CN114966773A - 一种ppp快速定位收敛方法、装置以及存储介质 - Google Patents

一种ppp快速定位收敛方法、装置以及存储介质 Download PDF

Info

Publication number
CN114966773A
CN114966773A CN202210566515.2A CN202210566515A CN114966773A CN 114966773 A CN114966773 A CN 114966773A CN 202210566515 A CN202210566515 A CN 202210566515A CN 114966773 A CN114966773 A CN 114966773A
Authority
CN
China
Prior art keywords
satellite
observation
coordinate data
target receiver
ppp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210566515.2A
Other languages
English (en)
Inventor
蔡成林
夏日平
凌玲
吕开慧
梁康凯
周仕琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210566515.2A priority Critical patent/CN114966773A/zh
Publication of CN114966773A publication Critical patent/CN114966773A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供一种PPP快速定位收敛方法、装置以及存储介质,属于卫星导航技术领域,方法包括:根据PPP‑B2b修正信息分别对各个伪距观测值的DCB差分码偏差修正得到修正后伪距观测值;通过广播星历导航电文计算卫星坐标数据以及卫星钟差数据得到卫星坐标数据以及卫星钟差数据;通过广播星历导航电文和观测文件得到卫星速度,并分别对各个卫星坐标数据、卫星速度和初始接收机位置的多普勒频移值重构得到多普勒频移值。本发明大幅度地缩短了PPP收敛时间,也提升了PPP定位精度,充分考虑了PPP收敛与定位精度的关键因素,满足了用户的需求,对PPP技术走向实用起到了关键作用。

Description

一种PPP快速定位收敛方法、装置以及存储介质
技术领域
本发明主要涉及卫星导航技术领域,具体涉及一种PPP快速定位收敛方法、装置以及存储介质。
背景技术
当前,国际上的PPP研究现状及现有加快PPP收敛的方法还存在很多不足之处。如:收敛时间依然满足不了现在用户的需求,无法大幅度缩短PPP收敛时间,没有充分考虑PPP收敛与定位精度的关键因素,从而无法使PPP技术走向实用。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种PPP快速定位收敛方法、装置以及存储介质。
本发明解决上述技术问题的技术方案如下:一种PPP快速定位收敛方法,包括如下步骤:
从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
本发明解决上述技术问题的另一技术方案如下:一种PPP快速定位收敛装置,包括:
偏差修正模块,用于从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
卫星数据获得模块,用于通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
重构模块,用于通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
定位收敛结果获得模块,用于对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
本发明解决上述技术问题的另一技术方案如下:一种PPP快速定位收敛装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,当所述处理器执行所述计算机程序时,实现如上所述的PPP快速定位收敛方法。
本发明解决上述技术问题的另一技术方案如下:一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的PPP快速定位收敛方法。
本发明的有益效果是:通过PPP-B2b修正信息分别对各个伪距观测值的DCB差分码偏差修正得到修正后伪距观测值,通过广播星历导航电文计算卫星坐标数据以及卫星钟差数据得到卫星坐标数据以及卫星钟差数据,通过广播星历导航电文和观测文件得到卫星速度,并分别对各个卫星坐标数据、卫星速度和初始接收机位置的多普勒频移值重构得到多普勒频移值,对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值的目标接收机位置分析得到快速定位收敛结果,大幅度地缩短了PPP收敛时间,也提升了PPP定位精度,充分考虑了PPP收敛与定位精度的关键因素,满足了用户的需求,对PPP技术走向实用起到了关键作用。
附图说明
图1为本发明实施例提供的一种PPP快速定位收敛方法的流程示意图;
图2为本发明实施例提供的一种PPP快速定位收敛装置的模块框图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
图1为本发明实施例提供的一种PPP快速定位收敛方法的流程示意图。
如图1所示,一种PPP快速定位收敛方法,包括如下步骤:
从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
应理解地,通过所述广播星历导航电文计算卫星钟差数据流程如下:
t1=t1'-Δt1
Δt1=a0+a1(t1-t1oc)+a2(t1-t1oc)2
其中,a0、a1、a2、t1oc均从所述广播星历导航电文中获得。
具体地,通过所述广播星历导航电文计算卫星位置(即所述卫星坐标数据)流程如下:
1、计算轨道长半轴A',如下式:
Figure BDA0003657852630000051
其中
Figure BDA0003657852630000052
来自广播星历导航电文参数,
2、计算平均角速度n'0,如下式:
Figure BDA0003657852630000053
其中GM为地球引力常数,
3、计算相对于星历参考历元的时间tk,如下式:
Figure BDA0003657852630000054
t为所计算卫星位置的时刻,toe为星历中的星历参考时刻,
4、对平均运动角速度进行改正n',如下式:
n'=n'0+Δn',其中Δn'来自所述广播星历导航电文。
5、计算平近点角Mk,如下式:
Mk=M'0+n'·tk,其中M'0来自所述广播星历导航电文。
6、计算偏近点角Ek,如下式:
Mk=Ek-e·sinEk,其中e来自所述广播星历导航电文
7、计算真近点角f,如下式:
Figure BDA0003657852630000055
其中e来自所述广播星历导航电文,Ek来自第6步。
8、计算升交角距u',如下式:
u'=f+ω,其中ω来自所述广播星历导航电文(omega)
9、计算升交角距改正数δuk,向径改正数δrk,轨道倾角改正数δik,如下式:
Figure BDA0003657852630000056
10、计算改正后的升交角距uk,向径rk和轨道倾角ik,如下式:
Figure BDA0003657852630000061
其中,e,i0,IDOT来自所述广播星历导航电文
11、计算卫星在轨道平面上的位置(xk,yk),如下式:
Figure BDA0003657852630000062
12、计算改正后的升交点经度Lk,如下式:
Figure BDA0003657852630000063
其中:Ω0来自所述广播星历导航电文(OMEGA),
Figure BDA0003657852630000064
来自所述广播星历导航电文(OMEGADot),ωearth为地球自转角速度,数值为7.292115e10-5,t为计算的历元时刻(周秒),toe为星历参考时刻(周秒),
13、计算卫星在地心坐标系下的坐标(X,Y,Z),如下式:
Figure BDA0003657852630000065
上述实施例中,通过PPP-B2b修正信息分别对各个伪距观测值的DCB差分码偏差修正得到修正后伪距观测值,通过广播星历导航电文计算卫星坐标数据以及卫星钟差数据得到卫星坐标数据以及卫星钟差数据,通过广播星历导航电文和观测文件得到卫星速度,并分别对各个卫星坐标数据、卫星速度和初始接收机位置的多普勒频移值重构得到多普勒频移值,对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值的目标接收机位置分析得到快速定位收敛结果,大幅度地缩短了PPP收敛时间,也提升了PPP定位精度,充分考虑了PPP收敛与定位精度的关键因素,满足了用户的需求,对PPP技术走向实用起到了关键作用。
可选地,作为本发明的一个实施例,所述分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值的过程包括:
通过第一式分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值,所述第一式为:
Figure BDA0003657852630000071
其中,
Figure BDA0003657852630000072
其中,
Figure BDA0003657852630000073
其中,fd为多普勒频移值,
Figure BDA0003657852630000074
为初始接收机速度,
Figure BDA0003657852630000075
为卫星速度,λ为卫星频率的波长,·为向量点乘,
Figure BDA0003657852630000076
为单位观测向量,
Figure BDA0003657852630000077
为观测向量,
Figure BDA0003657852630000078
为卫星坐标数据与接收机的几何距离,(xu,yu,zu)为初始接收机位置,(xs,ys,zs)为卫星坐标数据。
应理解地,利用接收机得到广播星历(即所述广播星历导航电文)计算得到的卫星位置Ps(即所述卫星坐标数据)以及卫星速度
Figure BDA0003657852630000079
三维向量(即所述卫星速度),将公式推广到单点定位中,可推导出重构多普勒频移值fd
具体地,由于广播星历(即所述广播星历导航电文)计算得到的卫星位置Ps(即所述卫星坐标数据)以及卫星速度
Figure BDA00036578526300000710
三维向量(即所述卫星速度)都是基于地心地固(ECEF)坐标系的,即该坐标系随地球自转而转动,因此不需要考虑地球自转对多普勒的影响。对于卫星定位而言,卫星是围绕地球转动的,所以卫星定位属于移动型信号发射源,将公式推广到单点定位中,可推导出重构多普勒频移值fd
具体地,卫星在接收机处的观测向量
Figure BDA0003657852630000081
的方向从接收机指向卫星,向量
Figure BDA0003657852630000082
表示接收机的速度。设
Figure BDA0003657852630000083
Ps=(xs,ys,zs),通过伪距定位方式得到的接收机位置Pu=(xu,yu,zu)(即所述初始接收机位置)。故
Figure BDA0003657852630000084
那么多普勒重构值可由下式计算得到:
Figure BDA0003657852630000085
式中“.”表示向量点乘,
Figure BDA0003657852630000086
是单位观测向量,
Figure BDA0003657852630000087
为卫星和接收机的几何距离,λ是对应卫星频率的波长,
Figure BDA0003657852630000088
是接收机速度向量。
上述实施例中,通过第一式分别对各个卫星坐标数据、卫星速度和初始接收机位置的多普勒频移值重构得到多普勒频移值,大幅度地缩短了PPP收敛时间,也提升了PPP定位精度,对PPP技术走向实用起到了关键作用。
可选地,作为本发明的一个实施例,所述对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差的过程包括:
分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度;
通过第一方程组对所有的整周模糊度、所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值和所有的载波相位观测值进行目标接收机位置的计算,得到目标接收机位置和目标接收机钟差,所述第一方程组为:
Figure BDA0003657852630000091
其中,
Figure BDA0003657852630000092
Figure BDA0003657852630000093
Figure BDA0003657852630000094
Figure BDA0003657852630000095
Figure BDA0003657852630000096
Figure BDA0003657852630000097
Figure BDA0003657852630000098
Figure BDA0003657852630000099
Figure BDA00036578526300000910
其中,
Figure BDA00036578526300000911
Figure BDA00036578526300000912
其中,n为卫星数量,A1为第一个卫星的系数矩阵,A2为第二个卫星的系数矩阵,An为第n个卫星的系数矩阵,(x,y,z)为目标接收机位置,dx为目标接收机x坐标的偏导,dy为目标接收机y坐标的偏导,dz为目标接收机z坐标的偏导,d(c*dt)为目标接收机钟差的偏导,dt为目标接收机钟差,c为光速,d(dT_w)为对流层天顶方向延迟湿分量,dT_w为对流层天顶方向延迟湿分量的偏导,d(λNIF1)为第一个卫星的整周模糊度的偏导,λ为波长,NIF1为第一个卫星的整周模糊度,d(λNIF2)为第二个卫星的整周模糊度的偏导,NIF2为第二个卫星的整周模糊度,d(λNIFn)为第n个卫星的整周模糊度的偏导,NIFn为第n个卫星的整周模糊度,
Figure BDA0003657852630000101
为第一个卫星的伪距观测方程,
Figure BDA0003657852630000102
为第一个卫星的载波相位观测方程,
Figure BDA0003657852630000103
为第二个卫星的伪距观测方程,
Figure BDA0003657852630000104
为第二个卫星的载波相位观测方程,
Figure BDA0003657852630000105
为第n个卫星的伪距观测方程,
Figure BDA0003657852630000106
为第n个卫星的载波相位观测方程,(x01,y01,z01)为第一个卫星的卫星坐标数据,M1为第一个卫星的对流层延迟映射函数,P1为第一个卫星的修正后伪距观测值,ρ01为第一个卫星的目标接收机位置到卫星坐标数据的几何距离,dT1为第一个卫星的卫星钟差数据,
Figure BDA0003657852630000107
为第一个卫星的伪距观测噪声,Φ1为第一个卫星的载波相位观测值,
Figure BDA0003657852630000108
为第一个卫星的相位观测噪声,(x02,y02,z02)为第二个卫星的卫星坐标数据,M2为第二个卫星的对流层延迟映射函数,P2为第二个卫星的修正后伪距观测值,ρ02为第二个卫星的目标接收机位置到卫星坐标数据的几何距离,dT2为第二个卫星的卫星钟差数据,
Figure BDA0003657852630000109
为第二个卫星的伪距观测噪声,Φ2为第二个卫星的载波相位观测值,
Figure BDA00036578526300001010
为第二个卫星的相位观测噪声,(x0n,y0n,z0n)为第n个卫星的卫星坐标数据,Mn为第n个卫星的对流层延迟映射函数,Pn为第n个卫星的修正后伪距观测值,ρ0n为第n个卫星的目标接收机位置到卫星坐标数据的几何距离,dTn为第n个卫星的卫星钟差数据,
Figure BDA00036578526300001011
为第n个卫星的伪距观测噪声,Φn为第n个卫星的载波相位观测值,
Figure BDA00036578526300001012
为第n个卫星的相位观测噪声。
应理解地,联合MW组合观测模型检测修正周跳盲点,将重构后计算后的周跳值代入观测方程求解得到接收机位置(Xs,Ys,Zs)和钟差dt。
具体地,双频无电离层组合模型具有可以消除一阶电离层影响且待估计参数较少的优点,定位性能较稳定,模型简单,操作方便。本发明在首次定位中采用与传统PPP定位方法所采用的伪距单点定位方式不同的方法,本发明采用重构多普勒平滑伪距单点定位的方法。可以降低伪距的噪声,提高伪距精度。模糊度固定采用方差自适应因子与协方差矩阵的迹的联合固定的方法,可以使传统的浮点解固定为整数解且大大提高固定率,收敛速度大大缩短。
具体地,在精密单点定位中,观测误差的处理方式有很多种,通常情况下会采用通过相应的误差改正模型对观测值进行改正、观测值的线性组合以及参数估计等方法对测量过程中的各种延迟误差进行处理。本文所采用的是通过双频观测值的线性组合来消除电离层延迟误差,即无电离层组合模型,该模型的理论依据如下式:
Figure BDA0003657852630000111
式中f1和f2为载波B1C和B2a的频率,a1和a2为双频观测值的组合系数,理论上只要满足a1和a2都可以成为无电离层组合模型的观测值的组合系数,但实际上a1和a2的取值如下式:
Figure BDA0003657852630000112
所以我们可以得出无电离层影响的精密单点定位模型的观测方程为:
Figure BDA0003657852630000113
Figure BDA0003657852630000114
过上述分析可知无电离层影响的精密单点定位的观测方程包括下列待估参数,例如测站点的三维坐标误差、北斗接收机钟差、对流层天顶湿延迟误差作为待估参数:
X=[dx dy dz d(c*dT) dT_w]
将(1)(2)利用泰勒级数展开可得:
Figure BDA0003657852630000121
Figure BDA0003657852630000122
式中
Figure BDA0003657852630000123
将(3)(4)写成矩阵形式为:
Figure BDA0003657852630000124
上式中
Figure BDA0003657852630000125
由上式可得1颗卫星的无电离层影响的精密单点定位模型误差方程的系数矩阵为:
Figure BDA0003657852630000126
当接收机同时观测n颗卫星时,观测方程的个数为2n,待求参数的个数为5个,观测方程用矩阵形式表达为:
Figure BDA0003657852630000127
通过最小二乘法解算上述矩阵定位方程,通过牛顿迭代得到最终收敛结果(即所述目标接收机位置和所述目标接收机钟差)。
具体地,PPP定位模型经过综合考虑采用性能较优的双频无电离层组合模型。数学模型如下:
Figure BDA0003657852630000131
Figure BDA0003657852630000132
上述两式中,PIF和φIF分别是北斗卫星B1C和B2A上的伪距观测值和载波相位观测值的无电离层线性组合值。ρ是接收机到卫星的几何距离,G为对流层天顶方向投影函数,dT_h是对流层天顶方向延迟干分量,dT_h由Saastamoinen模型得到,dT_w是对流层天顶方向延迟湿分量,dT_w作为待估参数与位置参数一起参与解算。dmult是伪距和相位的多路径误差。
Figure BDA0003657852630000135
是伪距的观测噪声,
Figure BDA0003657852630000133
是相位的观测噪声,上述的单位都是m。c为光速,λIF(单位:m/周)和NIF(单位:周)分别是B1C和B2A线性组合后的波长和整周模糊度。dt是接收机钟差,dT是卫星钟差,单位都是s。观测方程中的其他误差项(如:天线相位中心改正、相位缠绕效应、潮汐负荷变形、相对论效应和地球自转等)均采用模型改正。
应理解地,双频无电离层组合模型中的接收机到卫星的几何距离ρ的计算公式如下:
Figure BDA0003657852630000134
上述实施例中,对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值的目标接收机位置分析得到目标接收机位置和目标接收机钟差,具有可以消除一阶电离层影响且待估计参数较少的优点,且定位性能较稳定,模型简单,操作方便,降低了伪距的噪声,提高了伪距精度,大大地提高了固定率,收敛速度大大缩短。
可选地,作为本发明的一个实施例,所述载波相位观测值包括当前历元载波相位观测值和下一历元载波相位观测值,
所述分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度的过程包括:
通过第二式分别对各个所述当前历元载波相位观测值、与各个所述卫星对应的下一历元载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度,所述第二式为:
Figure BDA0003657852630000141
其中,NIF为整周模糊度,φWL(ti)为当前历元载波相位观测值,φWL(ti+1)为下一历元载波相位观测值,fd(t)为多普勒频移值,ti为当前历元,ti+1为下一历元。
应理解地,NIF=ΔN1-ΔN2
应理解地,通过重构出的多普勒为fd,按照最初多普勒积分法探测周跳的思路,周跳组合可以表示成如下:
Figure BDA0003657852630000142
具体地,重构多普勒误差主要来源于中分子计算的部分,若组合出来的波长越长,即上式中分母变大,重构误差就会减小。下面以北斗为例,北斗的频率B1=1561.098MHz和B2=1207.14MHz,对应的相位观测值φ1和φ2可以表示成如下:
Figure BDA0003657852630000143
Figure BDA0003657852630000144
在上式中,c是光速,N1和N2分别表示B1和B2的整周模糊度,单位:周。φ表示相位的小数部分,δ表示其他误差,包括频率相关的接收机和卫星端的非校正硬件延迟、相位延迟,观测噪声、多路径效应及其他未模型化的误差。对于同一颗卫星和同一台接收机而言,卫星钟差dts、接收机钟差dtr,对流层延迟是完全相同的,电离层的误差由于受到频率的影响而不同,而且其他误差δ也具有一定的正相关性。
设站星距为ρ,用下标1、2、WL分别表示B1、B2、组合频率的数据,那么可列出如下关系:
Figure BDA0003657852630000151
因为λ1=c/B1,λ2=c/B2,那么上式可改写为下式:
Figure BDA0003657852630000152
所以φWL=φ12,即组合的载波相位可由两式相减得到下式:
Figure BDA0003657852630000153
设当前历元为ti,后一历元为ti+1,若对上式中相邻历元相减,由于上式中的卫星钟差和接收机钟差基本相同,可以认为基本消去,那么组合的相位观测量的变化量为:
Figure BDA0003657852630000154
在对流层变化平缓时,相邻历元的电离层误差较为接近,因此
Figure BDA0003657852630000155
Figure BDA0003657852630000156
很小,这里主要误差为电离层残差和随机噪声。这样的组合虽然有小部分噪声会随之放大,但是可以消除大部分误差,最大的优点在于组合相位的波长相对单频而言很长。
把双频组合的波长代入,重构出的多普勒为fd。按照最初多普勒积分法探测周跳的思路,周跳组合可以表示成如下:
Figure BDA0003657852630000161
其中ΔN1和ΔN2分别表示B1和B2频点上发生的周跳,此时对式右边得到的结果进行四舍五入取整,可以得到ΔN1-ΔN2的整数解。显然当ΔN1=ΔN2时,就跟无周跳的结果一样,因此需要联合其他方法把这些周跳盲点也探测出来。
上述实施例中,通过第二式分别对各个当前历元载波相位观测值、下一历元载波相位观测值以及多普勒频移值的整周模糊度计算得到整周模糊度,消除大部分误差,且波长相对单频而言很长,降低了伪距的噪声,提高了伪距精度,大大地提高了固定率,收敛速度大大缩短。
可选地,作为本发明的另一个实施例,本发明本单历元CZS-PPP新定位方法采用由北斗卫星播发的PPP-B2b修正信息对北斗广播星历进行修正,得到修正后的实时精密轨道和精密钟差,利用PPP-B2b修正信息对北斗卫星三号的B1C和B2A双频伪距观测值进行DCB修正。再用实时精密轨道和多普勒产生原理,重构无误差的多普勒,利用多普勒积分方程重构载波相位变化量进行伪距重构,到达平滑伪距的效果。PPP定位模型经过综合考虑采用性能较优的双频无电离层组合模型。
可选地,作为本发明的另一个实施例,本发明特此提出CZS-PPP新方法来大幅度缩短PPP收敛时间,实现大幅度缩短PPP收敛时间并提升PPP定位精度是BDS-3/GNSS实时PPP真正走向实用的关键。本发明从制约PPP超快收敛与定位精度的关键因素(如整周模糊度固定、系统残余误差等)出发,提出一种载波相位和多普勒重构的实时PPP(CZS-PPP)超快收敛新方法。首先利用北斗卫星播发的PPP-B2b修正信息对北斗广播星历进行修正,得到实时精密轨道和精密钟差,再用实时精密轨道和多普勒产生原理,重构无误差的多普勒,利用多普勒积分方程重构载波相位变化量,最后,联合BDS-3/GNSS建立CZS-PPP定位数学模型。最终实现PPP的超快收敛和实时高精度定位。
应理解地,用实时精密轨道和多普勒原理,重构无误差的多普勒,利用多普勒积分方程重构载波相位变化量进行伪距重构,到达平滑伪距的效果。
可选地,作为本发明的另一个实施例,本发明利用卫星与接收机间的多普勒形成的原理和模型,仅需要广播星历,适合实时应用。
图2为本发明实施例提供的一种PPP快速定位收敛装置的模块框图。
可选地,作为本发明的另一个实施例,如图2所示,一种PPP快速定位收敛装置,包括:
偏差修正模块,用于从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
卫星数据获得模块,用于通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
重构模块,用于通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
定位收敛结果获得模块,用于对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
可选地,作为本发明的一个实施例,所述重构模块具体用于:
通过第一式分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值,所述第一式为:
Figure BDA0003657852630000181
其中,
Figure BDA0003657852630000182
其中,
Figure BDA0003657852630000183
其中,fd为多普勒频移值,
Figure BDA0003657852630000184
为初始接收机速度,
Figure BDA0003657852630000185
为卫星速度,λ为卫星频率的波长,·为向量点乘,
Figure BDA0003657852630000186
为单位观测向量,
Figure BDA0003657852630000187
为观测向量,
Figure BDA0003657852630000188
为卫星坐标数据与接收机的几何距离,(xu,yu,zu)为初始接收机位置,(xs,ys,zs)为卫星坐标数据。
可选地,作为本发明的一个实施例,所述定位收敛结果获得模块具体用于:
分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度;
通过第一方程组对所有的整周模糊度、所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值和所有的载波相位观测值进行目标接收机位置的计算,得到目标接收机位置和目标接收机钟差,所述第一方程组为:
Figure BDA0003657852630000191
其中,
Figure BDA0003657852630000192
Figure BDA0003657852630000193
Figure BDA0003657852630000194
Figure BDA0003657852630000195
Figure BDA0003657852630000196
Figure BDA0003657852630000197
Figure BDA0003657852630000198
Figure BDA0003657852630000199
Figure BDA00036578526300001910
其中,
Figure BDA00036578526300001911
Figure BDA00036578526300001912
其中,n为卫星数量,A1为第一个卫星的系数矩阵,A2为第二个卫星的系数矩阵,An为第n个卫星的系数矩阵,(x,y,z)为目标接收机位置,dx为目标接收机x坐标的偏导,dy为目标接收机y坐标的偏导,dz为目标接收机z坐标的偏导,d(c*dt)为目标接收机钟差的偏导,dt为目标接收机钟差,c为光速,d(dT_w)为对流层天顶方向延迟湿分量,dT_w为对流层天顶方向延迟湿分量的偏导,d(λNIF1)为第一个卫星的整周模糊度的偏导,λ为波长,NIF1为第一个卫星的整周模糊度,d(λNIF2)为第二个卫星的整周模糊度的偏导,NIF2为第二个卫星的整周模糊度,d(λNIFn)为第n个卫星的整周模糊度的偏导,NIFn为第n个卫星的整周模糊度,
Figure BDA0003657852630000201
为第一个卫星的伪距观测方程,
Figure BDA0003657852630000202
为第一个卫星的载波相位观测方程,
Figure BDA0003657852630000203
为第二个卫星的伪距观测方程,
Figure BDA0003657852630000204
为第二个卫星的载波相位观测方程,
Figure BDA0003657852630000205
为第n个卫星的伪距观测方程,
Figure BDA0003657852630000206
为第n个卫星的载波相位观测方程,(x01,y01,z01)为第一个卫星的卫星坐标数据,M1为第一个卫星的对流层延迟映射函数,P1为第一个卫星的修正后伪距观测值,ρ01为第一个卫星的目标接收机位置到卫星坐标数据的几何距离,dT1为第一个卫星的卫星钟差数据,
Figure BDA0003657852630000207
为第一个卫星的伪距观测噪声,Φ1为第一个卫星的载波相位观测值,
Figure BDA0003657852630000208
为第一个卫星的相位观测噪声,(x02,y02,z02)为第二个卫星的卫星坐标数据,M2为第二个卫星的对流层延迟映射函数,P2为第二个卫星的修正后伪距观测值,ρ02为第二个卫星的目标接收机位置到卫星坐标数据的几何距离,dT2为第二个卫星的卫星钟差数据,
Figure BDA0003657852630000209
为第二个卫星的伪距观测噪声,Φ2为第二个卫星的载波相位观测值,
Figure BDA00036578526300002010
为第二个卫星的相位观测噪声,(x0n,y0n,z0n)为第n个卫星的卫星坐标数据,Mn为第n个卫星的对流层延迟映射函数,Pn为第n个卫星的修正后伪距观测值,ρ0n为第n个卫星的目标接收机位置到卫星坐标数据的几何距离,dTn为第n个卫星的卫星钟差数据,
Figure BDA00036578526300002011
为第n个卫星的伪距观测噪声,Φn为第n个卫星的载波相位观测值,
Figure BDA00036578526300002012
为第n个卫星的相位观测噪声。
可选地,作为本发明的一个实施例,所述载波相位观测值包括当前历元载波相位观测值和下一历元载波相位观测值,
所述定位收敛结果获得模块中,分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度的过程包括:
通过第二式分别对各个所述当前历元载波相位观测值、与各个所述卫星对应的下一历元载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度,所述第二式为:
Figure BDA0003657852630000211
其中,NIF为整周模糊度,φWL(ti)为当前历元载波相位观测值,φWL(ti+1)为下一历元载波相位观测值,fd(t)为多普勒频移值,ti为当前历元,ti+1为下一历元。
可选地,本发明的另一个实施例提供一种PPP快速定位收敛装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,当所述处理器执行所述计算机程序时,实现如上所述的PPP快速定位收敛方法。该装置可为计算机等装置。
可选地,本发明的另一个实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的PPP快速定位收敛方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种PPP快速定位收敛方法,其特征在于,包括如下步骤:
从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
2.根据权利要求1所述的PPP快速定位收敛方法,其特征在于,所述分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值的过程包括:
通过第一式分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值,所述第一式为:
Figure FDA0003657852620000021
其中,
Figure FDA0003657852620000022
其中,
Figure FDA0003657852620000023
其中,fd为多普勒频移值,
Figure FDA0003657852620000024
为初始接收机速度,
Figure FDA0003657852620000025
Figure FDA0003657852620000026
为卫星速度,λ为卫星频率的波长,·为向量点乘,
Figure FDA0003657852620000027
为单位观测向量,
Figure FDA0003657852620000028
为观测向量,
Figure FDA0003657852620000029
为卫星坐标数据与接收机的几何距离,(xu,yu,zu)为初始接收机位置,(xs,ys,zs)为卫星坐标数据。
3.根据权利要求1所述的PPP快速定位收敛方法,其特征在于,所述对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差的过程包括:
分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度;
通过第一方程组对所有的整周模糊度、所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值和所有的载波相位观测值进行目标接收机位置的计算,得到目标接收机位置和目标接收机钟差,所述第一方程组为:
Figure FDA00036578526200000210
其中,
Figure FDA0003657852620000031
Figure FDA0003657852620000032
Figure FDA0003657852620000033
Figure FDA0003657852620000034
Figure FDA0003657852620000035
Figure FDA0003657852620000036
Figure FDA0003657852620000037
Figure FDA0003657852620000038
Figure FDA0003657852620000039
其中,
Figure FDA00036578526200000310
Figure FDA00036578526200000311
其中,n为卫星数量,A1为第一个卫星的系数矩阵,A2为第二个卫星的系数矩阵,An为第n个卫星的系数矩阵,(x,y,z)为目标接收机位置,dx为目标接收机x坐标的偏导,dy为目标接收机y坐标的偏导,dz为目标接收机z坐标的偏导,d(c*dt)为目标接收机钟差的偏导,dt为目标接收机钟差,c为光速,d(dT_w)为对流层天顶方向延迟湿分量,dT_w为对流层天顶方向延迟湿分量的偏导,d(λNIF1)为第一个卫星的整周模糊度的偏导,λ为波长,NIF1为第一个卫星的整周模糊度,d(λNIF2)为第二个卫星的整周模糊度的偏导,NIF2为第二个卫星的整周模糊度,d(λNIFn)为第n个卫星的整周模糊度的偏导,NIFn为第n个卫星的整周模糊度,
Figure FDA00036578526200000312
为第一个卫星的伪距观测方程,
Figure FDA00036578526200000313
为第一个卫星的载波相位观测方程,
Figure FDA0003657852620000041
为第二个卫星的伪距观测方程,
Figure FDA0003657852620000042
为第二个卫星的载波相位观测方程,
Figure FDA0003657852620000043
为第n个卫星的伪距观测方程,
Figure FDA0003657852620000044
为第n个卫星的载波相位观测方程,(x01,y01,z01)为第一个卫星的卫星坐标数据,M1为第一个卫星的对流层延迟映射函数,P1为第一个卫星的修正后伪距观测值,ρ01为第一个卫星的目标接收机位置到卫星坐标数据的几何距离,dT1为第一个卫星的卫星钟差数据,
Figure FDA0003657852620000045
为第一个卫星的伪距观测噪声,Φ1为第一个卫星的载波相位观测值,
Figure FDA0003657852620000046
为第一个卫星的相位观测噪声,(x02,y02,z02)为第二个卫星的卫星坐标数据,M2为第二个卫星的对流层延迟映射函数,P2为第二个卫星的修正后伪距观测值,ρ02为第二个卫星的目标接收机位置到卫星坐标数据的几何距离,dT2为第二个卫星的卫星钟差数据,
Figure FDA0003657852620000047
为第二个卫星的伪距观测噪声,Φ2为第二个卫星的载波相位观测值,
Figure FDA0003657852620000048
为第二个卫星的相位观测噪声,(x0n,y0n,z0n)为第n个卫星的卫星坐标数据,Mn为第n个卫星的对流层延迟映射函数,Pn为第n个卫星的修正后伪距观测值,ρ0n为第n个卫星的目标接收机位置到卫星坐标数据的几何距离,dTn为第n个卫星的卫星钟差数据,
Figure FDA0003657852620000049
为第n个卫星的伪距观测噪声,Φn为第n个卫星的载波相位观测值,
Figure FDA00036578526200000410
为第n个卫星的相位观测噪声。
4.根据权利要求3所述的PPP快速定位收敛方法,其特征在于,所述载波相位观测值包括当前历元载波相位观测值和下一历元载波相位观测值,
所述分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度的过程包括:
通过第二式分别对各个所述当前历元载波相位观测值、与各个所述卫星对应的下一历元载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度,所述第二式为:
Figure FDA0003657852620000051
其中,NIF为整周模糊度,φWL(ti)为当前历元载波相位观测值,φWL(ti+1)为下一历元载波相位观测值,fd(t)为多普勒频移值,ti为当前历元,ti+1为下一历元。
5.一种PPP快速定位收敛装置,其特征在于,包括:
偏差修正模块,用于从接收机中获取PPP-B2b修正信息、广播星历导航电文、观测文件、初始接收机位置、分别与多个卫星对应的伪距观测值以及分别与多个卫星对应的载波相位观测值,并根据所述PPP-B2b修正信息分别对各个所述伪距观测值进行DCB差分码偏差修正,得到与各个所述卫星对应的修正后伪距观测值;
卫星数据获得模块,用于通过所述广播星历导航电文计算卫星坐标数据以及卫星钟差数据,得到与各个所述卫星对应的卫星坐标数据以及与各个所述卫星对应的卫星钟差数据;
重构模块,用于通过所述广播星历导航电文和所述观测文件得到与各个所述卫星对应的卫星速度,并分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值;
定位收敛结果获得模块,用于对所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值、所有的载波相位观测值和所有的多普勒频移值进行目标接收机位置的分析,得到目标接收机位置和目标接收机钟差,并将所述目标接收机位置和所述目标接收机钟差作为快速定位收敛结果。
6.根据权利要求5所述的PPP快速定位收敛装置,其特征在于,所述重构模块具体用于:
通过第一式分别对各个所述卫星坐标数据、与各个所述卫星对应的卫星速度和所述初始接收机位置进行多普勒频移值的重构,得到与各个所述卫星对应的多普勒频移值,所述第一式为:
Figure FDA0003657852620000061
其中,
Figure FDA0003657852620000062
其中,
Figure FDA0003657852620000063
其中,fd为多普勒频移值,
Figure FDA0003657852620000064
为初始接收机速度,
Figure FDA0003657852620000065
Figure FDA0003657852620000066
为卫星速度,λ为卫星频率的波长,·为向量点乘,
Figure FDA0003657852620000067
为单位观测向量,
Figure FDA0003657852620000068
为观测向量,
Figure FDA0003657852620000069
为卫星坐标数据与接收机的几何距离,(xu,yu,zu)为初始接收机位置,(xs,ys,zs)为卫星坐标数据。
7.根据权利要求5所述的PPP快速定位收敛装置,其特征在于,所述定位收敛结果获得模块具体用于:
分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度;
通过第一方程组对所有的整周模糊度、所有的卫星坐标数据、所有的卫星钟差数据、所有的修正后伪距观测值和所有的载波相位观测值进行目标接收机位置的计算,得到目标接收机位置和目标接收机钟差,所述第一方程组为:
Figure FDA00036578526200000610
其中,
Figure FDA0003657852620000071
Figure FDA0003657852620000072
Figure FDA0003657852620000073
Figure FDA0003657852620000074
Figure FDA0003657852620000075
Figure FDA0003657852620000076
Figure FDA0003657852620000077
Figure FDA0003657852620000078
Figure FDA0003657852620000079
其中,
Figure FDA00036578526200000710
Figure FDA00036578526200000711
其中,n为卫星数量,A1为第一个卫星的系数矩阵,A2为第二个卫星的系数矩阵,An为第n个卫星的系数矩阵,(x,y,z)为目标接收机位置,dx为目标接收机x坐标的偏导,dy为目标接收机y坐标的偏导,dz为目标接收机z坐标的偏导,d(c*dt)为目标接收机钟差的偏导,dt为目标接收机钟差,c为光速,d(dT_w)为对流层天顶方向延迟湿分量,dT_w为对流层天顶方向延迟湿分量的偏导,d(λNIF1)为第一个卫星的整周模糊度的偏导,λ为波长,NIF1为第一个卫星的整周模糊度,d(λNIF2)为第二个卫星的整周模糊度的偏导,NIF2为第二个卫星的整周模糊度,d(λNIFn)为第n个卫星的整周模糊度的偏导,NIFn为第n个卫星的整周模糊度,
Figure FDA00036578526200000712
为第一个卫星的伪距观测方程,
Figure FDA00036578526200000713
为第一个卫星的载波相位观测方程,
Figure FDA0003657852620000081
为第二个卫星的伪距观测方程,
Figure FDA0003657852620000082
为第二个卫星的载波相位观测方程,
Figure FDA0003657852620000083
为第n个卫星的伪距观测方程,
Figure FDA0003657852620000084
为第n个卫星的载波相位观测方程,(x01,y01,z01)为第一个卫星的卫星坐标数据,M1为第一个卫星的对流层延迟映射函数,P1为第一个卫星的修正后伪距观测值,ρ01为第一个卫星的目标接收机位置到卫星坐标数据的几何距离,dT1为第一个卫星的卫星钟差数据,
Figure FDA0003657852620000085
为第一个卫星的伪距观测噪声,Φ1为第一个卫星的载波相位观测值,
Figure FDA0003657852620000086
为第一个卫星的相位观测噪声,(x02,y02,z02)为第二个卫星的卫星坐标数据,M2为第二个卫星的对流层延迟映射函数,P2为第二个卫星的修正后伪距观测值,ρ02为第二个卫星的目标接收机位置到卫星坐标数据的几何距离,dT2为第二个卫星的卫星钟差数据,
Figure FDA0003657852620000087
为第二个卫星的伪距观测噪声,Φ2为第二个卫星的载波相位观测值,
Figure FDA0003657852620000088
为第二个卫星的相位观测噪声,(x0n,y0n,z0n)为第n个卫星的卫星坐标数据,Mn为第n个卫星的对流层延迟映射函数,Pn为第n个卫星的修正后伪距观测值,ρ0n为第n个卫星的目标接收机位置到卫星坐标数据的几何距离,dTn为第n个卫星的卫星钟差数据,
Figure FDA0003657852620000089
为第n个卫星的伪距观测噪声,Φn为第n个卫星的载波相位观测值,
Figure FDA00036578526200000810
为第n个卫星的相位观测噪声。
8.根据权利要求7所述的PPP快速定位收敛装置,其特征在于,所述载波相位观测值包括当前历元载波相位观测值和下一历元载波相位观测值,
所述定位收敛结果获得模块中,分别对各个所述载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度的过程包括:
通过第二式分别对各个所述当前历元载波相位观测值、与各个所述卫星对应的下一历元载波相位观测值以及与各个所述卫星对应的多普勒频移值进行整周模糊度的计算,得到与各个所述卫星对应的整周模糊度,所述第二式为:
Figure FDA0003657852620000091
其中,NIF为整周模糊度,φWL(ti)为当前历元载波相位观测值,φWL(ti+1)为下一历元载波相位观测值,fd(t)为多普勒频移值,ti为当前历元,ti+1为下一历元。
9.一种PPP快速定位收敛系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,当所述处理器执行所述计算机程序时,实现如权利要求1至4任一项所述的PPP快速定位收敛方法。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现如权利要求1至4任一项所述的PPP快速定位收敛方法。
CN202210566515.2A 2022-05-23 2022-05-23 一种ppp快速定位收敛方法、装置以及存储介质 Pending CN114966773A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210566515.2A CN114966773A (zh) 2022-05-23 2022-05-23 一种ppp快速定位收敛方法、装置以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210566515.2A CN114966773A (zh) 2022-05-23 2022-05-23 一种ppp快速定位收敛方法、装置以及存储介质

Publications (1)

Publication Number Publication Date
CN114966773A true CN114966773A (zh) 2022-08-30

Family

ID=82984976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210566515.2A Pending CN114966773A (zh) 2022-05-23 2022-05-23 一种ppp快速定位收敛方法、装置以及存储介质

Country Status (1)

Country Link
CN (1) CN114966773A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826008A (zh) * 2023-02-22 2023-03-21 广州导远电子科技有限公司 天线位移距离范围的检测方法、装置、流动站及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826008A (zh) * 2023-02-22 2023-03-21 广州导远电子科技有限公司 天线位移距离范围的检测方法、装置、流动站及存储介质

Similar Documents

Publication Publication Date Title
CN108415049B (zh) 提高网络rtk双差宽巷模糊度固定正确率的方法
CN109001786B (zh) 一种基于导航卫星和低轨增强卫星的定位方法和系统
Li et al. Evaluation of PPP-RTK based on BDS-3/BDS-2/GPS observations: a case study in Europe
US9322922B2 (en) Determining position of a GNSS receiver using fractional signalling event period times
US9030355B2 (en) Location fix from unknown position
CN108120994B (zh) 一种基于星载gnss的geo卫星实时定轨方法
US9158002B2 (en) Satellite subset selection
CN109613579B (zh) 一种基于最小二乘算法计算整周模糊度的方法和系统
WO2005093454A1 (en) Method for back-up dual-frequency navigation during brief periods when measurement data is unavailable on one of two frequencies
CN110161547B (zh) 一种自适应电离层估计模型的中长基线模糊度解算方法
CN112526564A (zh) 一种精密单点定位重新收敛方法
CN114935770B (zh) 一种多历元加快精密单点定位收敛速度的方法及装置
CN114924295A (zh) 一种载波相位平滑伪距定位方法、装置以及存储介质
CN115963522A (zh) 一种结合基准站卫星数据的定位方法与终端
Liu et al. An efficient undifferenced method for estimating multi-GNSS high-rate clock corrections with data streams in real time
Choy High accuracy precise point positioning using a single frequency GPS receiver
Xia et al. Observation of BDS-2 IGSO/MEOs yaw-attitude behavior during eclipse seasons
Zhang et al. Estimation and analysis of GPS inter-fequency clock biases from long-term triple-frequency observations
CN114966773A (zh) 一种ppp快速定位收敛方法、装置以及存储介质
US9086479B2 (en) Convergence zone
CN116299586B (zh) 基于广播星历的精密单点定位方法、接收机、设备和介质
Pan et al. High-rate GNSS multi-frequency uncombined PPP-AR for dynamic deformation monitoring
CN114325789A (zh) 一种基于广播星历的实时精密单点定位方法
Wang et al. GPS un-differenced ambiguity resolution and validation
CN110208841B (zh) 一种改进的面向非重叠频率的gnss紧组合方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination