiPM is also buffered by adopting a signal buffering module 2, and then each path of buffered SiPM signals are merged and amplified by a signal summing module 3; the cathode signal or anode signal of each SiPM can be connected with a bias power supply to supply power for the SiPM, or connected to an energy reading circuit to measure the energy of the SiPM signal. The same can be used to determine which SiPM in the array the signal came from. The implementation manners of the signal buffering module 2 and the signal obtaining modules 3 in the second embodiment are the same as those in the first embodiment, and are not described again.
The third embodiment of the present invention is different from the first two embodiments in that the SPAD cell structure in SiPM is different, as shown in fig. 4. Each SPAD anode has an integrated fast output capacitor whose outputs are connected in parallel as the fast output of the SiPM from which the time signal is read. In this embodiment, the detection resistor Rs may be omitted, and the anode signal and the cathode signal of each SiPM function as in example one. The circuit schematic of the third embodiment is shown in fig. 5. The fast output mode may improve the timing and photon counting applications compared to the standard output mode. The signal buffering module 2 and the signal obtaining modules 3 of the third embodiment are the same as those of the first two embodiments, and are not described again.
In summary, compared with the prior art, the SiPM time signal merging and reading circuit of the present invention greatly reduces the number of required time signal measurement channels while ensuring the quality of the merged time signal, realizes the high-performance time signal measurement of the ultra-large scale SiPM array, and reduces the cost and complexity of the system.
The foregoing embodiments are merely illustrative of the principles and utilities of the present invention and are not intended to limit the invention. Any person skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention.

Claims (11)

1. An SiPM time signal reader, comprising:
the device comprises a signal leading-out module, a signal buffering module and a signal summing module;
the signal leading-out module comprises an array formed by a plurality of SiPMs, each SiPM comprises two output ends, and a first output end is connected with a detection resistor in series; the signal directly led out from the first output end is used as a time signal output by the SiPM; a signal led out after the first output end is connected with the detection resistor in series serves as a first output signal, and a signal led out from a second output end of the SiPM serves as a second output signal;
the signal buffer module comprises a plurality of radio frequency amplifiers; the time signal output by each SiPM is introduced into one radio frequency amplifier;
the signal summation module comprises an addition amplifying circuit, the output signal of each radio frequency amplifier is connected to the addition amplifying circuit for combination, and the combined signal is used as the time signal of the SiPM array.
2. An SiPM time signal reader, comprising:
the device comprises a signal leading-out module, a signal buffering module and a signal summing module;
the signal leading-out module comprises a plurality of SiPMs, each SiPM comprises a plurality of SPADs, each SPAD is provided with a cathode output end and an anode output end, the anode output ends of the SPADs are connected with a quick output capacitor in series, and the cathode input ends of the SPADs are connected in parallel to be used as the cathode output end of the SiPM; the anode output ends of the SPADs are connected in parallel to serve as the anode output end of the SiPM, the output ends of the rapid output capacitors are connected in parallel to serve as the rapid output end of the SiPM, and the time signal is led out from the rapid output end of the SiPM;
the signal buffer module comprises a plurality of radio frequency amplifiers; each of said time signals is introduced into one of said radio frequency amplifiers; the signal summation module comprises an addition amplifying circuit, the output signal of each radio frequency amplifier is connected to the addition amplifying circuit for combination, and the combined signal is used as the SiPM time signal. The SiPM time signal reader of claim 1, wherein an output of the SiPM comprises a cathode or an anode of the SiPM.
3. The SiPM time signal reader of claim 1, wherein the first and/or second output signal is coupled to a bias power supply, or coupled to an energy sensing circuit, or used to locate a signal source.
4. The SiPM time signal reader of claim 1, wherein the first output is a cathode and the second output is an anode.
5. The SiPM time signal reader of claim 1, wherein the second output is a cathode and the first output is an anode.
6. SiPM time signal reader according to claim 1 or 2, characterized in that the input of the radio frequency amplifier is provided with a first capacitance.
7. SiPM time signal reader according to claim 1 or 2, characterized in that the output of the radio frequency amplifier is provided with a second capacitance.
8. The SiPM time signal reader of claim 1 or 2, wherein the summing amplification circuit comprises an operational amplifier, a number of independent input resistors, and a feedback resistor; the output signal of each radio frequency amplifier is connected to the operational amplifier through one input resistor; the feedback resistor Rf is connected across the inverting input terminal and the output terminal of the operational amplifier.
9. The SiPM time signal reader of claim 8, wherein the output signal of each of the radio frequency amplifiers is coupled to the inverting input of the operational amplifier through one of the input resistors.
10. The SiPM time signal reader of claim 9, wherein a reference voltage signal is coupled to the non-inverting input of the operational amplifier.
11. The SiPM time signal reader of claim 2, wherein the cathode output and/or the anode output is signaled to a bias supply, or to an energy sensing circuit, or for locating a signal source.
CN202210653983.3A 2022-06-10 2022-06-10 SiPM time signal reader Pending CN114994739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210653983.3A CN114994739A (en) 2022-06-10 2022-06-10 SiPM time signal reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210653983.3A CN114994739A (en) 2022-06-10 2022-06-10 SiPM time signal reader

Publications (1)

Publication Number Publication Date
CN114994739A true CN114994739A (en) 2022-09-02

Family

ID=83033503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210653983.3A Pending CN114994739A (en) 2022-06-10 2022-06-10 SiPM time signal reader

Country Status (1)

Country Link
CN (1) CN114994739A (en)

Similar Documents

Publication Publication Date Title
US11828891B2 (en) Silicon photomultiplier based TOF-PET detector
Huizenga et al. A fast preamplifier concept for SiPM-based time-of-flight PET detectors
JP4326493B2 (en) Method applied to digitization of positron emission tomography (PET) radiation events
Popov et al. Readout electronics for multianode photomultiplier tubes with pad matrix anode layout
CN102565836B (en) For the high density ratio mode APD array that the independent scintillator in PET application reads
US20140224963A1 (en) Low impedance interface circuit to maximize bandwidth and provide bias control
Di Francesco et al. TOFPET 2: A high-performance circuit for PET time-of-flight
Park et al. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review
Ollivier-Henry et al. Design and characteristics of a multichannel front-end ASIC using current-mode CSA for small-animal PET imaging
Cates et al. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers
Zhang et al. Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors
EP2746817A1 (en) Readout circuits for multi-channel photomultiplier arrays
Balla et al. GASTONE64: A new front-end ASIC for the cylindrical GEM Inner Tracker of KLOE-2 experiment at DAΦNE
CN109116404B (en) Readout electronics with improved timing resolution
Sacco et al. A low power front-end architecture for SiPM readout with integrated ADC and multiplexed readout
US10128801B2 (en) Bootstrapping readout for large terminal capacitance analog-SiPM based time-of-flight PET detector
EP3399345B1 (en) Read network topology
CN217846653U (en) SiPM time signal reader
CN114994739A (en) SiPM time signal reader
CN108983282B (en) Silicon photomultiplier test platform
CN111190214B (en) Readout circuit of PET (positron emission tomography) detector and detector
Nakhostin et al. Use of commercial operational amplifiers in a low cost multi-channel preamplifier system
Castoldi et al. Versatile multi-channel CMOS frontend with selectable full-scale dynamics from 100 MeV up to 2.2 GeV for the readout of detector's signals in nuclear physics experiments
Ahmed et al. Characterisation of silicon photomultipliers for time-of-flight PET
Shih et al. An 8× 8 row-column summing readout electronics for preclinical positron emission tomography scanners

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication