CN114994153B - 一种快速检测二甲双胍的电化学传感器的制备方法及其应用 - Google Patents

一种快速检测二甲双胍的电化学传感器的制备方法及其应用 Download PDF

Info

Publication number
CN114994153B
CN114994153B CN202210635245.6A CN202210635245A CN114994153B CN 114994153 B CN114994153 B CN 114994153B CN 202210635245 A CN202210635245 A CN 202210635245A CN 114994153 B CN114994153 B CN 114994153B
Authority
CN
China
Prior art keywords
metformin
electrochemical sensor
electrode
sensor
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210635245.6A
Other languages
English (en)
Other versions
CN114994153A (zh
Inventor
吴令霞
吴云
马继平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202210635245.6A priority Critical patent/CN114994153B/zh
Publication of CN114994153A publication Critical patent/CN114994153A/zh
Application granted granted Critical
Publication of CN114994153B publication Critical patent/CN114994153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种快速检测二甲双胍的电化学传感器的制备方法及其应用。该传感器以氮掺杂碳纳米管为电极识别元件,利用其优异的导电性,较大的比表面积,较高的电催化效率,辅助以过渡金属离子的配位效应及催化电化学氧化的作用,极大地提高了传感器的检测灵敏度和检测限。该电化学传感器成本低、灵敏度高、响应速度快、选择性好、操作简单,对环境水体样品、面粉及面粉制品中二甲双胍的检测,具有较高的灵敏度,且能够实现实时、快速、准确、高效地评价实际样品中二甲双胍的浓度水平,可用于现场快速筛查和检测环境污染物。

Description

一种快速检测二甲双胍的电化学传感器的制备方法及其应用
技术领域
本发明属于电化学传感器和分析化学技术领域,涉及一种快速检测二甲双胍的电化学传感器的制备方法及其应用。
背景技术
二甲双胍(MET)是一种治疗Ⅱ型糖尿病的首选药物,随着糖尿病发病率的逐年升高,二甲双胍的使用量也急剧上升。国际糖尿病联盟(International DiabetesFederation,IDF)最新数据显示,2021年全球已有5.37亿成年人患有糖尿病,预计到2045年全球糖尿病人数将增至7.84亿,并且90%的糖尿病患者患有Ⅱ型糖尿病(IDF Atlas 10THedition,2021)。二甲双胍作为Ⅱ型糖尿病的首选治疗药物,已在2020年被列为第四大处方药,全球有上亿人正在服用此药物。然而,二甲双胍不能被人体所代谢,摄入体内的二甲双胍几乎100%未经修饰地随尿液和粪便排出体外,经污水设施处理后,进入地表水(河流、湖泊),并最终广泛分布于世界各地的水环境中。同时,环境中的二甲双胍还是一种新污染物。有研究发现,在水厂加氯消毒过程中,二甲双胍会与次氯酸消毒剂反应,产生两种新的有毒消毒副产物Y(C4H6ClN5)和C(C4H6ClN3);且在相同氯含量的情况下,Y和C的量随着二甲双胍浓度的增加而增加。目前,二甲双胍及其消毒副产物在中国、美国、日本和韩国等多个国家和地区的城市饮用水中均有检出,其最高浓度分别为1.2μg/L和9.7ng/L。已有研究表明,毫摩尔剂量的消毒副产物Y和C便对线虫和人类肝癌细胞系(HepG2)具有明显的致死毒性和细胞毒性,其毒性与砷相似甚至更高;还能破坏小鼠小肠的完整性,甚至致其死亡。二甲双胍及其氯化消毒副产物广泛存在于世界饮用水系统中,尽管目前饮用水中的剂量不会对人体健康造成危害,但随着时间的推移,其对全球饮用水安全和生命健康可造成不容忽视的潜在威胁,但目前这些都还未引起广泛关注。因此,针对环境水体中二甲双胍的分布之广、含量之高、危害之大的现状及检测需求,亟需发展高灵敏、低成本的快检新方法,实时监测环境水体中二甲双胍的含量,这对水污染的有效评估和防治、饮用水安全保障等具有重要意义。
为满足二甲双胍的检测需求,迫切需要发展可靠、高效、灵敏、快速、价格低廉的分析检测方法。目前使用最广泛的二甲双胍检测技术主要包括高效液相色谱法、色谱-质谱联用法等,这些方法具有较高的灵敏度和准确度,但其局限性也很明显,如仪器设备体积庞大且昂贵、样品前处理复杂且耗时、有机溶剂消耗量大且检测成本高等,这在很大程度上使其无法在快速分析和应急检测时发挥作用;而且大部分的检测方法主要是针对盐酸二甲双胍缓释片含量的测定,尚未发展适用于实际水体环境中二甲双胍快速检测和筛查的新方法。因此需要开发高灵敏、低成本的二甲双胍选择性快检新平台,以满足实验室和现场快速检测需求,实时了解环境污染状况,及时采取应对措施。
电化学传感器因成本低、响应速度快、样品前处理简单、易于微型化等优势而备受关注,在环境污染物快速筛查和检测领域应用最为广泛。通过在电极表面修饰特定的化学功能团,可使化学修饰电极集分离、富集和检测于一体,在提高灵敏度和选择性等方面具有独特优越性,因此,电极修饰材料的选择是关键。近年来,碳纳米材料具有独特的理化性能,一直是材料领域的研究热点。氮掺杂的碳纳米管,具有比表面积大、导电性好、丰富的大π键、生物相容性好、催化活性和稳定性高以及表面易于功能化修饰和吸附等特性,并在催化、储能和化学传感器等领域具有广阔的应用前景。迄今为止,国内外还没有基于氮掺杂碳纳米管的电化学传感器应用于二甲双胍快检的报道。
发明内容
为了克服现有技术中存在的不足,本发明提出了一种快速检测二甲双胍的电化学传感器的制备方法及其应用,该方法利用纳米材料信号放大效应、表面修饰技术和电化学传感技术,构建一种成本低、灵敏度高、响应速度快、特异性好、操作简单的二甲双胍电化学传感器。引入的过渡金属离子,不仅能与二甲双胍配位形成电活性配合物,还可以通过阳离子-π相互作用与碳纳米材料中的共轭π键作用,自发地吸附到氮掺杂碳纳米管表面,增加电极表面参与反应的二甲双胍局部浓度,进而显著提高电化学响应信号。
本发明的具体技术方案为:
一种快速检测二甲双胍的电化学传感器的制备方法,包括以下步骤:
步骤1,将氮掺杂碳纳米管与N,N-二甲基甲酰胺混合,经超声预处理,得分散体系A,所述分散体系A中氮掺杂碳纳米管的浓度为1~5mg/mL;
步骤2,将成膜材料加入到步骤1制得的分散体系A中充分混匀,得混合溶液B;所述混合溶液B中:氮掺杂碳纳米管的浓度为0.5~3mg/mL,成膜材料浓度为0.01~2mg/mL;
步骤3,取步骤2制得的混合溶液B滴涂到抛光预处理后的玻碳电极表面,在室温下静置、晾干,得到电化学传感器。
进一步地,步骤2所述的成膜材料为壳聚糖溶液,壳聚糖溶液是将壳聚糖溶于1%的乙酸溶液所得。
优选地,所述壳聚糖是从蟹壳和/或虾壳中所获得的直链高分子聚合物,其壳聚糖脱乙酰度为75%~85%。
进一步地,步骤3所述玻碳电极表面进行抛光预处理过程为:用三氧化二铝粉末将玻碳电极表面抛光,然后依次在无水乙醇和去离子水中反复超声清洗,之后用高纯氮气将电极表面吹干待用;所述三氧化二铝粉末粒径为0.05μm。
优选地,所述三氧化二铝粉末粒径在具有0.05μm的基础上,还包括1μm、0.3μm中的一种或两种,按照粒径由大到小的顺序依次使用对玻碳电极表面进行抛光预处理。
采用上述方法制备的快速检测二甲双胍的电化学传感器,该电化学传感器为氮掺杂碳纳米管修饰的玻碳电极。
上述快速检测二甲双胍的电化学传感器的应用,包括步骤如下:
步骤1,将所述氮掺杂碳纳米管修饰的玻碳电极、Ag/AgCl参比电极、Pt电极组成的三电极系统浸入含二甲双胍、过渡金属离子及缓冲盐溶液的电解质溶液中;
步骤2,对二甲双胍进行富集处理;
步骤3,采用差分脉冲伏安法检测二甲双胍的电化学信号,得到差分脉冲伏安曲线。
进一步地,所述过渡金属离子为铜离子,浓度为0.01~1mmol/L。
进一步地,所述缓冲盐溶液为磷酸缓冲盐溶液、Tris缓冲盐溶液、硼砂缓冲盐溶液中的一种。
进一步地,所述缓冲盐溶液pH值为9~12。
进一步地,所述缓冲盐溶液优选磷酸缓冲盐溶液,为Na2HPO4和NaH2PO4的20~100mmol/L等摩尔浓度混合水溶液。
进一步地,通过所述电化学传感器扫描得到的差分脉冲伏安曲线中峰电位的位置,对样品中的二甲双胍进行定性;并通过检测到的峰电流强度与对应已知二甲双胍的浓度关系而得到标准曲线,对二甲双胍浓度进行定量检测。
优选地,步骤2富集参数为:富集电位为-0.2~0.1V、富集时间为60~120s。
优选地,步骤3中差分脉冲伏安法的检测电位为0~1.0V,电位增量5mV,脉冲幅度50mV,脉冲宽度50ms,进行扫描,记录响应电流信号。
优选地,所述电化学传感器可应用于检测水体环境样品、面粉及面粉制品中二甲双胍的检测。
优选所述检测包括以下步骤:将所述电化学传感器放入空白检测溶液中,将已知浓度的二甲双胍作为目标分析物加入到上述检测溶液中,同时进行差分脉冲伏安扫描并记录响应的伏安曲线,通过曲线中的电流响应信号I和二甲双胍浓度C组成校正曲线,来计算分析样品中二甲双胍的浓度含量。
本发明的有益效果为:
(1)氮掺杂碳纳米管具有优异的导电性,极大地提高了修饰电极的电子转移速率;较大的比表面积,为催化底物的附着提供大量的活性位点;其与过渡金属离子间的阳离子-π相互作用,可吸附过渡金属离子-二甲双胍配合物,可增加电极表面参与反应的二甲双胍的浓度;氮掺杂碳纳米管还具有较高的电催化活性,极大提高了传感器的检测灵敏度和检测限。
(2)过渡金属离子不仅能与二甲双胍键合形成电活性配合物,还能催化二甲双胍的电化学氧化,进一步提高传感器的检测灵敏度。
(3)壳聚糖是一种线性匀聚物,具有良好的成膜能力和生物相容性。
(4)所制备的电化学传感器价格低廉,对实际样品中二甲双胍的检测不需要复杂的样品前处理,操作简单,响应速度快,灵敏度高,选择性好,适用范围广,易于微型化,设备便携,适合现场检测。
(5)本发明制备的电化学传感器对环境水体样品、面粉及面粉制品中二甲双胍的检测,具有较高的灵敏度,且能够实现同时、快速、准确、高效地评价实际样品中二甲双胍的浓度水平,与常规的色谱-质谱联用法相比,具有样品前处理简单、检测速度快、成本低、设备可靠便携等优势,可用于现场筛查和检测环境污染物。
附图说明
图1为本发明实施例1氮掺杂碳纳米管的透射电子显微镜(TEM)图;
图2为本发明实施例1氮掺杂碳纳米管的扫描电子显微镜(SEM)图;
图3为本发明实施例1氮掺杂碳纳米管的X射线衍射(XRD)图;
图4为本发明实施例3中不同浓度的Cu2+对响应信号的影响;
图5为本发明实施例4中不同pH对传感器检测性能的影响曲线图;
图6为本发明实施例5中的裸电极与氮掺杂碳纳米管修饰电极检测二甲双胍的差分脉冲伏安曲线图;
图7和图8分别为实施例6中富集时间和富集电位对响应信号的影响;
图9和图10为本发明实施例7中的二甲双胍检测的伏安图及电流-浓度线性相关曲线图。
具体实施方式
以下实施例用于说明本发明,但不限制本发明的范围。
电化学传感器的制备与样品的检测过程具体步骤如下:
(a)将氮掺杂碳纳米管与N,N-二甲基甲酰胺混合,经超声预处理,得分散体系A;所述分散体系A中氮掺杂碳纳米管的浓度为1~5mg/mL;
(b)将壳聚糖溶于1%的乙酸溶液中,得壳聚糖溶液;
(c)将壳聚糖溶液与氮掺杂碳纳米管分散液混合,取2μL上述含有氮掺杂碳纳米管-壳聚糖(NCNT-Chi)的复合溶液滴加到已经进行抛光处理的玻碳电极表面,在室温下静置晾干,得到所述电化学传感器。
(d)以所述电化学传感器为工作电极,以银/氯化银电极作为参比电极,铂电极作为辅助电极,构建电化学检测三电极体系,以磷酸缓冲溶液为电解质溶液,以差分脉冲伏安法为检测手段检测二甲双胍。
以下是部分本发明实施例中所用到的仪器和设备,其它未具体注明的实验条件,按照常规或仪器制造厂建议的条件。
实施例1
氮掺杂碳纳米管的表征
通过透射电镜(TEM)、扫描电镜(SEM)和X-射线衍射(XRD)对氮掺杂碳纳米管的形貌和结构进行表征。图1、图2和图3给出了氮掺杂碳纳米管的TEM、SEM和XRD图谱。从图1中的TEM图和图2中的SEM图中可以看出,氮掺杂碳纳米管具有一维束状管结构,表面光滑;直径在10-45nm之间,内径在5-20nm之间。图3的XRD图谱显示,N-CNT在26.0处有一个明显的衍射峰,对应着石墨碳的(002)晶面,而42.9处还存在一个弱峰,此处对应(111)晶面。
实施例2
电化学传感器制备
玻碳电极组装步骤:
(a)依次用粒径分别为1μm,0.3μm,0.05μm的三氧化二铝粉末将玻碳电极表面抛光,然后在无水乙醇和去离子水中反复超声清洗,用高纯氮气将电极表面吹干待用。随后在1mmol/L的铁氰化钾/亚铁氰化钾溶液(摩尔比1:1)中,扫描循环伏安曲线。该曲线氧化还原峰电位差小于70mV,说明玻碳电极表面的氧化还原反应属于完全可逆反应,电极抛光情况良好,可进行下一步实验。
(b)电化学传感器的构建:将壳聚糖溶液与氮掺杂碳纳米管分散液以1:3的体积比混合,得到最终混合液的组成:氮掺杂碳纳米管浓度为2mg/mL;壳聚糖浓度为0.05mg/mL,取2uL最终复合液滴到新抛光的玻碳电极表面,在室温下静置,缓慢晾干得到均匀薄膜的氮掺杂碳纳米管-壳聚糖电极(NCNT-Chi/GCE)。
实施例3
过渡金属离子Cu2+浓度的优化
以NCNT-Chi/GCE为工作电极、Ag/AgCl电极为参比电极,Pt电极为辅助电极,组成三电极系统,检测液为含不同浓度Cu2+的磷酸缓冲盐溶液(50mM,pH12)中,并采用差分脉冲伏安法检测5μM二甲双胍的电化学响应信号,如图4所示。在Cu2+浓度为0.75mmol L-1时,响应电流值最大。
实施例4
电化学传感器适用的pH范围
以NCNT-Chi/GCE为工作电极,以检测液为含0.75mmol L-1Cu2+的磷酸缓冲盐溶液(50mM),pH分别为8~12。将5μM的二甲双胍加入上述检测液中,进行差分脉冲伏安扫描,分别记录峰电流和峰电势与pH的关系曲线,如图5所示。从该图可知,电化学响应信号随着pH的升高而增大,表明二甲双胍的电化学氧化有质子参与,且本发明所研制的电化学传感器在适用于碱性条件下检测二甲双胍。
实施例5
NCNT-Chi电极与裸电极检测性能比较
分别以氮掺杂碳纳米管修饰后的玻碳电极和裸玻碳电极为工作电极,以含0.75mmol L-1Cu2+、pH为12的磷酸缓冲盐溶液为检测液,以差分脉冲伏安法检测5μM二甲双胍,并记录电化学响应信号。如图6所示,在0.0~1.0V电位范围内,单独的Cu2+和二甲双胍均无响应,而两者同时存在时,其响应信号明显增强,且远高于裸电极的,表明本发明的电化学传感器具有显著增强的响应灵敏度,能够满足二甲双胍高灵敏快速检测的需求。
实施例6
电化学传感器富集条件的优化
以NCNT-Chi/GCE为工作电极,以含0.75mmol L-1Cu2+、pH为12的磷酸缓冲盐溶液为检测液,以差分脉冲伏安法扫描检测5μM二甲双胍,检测之前先对二甲双胍进行富集,并考察富集时间和富集电位对电化学响应信号的影响。结果如图7和图8所示,电化学响应信号分别在富集时间80s和富集电位-0.1V处达到最大值。
实施例7
电化学传感器检测二甲双胍的标准溶液及实际应用
以NCNT-Chi/GCE为工作电极,以含0.75mmol L-1Cu2+、pH为12的磷酸缓冲盐溶液为检测液,富集时间为80s,富集电位-0.1V,在最优的检测条件下,采用差分脉冲伏安法检测一定浓度(0.25~12μM)的二甲双胍标准溶液,得到差分脉冲伏安曲线图(图9),根据每条伏安曲线上双酚类化合物的响应电流与已知浓度,得到电流强度与二甲双胍浓度之间的相关曲线(图10)。该传感器检测二甲双胍的线性范围为0.3~10μmol/L,响应灵敏度为4.5921μA/(μmol/L),检出限低至13.96nmol/L。其检测性能优于已报道的γ-Fe2O3@HAp/Cu(Ⅱ)(Sensors and Actuators B:Chemical,2018,270,405-416)、石墨烯-Cu(MicrochemicalJournal,2022,172,106877)和普鲁士蓝-碳纳米球(International Journal ofNanomedicine:2018,13,117-120)等传感器。
实施例8
基于氮掺杂碳纳米管的电化学传感器的选择性的评价
在二甲双胍浓度为5μM的情况下,向检测溶液中分别加入50μM的溴酸钾、氯乙酸、溴乙酸等消毒副产物及四环素和金霉素等抗生素作为干扰物于检测溶液中,进行差分脉冲伏安扫描,得到含上述五种干扰物的电化学响应信号。10倍消毒副产物的存在对二甲双胍响应信号无影响;而抗生素的存在会使二甲双胍的响应信号有少许的降低,但仍保留了原有信号的90%。结果显示,本发明的电化学传感器具有良好的选择性。
本发明的优点是:1对二甲双胍的灵敏度高;2检出限低;3选择性好;4本发明的传感器具有制备简单,无需复杂耗时的样品前处理,成本低,易于微型化等优势。

Claims (6)

1.一种快速检测二甲双胍的电化学传感器的应用,其特征在于,包括步骤如下:
步骤1,将氮掺杂碳纳米管修饰的玻碳电极、Ag/AgCl参比电极、Pt电极组成的三电极系统浸入含二甲双胍、过渡金属离子及缓冲盐溶液的电解质溶液中;
步骤2,对二甲双胍进行富集处理;
步骤3,采用差分脉冲伏安法检测二甲双胍的电化学信号,得到差分脉冲伏安曲线。
2.根据权利要求1所述快速检测二甲双胍的电化学传感器的应用,其特征在于,所述过渡金属离子为铜离子,浓度为0.01~1 mmol/L。
3.根据权利要求1所述快速检测二甲双胍的电化学传感器的应用,其特征在于,所述缓冲盐溶液为磷酸缓冲盐溶液、Tris缓冲盐溶液、硼砂缓冲盐溶液中的一种。
4.根据权利要求3所述快速检测二甲双胍的电化学传感器的应用,其特征在于,所述缓冲盐溶液的pH值为9~12。
5.根据权利要求3所述快速检测二甲双胍的电化学传感器的应用,其特征在于,所述富集处理的参数为:富集电位为-0.2~0.1 V,富集时间为60~120 s。
6.根据权利要求3所述快速检测二甲双胍的电化学传感器的应用,其特征在于,通过所述电化学传感器扫描得到的差分脉冲伏安曲线中峰电位的位置,对样品中的二甲双胍进行定性;并通过检测到的峰电流强度与对应已知二甲双胍的浓度关系而得到标准曲线,对二甲双胍进行定量检测。
CN202210635245.6A 2022-06-07 2022-06-07 一种快速检测二甲双胍的电化学传感器的制备方法及其应用 Active CN114994153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210635245.6A CN114994153B (zh) 2022-06-07 2022-06-07 一种快速检测二甲双胍的电化学传感器的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210635245.6A CN114994153B (zh) 2022-06-07 2022-06-07 一种快速检测二甲双胍的电化学传感器的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114994153A CN114994153A (zh) 2022-09-02
CN114994153B true CN114994153B (zh) 2023-07-25

Family

ID=83032772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210635245.6A Active CN114994153B (zh) 2022-06-07 2022-06-07 一种快速检测二甲双胍的电化学传感器的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114994153B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954667A (zh) * 2014-05-20 2014-07-30 上海第二工业大学 一种氮掺杂碳纳米管修饰的电化学传感器及其应用
CN106226373A (zh) * 2016-07-11 2016-12-14 天津理工大学 一种金/二氧化钛/碳纳米管传感器的制备方法及其同步检测生物小分子的方法
CN106596663A (zh) * 2016-12-10 2017-04-26 武汉市农业科学技术研究院农业环境安全检测研究所 一种盐酸二甲双胍快速检测方法
CN108717074A (zh) * 2018-05-23 2018-10-30 大连大学 一种纳米银线/氮掺杂多壁碳纳米管复合电极制备及应用该电极测定葡萄糖的方法
CN109541006A (zh) * 2018-10-11 2019-03-29 大连大学 一种用于测定盐酸二甲双胍的新型电极及其测定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201510765D0 (en) * 2015-06-18 2015-08-05 Inside Biometrics Ltd Method, apparatus and electrochemical test device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954667A (zh) * 2014-05-20 2014-07-30 上海第二工业大学 一种氮掺杂碳纳米管修饰的电化学传感器及其应用
CN106226373A (zh) * 2016-07-11 2016-12-14 天津理工大学 一种金/二氧化钛/碳纳米管传感器的制备方法及其同步检测生物小分子的方法
CN106596663A (zh) * 2016-12-10 2017-04-26 武汉市农业科学技术研究院农业环境安全检测研究所 一种盐酸二甲双胍快速检测方法
CN108717074A (zh) * 2018-05-23 2018-10-30 大连大学 一种纳米银线/氮掺杂多壁碳纳米管复合电极制备及应用该电极测定葡萄糖的方法
CN109541006A (zh) * 2018-10-11 2019-03-29 大连大学 一种用于测定盐酸二甲双胍的新型电极及其测定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants;Minh, TD et al.;Applied Catalysis B: Environmental;全文 *
单扫描示波极谱法测定片剂中的二甲双胍;周雪枫;孙楠;韩晓锋;莫卫民;;浙江工业大学学报(第06期);全文 *
溴百里酚蓝/多壁碳纳米管修饰玻碳电极测定冬虫夏草中腺嘌呤;冯宇婷;申贵隽;黄慧娟;;理化检验(化学分册)(第01期);全文 *

Also Published As

Publication number Publication date
CN114994153A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
Chamjangali et al. A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly (pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants
Wen et al. Self-powered sensor for trace Hg2+ detection
Ramya et al. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors
Zhang et al. A novel nonenzymatic sensor based on LaNi0. 6Co0. 4O3 modified electrode for hydrogen peroxide and glucose
Lin et al. Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes
Sadeghi et al. A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor
Buledi et al. Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis
CN110632143B (zh) 基于磁性分子印迹纳米复合物的电化学传感器及其制备方法和应用
Zhang et al. Direct electrocatalytic oxidation of hydrogen peroxide based on nafion and microspheres MnO2 modified glass carbon electrode
Tran et al. A state-of-the-art review on graphene-based nanomaterials to determine antibiotics by electrochemical techniques
Viswanathan et al. Nanomaterials for electrochemical sensing and decontamination of pesticides
Antherjanam et al. Simultaneous electrochemical determination of hydrazine and hydroxylamine on a thiadiazole derivative modified pencil graphite electrode
Wei et al. A review of current status of ratiometric molecularly imprinted electrochemical sensors: From design to applications
Manjula et al. Simple strategy synthesis of manganese cobalt oxide anchored on graphene oxide composite as an efficient electrocatalyst for hazardous 4-nitrophenol detection in toxic tannery waste
Zhang et al. Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing
Azriouil et al. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches
Sadeghi et al. Fabrication of a sensitive electrochemical sensor based on hybrid polyamide/chromotropic acid nanofibers electrospun on glassy carbon electrode for Hg2+ sensing in drinking water and canned fish samples
Mohd Razib et al. An enzyme-based biosensor for the detection of organophosphate compounds using mutant phosphotriesterase immobilized onto reduced graphene oxide
Issac et al. Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies
Dai et al. Electrochemical behavior of thionine at titanate nanotubes-based modified electrode: A sensing platform for the detection of trichloroacetic acid
Li et al. Reagentless electrochemiluminescence sensor for triazophos based on molecular imprinting electropolymerized poly (luminol-p-aminothiophenol) composite-modified gold electrode
Virutkar et al. Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection
Vinoth et al. Construction of functionalized carbon nanotube@ metal oxide nanocomposite for high-performance electrochemical measurement of antipyretic drug in water samples
Rajabi et al. Electrochemical determination of uric acid using nano resin modified carbon paste electrode as a new sensor
Manikandan et al. Recent advances in miniaturized electrochemical analyzers for hazardous heavy metal sensing in environmental samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant