CN114965392A - 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法 - Google Patents

一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法 Download PDF

Info

Publication number
CN114965392A
CN114965392A CN202210443489.4A CN202210443489A CN114965392A CN 114965392 A CN114965392 A CN 114965392A CN 202210443489 A CN202210443489 A CN 202210443489A CN 114965392 A CN114965392 A CN 114965392A
Authority
CN
China
Prior art keywords
ngqds
mos
apt
fluorescence
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210443489.4A
Other languages
English (en)
Other versions
CN114965392B (zh
Inventor
李桂银
吴冠雄
方凤燕
陈伟
周治德
梁晋涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202210443489.4A priority Critical patent/CN114965392B/zh
Publication of CN114965392A publication Critical patent/CN114965392A/zh
Application granted granted Critical
Publication of CN114965392B publication Critical patent/CN114965392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于NGQDs‑MoS2荧光共振能量转移结合适配体检测GP73的方法,以GP73适配体为识别探针,GP73适配体能够特异性识别和结合GP73蛋白,基于氮掺杂石墨烯量子点(NGQDs)‑GP73适配体和二硫化钼(MoS2)间的荧光共振能量转移原理,建立一种检测GP73的荧光适配体生物传感器,用以检测血清中GP73的含量。该方法操作流程简单方便、花费低,检测限低。

Description

一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73 的方法
技术领域
本发明属于光学传感技术领域,具体涉及一种基于荧光共振能量转移的GP73检测方法。
背景技术
高尔基体П型跨膜糖蛋白73(GP73)常用的检测方法是凝集素亲和质谱分析方法和酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)等,存在价格高、适用环境差、基层单位不易开展的问题。公开号为CN107271674A的发明专利,公开了一种酶联免疫试剂盒,该方法存在成本较高,耗时较长,操作复杂等问题。荧光共振能量转移(FRET)是距离十分相近的两个荧光分子之间所产生的一种能量迁移现象,供体的荧光强度比它单独存在时要低的多(荧光猝灭),而受体发射的荧光却大大增强(敏化荧光)。开发新型低成本的FRET传感体系用于GP73肿瘤标记物的检测是一种新的发展方向。公开号为CN106226522A的发明专利,公开了一种基于磁微粒结合荧光标记GP73抗体的荧光共振能量转移检测GP73的方法,该方法存在抗体与GP73结合能力较弱,操作复杂等问题。因此,开发新型低成本的FRET传感体系用于GP73肿瘤标记物的检测是一种新的发展方向。
发明内容
本发明所要解决的技术问题是提供一种基于氮掺杂石墨烯量子点(NGQDs)和二硫化钼(MoS2)的荧光共振能量转移的GP73检测方法,以提高GP73的检测效率,提高灵敏度,该方法能达到1.29 ng/mL的检测限。
为了解决该技术问题,采用具有高荧光量子产率、荧光性能稳定的NGQDs作为荧光物质,使用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)将NGQDs表面的羧基活化,将氨基化GP73适配体(GP73Apt)与NGQDs通过氨基与羧基键进行脱水缩合结合,形成荧光标记的NGQDs-GP73Apt复合物。在NGQDs- GP73Apt溶液中加入MoS2溶液,NGQDs-GP73Apt复合物与MoS2通过范德华力结合在一起,发生荧光共振能量转移(FRET),使NGQDs-GP73Apt的荧光能量转移到了MoS2上,整个系统的荧光强度就会变低;加入GP73蛋白后,由于GP73Apt的特异性,GP73会优先与NGQDs-GP73Apt结合,适配体结构改变,从MoS2底面分离,抑制了荧光共振能量转移,从而使NGQDs-GP73Apt的荧光得到恢复。根据反应体系中荧光强度恢复程度的变化,建立GP73浓度和NGQDs-GP73Apt的荧光强度变化的线性关系,实现GP73灵敏度高、选择性好的定量检测。
本发明按照以下步骤进行:
步骤1:荧光共振供体NGQDs-GP73Apt的制备
(1)氮掺杂石墨烯量子点(NGQDs)的制备:将柠檬酸白色颗粒用氨水溶解,加热,反应完成后冷却,超纯水溶解,然后用NaOH调节pH值至7.0,离心,取上清液,用超纯水稀释得到特定浓度NGQDs溶液;
(2)荧光共振供体(NGQDs-GP73Apt)的制备:在NGQD溶液中加入EDC,将NGQDs表面的羧基活化,量取GP73Apt溶液,与NGQDs溶液等比例混合均匀,在孵育箱中孵育一定时间,得到NGQDs-GP73Apt溶液。
步骤2:荧光共振能量转移的反应体系的构建
(1)称量MoS2粉末,加入超纯水定容,放入超声波细胞破碎机中破碎,至MoS2粉末完全分散在超纯水中,即得MoS2分散液;
(2)将MoS2溶液和NGQDs-GP73Apt溶液混合,混匀后孵育,使NGQDs的荧光淬灭,形成NGQDs-GP73Apt-MoS2 FRET荧光体系。用荧光分光光度计进行测量,测定其荧光强度,记作F0
步骤3:GP73工作曲线的绘制
(1)将不同浓度的标准GP73蛋白溶液加入步骤2中的NGQDs-GP73Apt-MoS2 FRET荧光体系,在一定温度下孵育反应一定时间,用荧光分光光度计进行检测,测定其荧光强度,记作F1
(2)用(F1-F0)/F0作为纵坐标,GP73浓度作为横坐标,绘制工作曲线,计算出该方法的最低检测限。
步骤4:实际样品中GP73的检测
(1)将待测样品加入到步骤2中的NGQDs-GP73Apt-MoS2 FRET荧光体系,在一定温度下孵育反应一定时间,用荧光分光光度计进行检测,测定其荧光强度;
(2)根据步骤3所得到的GP73的工作曲线,计算待测样品中GP73的浓度。
进一步优选:
所述步骤1中GP73-Apt的DNA序列为5′-TGG CCT GCA TCA TCG TCT TG-NH2-3′;
所述步骤1中加热条件为210 ℃,6 h,在该条件下NGQD荧光量子产率为23%;
所述步骤1中NaOH溶液的浓度为1 mol/L;
所述步骤1中的EDC浓度为1.0 mg/mL;
所述步骤1中GP73Apt为1.5 μM/μL;
所述步骤1中活化时间为40 min,孵育时间为1 h;
所述步骤2中MoS2溶液浓度为1.0 mg/mL;
所述步骤2中MoS2溶液和NGQDs-GP73Apt溶液的体积比为2:1;
所述步骤2中孵育温度为25 °C,孵育时间为20 min;
所述步骤2、步骤3和步骤4中荧光分光光度计的激发波长为310 nm,发射波长400nm,在该条件下荧光强度较高;
所述步骤3和步骤4中孵育温度为25 °C,孵育时间为80 min。
其中,步骤1得到了一种发出蓝色荧光的NGQDs的纳米荧光材料和NGQDs-GP73Apt探针,为步骤2提供荧光共振能量转移反应体系的荧光能量供体。步骤2提供了MoS2,是荧光能量转移受体;利用NGQDs-GP73Apt中的核酸适配体碱基与MoS2通过范德华力和π-π共轭作用,使得NGQDs-GP73Apt和MoS2紧密接近,发生FRET现象,呈现出NGQDs-GP73Apt的荧光猝灭。步骤3 NGQDs-GP73Apt-MoS2 FRET荧光体系中存在GP73,由于GP73Apt优先结合GP73,由此成功削弱了NGQDs-GP73Apt和MoS2之间的相互作用力。因此,NGQDs-GP73Apt与MoS2分离,FRET过程被抑制,从而使NGQDs-GP73Apt的荧光恢复。步骤3的GP73的工作曲线为步骤4的实际样本中GP73浓度的测定提供计算依据。步骤1-4的实验结果证明了能够利用NGQDs-GP73Apt和MoS2间的荧光共振能量转移原理建立一种新的GP73的检测方法。
本发明与现有技术相比具有如下优点:
1、MoS2具有优良的荧光猝灭性质,NGQDs的荧光强度强且稳定,两者建立的传感器稳定性良好;MoS2对GP73适配体链的吸附能力强,对NGQDs的猝灭效果显著。
2、适配体和目标物之间的亲和力常常比抗原和抗体之间的亲和力强,这会提高检测灵敏度及检测范围。此外,适配体比抗体更易被化学方法标记和修饰,易以荧光共振能量转移原理构建荧光适配体传感器,检测过程操作简单,可以实现一步式的反应,检测时间更短且成本较低。
3、该体系采用以GP73适配体为识别探针检测GP73的方法,这种生物探测方法具有背景干扰小的特点,能够有效提高检测的精确度。该方法的最低检测限为1.29 ng/mL。
附图说明
图1 基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73原理图;
图2 A是NGQDs的透射电镜图;B是NGQDs-GP73Apt的透射电镜图;
图3 NGQDs和NGQDs-GP73Apt的荧光光谱图;
图4 不同GP73浓度下NGQDs-GP73Apt-MoS2 FERT系统的荧光恢复强度图及标准曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种基于NGQDs-MoS2的荧光共振能量转移结合适配体检测GP73的方法,检测原理见图1。首先制备NGQDs,并用EDC将NGQDs表面的羧基活化40 min后,加入与活化后的NGQDs等比例的氨基修饰的GP73适配体振荡混合均匀后孵育;再加入MoS2构成荧光共振GP73适配体传感器,此时可以观察到荧光猝灭的现象,随后测量结合后的NGQDs-GP73Apt-MoS2的荧光强度F0并做记录;当用荧光共振GP73适配体传感器检测GP73蛋白时,GP73蛋白与GP73适配体特异性结合,使得MoS2游离出来,阻断了荧光供体NGQDs和荧光受体MoS2间的FRET体系,故而NGQDs的荧光得到恢复,随后测量结合后的NGQDs-GP73Apt的荧光强度F1并做记录,并通过计算得出GP73浓度,由此建立了一种GP73蛋白的检测方法。通过荧光分光光度计测量荧光强度的变化,可以有效的对GP73蛋白实现高灵敏定量分析。
实施步骤如下:
1、 NGQDs-GP73Apt的制备
(1)称取2.0 g柠檬酸白色颗粒(CA),溶解于0.3 mL氨水中,在干燥箱中以210 ℃的温度加热6小时。
(2)待冷却至室温,用1 mol/L的NaOH水溶液调节NGQDs悬浮液的pH值至7.0。
(3)以1200 rpm离心十分钟,保留上清液,然后将制备的NGQDs原液用超纯水稀释至200 mL,此时的NGQDs溶液为明黄色,且浓度为10.0 mg/mL。在4 ℃条件下进行保存。
图2是NGQDs和NGQDs-GP73Apt的透射电镜图,所制备的NGQDs的大小均匀,分散性良好,粒径在10 nm 左右。
(4)用pH=7.0的PBS缓冲液稀释NGQDs浓度为8.0 μg/mL,取100 μL 8.0 μg/mL的NGQDs溶液加入30 μL浓度为1.0 mg/mL的EDC溶液振荡混合均匀10 min,然后于25 ℃的超声振荡活化40分钟。取100 μL活化后的NGQDs溶液与100 μL 1 μM的GP73适配体振荡混合均匀,然后将混合液至于震荡培养箱中以25 ℃的温度孵育1个小时,得到NGQDs-GP73Apt信号探针。
图3是NGQDs和NGQDs-GP73Apt的荧光光谱图,二者的荧光光谱基本一致,NGQDs-GP73Apt的荧光强度较NGQDs的荧光强度高,说明NGQDs与GPC3Apt已成功连接。
、 荧光共振能量转移的反应体系的构建
(1)称量20mg的MoS2粉末,加入超纯水定容于20 mL,然后放入超声波细胞破碎机中破碎1h,等到MoS2粉末完全分散在超纯水中,即得到1.0 mg/mL的MoS2分散液。
(2)取200μL 1.0 mg/mL MoS2溶液和400μL NGQDs-GP73Apt混合,震荡混和均匀后在25℃下孵育20分钟,得到NGQDs-GP73Apt-MoS2 FERT系统。用荧光分光光度计进行扫描,固定激发波长为310 nm,测量其在400 nm处的荧光强度,记作F0
、 GP73工作曲线的绘制
将步骤2中测定了荧光强度后的NGQDs-GP73Apt-MoS2 FERT系统均匀分成10组,然后按浓度梯度加入20 μL GP73蛋白溶液(0 ng/mL,2.5 ng/mL,5 ng/mL,10 ng/mL,15 ng/mL,20 ng/mL,40 ng/mL,60 ng/mL,80 ng/mL,100 ng/mL),震荡混和均匀后在25℃下反应80分钟,用荧光分光光度计进行扫描,固定激发波长为310 nm,测定其在400 nm处的荧光强度,记作F1
不同GPC3浓度下NGQDs-GP73Apt-MoS2 FERT系统的荧光光谱图见图4,可看出NGQDs-GP73Apt-MoS2荧光适配体传感器的荧光恢复强度((F1-F0)/F0)与GP73浓度的呈正相关。当GP73蛋白浓度范围为2.5 ng/mL~100 ng/mL时,NGQDs-GP73Apt-MoS2荧光适配体传感器的荧光恢复值与GP73浓度之间的关系呈线性,工作曲线为Y=0.00146X+2.67119E-4,(其中Y代表荧光强度、X代表GP73蛋白的浓度),相关系数为R2=0.99654,NGQDs-GP73Apt-MoS2荧光共振GP73适配体传感器的最低检测限度为1.29 ng/mL。
、 实际血清样本中GP73的检测
将浓度为10 ng/mL、20 ng/mL、60 ng/mL的GP73标准溶液与正常人血清样本以1:1的比例充分混合,制成混合液。然后用制备好的NGQDs-GP73Apt-MoS2荧光适配体传感器检测混合液的荧光恢复强度值。根据步骤3所得到的工作曲线Y=0.00146X+2.67119E-4,计算可得到对应的实际血清样本中GP73的浓度,检测结果见表1,回收率为98.87%-100.55%,而相对标准偏差在0.03%-1.65%之间,在肝癌标志物GP73的检测领域有潜在应用价值。
表1 实际血清中GP73检测结果
Figure DEST_PATH_IMAGE001

Claims (5)

1.一种非诊断目的基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法,按以下步骤进行:
步骤1:荧光共振供体NGQDs-GP73Apt的制备
NGQDs的制备:将柠檬酸用氨水溶解,加热,反应完成后冷却,超纯水溶解,然后用NaOH调节pH值至7.0,离心,取上清液,用超纯水稀释得到特点定度NGQDs溶液;
NGQDs-GP73Apt的制备:将NGQDs表面的羧基活化,量取GP73Apt,与NGQDs混合均匀,在孵育箱中孵育一定时间,得到NGQDs-GP73Apt溶液;
步骤2:荧光共振能量转移的反应体系的构建
称量MoS2粉末,加入超纯水定容,放入超声波细胞破碎机中破碎,至MoS2粉末完全分散在超纯水中,即得MoS2分散液;
将MoS2溶液和NGQDs-GP73Apt溶液进行混合,孵育,使NGQDs的荧光淬灭,形成NGQDs-GP73Apt-MoS2 FRET荧光体系;用荧光分光光度计进行测量,固定激发波长为310 nm,测量其400 nm处荧光强度,记作F0
步骤3:GP73工作曲线的绘制
将不同浓度的GP73蛋白加入NGQDs-GP73Apt-MoS2 FRET荧光体系,孵育,用荧光分光光度计进行检测,固定激发波长为310nm,测量其400 nm处荧光强度,记作F1
用(F1-F0)/F0作为纵坐标,GP73浓度作为横坐标,绘制工作曲线,计算出该方法的最低检测限;
步骤4:实际样品中GP73的检测
将待测样品加入到步骤2中的NGQDs-GP73Apt-MoS2 FRET荧光体系,孵育,用荧光分光光度计进行检测,固定激发波长为310 nm,记录400 nm处的荧光强度;
根据步骤3所得到的GP73的工作曲线,计算待测样品中GP73的浓度。
2. 按照权利要求1所述的GP73检测方法,其特征在于:步骤1中所述破碎时间为1h;MoS2分散液浓度为1.0 mg/mL。
3.按照权利要求1所述的GP73检测方法,其特征在于:步骤2中所述孵育温度为25°C,孵育时间为20分钟。
4. 按照权利要求1所述的GP73检测方法,其特征在于:步骤2中所述GP73Apt为100μL 1μM。
5.权利要求1所述的GP73检测方法,其特征在于:步骤3和步骤4中所述孵育温度为25°C,孵育时间为80分钟。
CN202210443489.4A 2022-04-26 2022-04-26 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法 Active CN114965392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210443489.4A CN114965392B (zh) 2022-04-26 2022-04-26 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210443489.4A CN114965392B (zh) 2022-04-26 2022-04-26 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法

Publications (2)

Publication Number Publication Date
CN114965392A true CN114965392A (zh) 2022-08-30
CN114965392B CN114965392B (zh) 2024-05-03

Family

ID=82979550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210443489.4A Active CN114965392B (zh) 2022-04-26 2022-04-26 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法

Country Status (1)

Country Link
CN (1) CN114965392B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138071A (zh) * 2008-08-04 2011-07-27 辛米德研究有限公司 表征,特别是定量,由从组织再循环到血液循环系统中的血液巨噬细胞从组织中摄取到细胞内的分子标志物的方法,以及用于实施所述方法的分析设备
CN106092978A (zh) * 2016-05-27 2016-11-09 江苏大学 一种荧光共振能量转移传感器的制备及对CaMV35S的快速检测方法
US20180209966A1 (en) * 2017-01-25 2018-07-26 Oilcrops Research Institute Of Chinese Acadamy Of Agriculture Sciences Fluorescence polarization immunoassay method for detecting carbaryl
CN113203718A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于荧光共振能量转移的gpc3检测方法
CN113425843A (zh) * 2020-03-08 2021-09-24 北京舜景生物医药技术有限公司 一种gp73抑制剂在制备治疗糖尿病的药物中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138071A (zh) * 2008-08-04 2011-07-27 辛米德研究有限公司 表征,特别是定量,由从组织再循环到血液循环系统中的血液巨噬细胞从组织中摄取到细胞内的分子标志物的方法,以及用于实施所述方法的分析设备
CN106092978A (zh) * 2016-05-27 2016-11-09 江苏大学 一种荧光共振能量转移传感器的制备及对CaMV35S的快速检测方法
US20180209966A1 (en) * 2017-01-25 2018-07-26 Oilcrops Research Institute Of Chinese Acadamy Of Agriculture Sciences Fluorescence polarization immunoassay method for detecting carbaryl
CN113425843A (zh) * 2020-03-08 2021-09-24 北京舜景生物医药技术有限公司 一种gp73抑制剂在制备治疗糖尿病的药物中的应用
CN113203718A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于荧光共振能量转移的gpc3检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴世嘉;聂雨;张辉;段诺;王周平;: "基于KGdF_4:Dy~(3+)纳米材料检测土霉素的生物传感新方法", 食品与机械, no. 06, 18 November 2014 (2014-11-18) *

Also Published As

Publication number Publication date
CN114965392B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
Chen et al. An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels
Wang et al. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer
Zhao et al. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay
Zhou et al. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP
CN104280542B (zh) 基于金属增强发光及纳米粒子标记放大的双增强化学发光免疫分析法
Liu et al. Magnetic graphene nanosheets based electrochemiluminescence immunoassay of cancer biomarker using CdTe quantum dots coated silica nanospheres as labels
Chen et al. A novel chemiluminescence immunoassay of staphylococcal enterotoxin B using HRP-functionalised mesoporous silica nanoparticle as label
WO2011107003A1 (zh) N-(4-氨基丁基)-n-乙基异鲁米诺功能化纳米金及其制备方法和应用
Liu et al. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin
Xiong et al. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies
Ma et al. Versatile electrochemiluminescence assays for PEDV antibody based on rolling circle amplification and Ru-DNA nanotags
Wang et al. Hue recognition competitive fluorescent lateral flow immunoassay for aflatoxin M1 detection with improved visual and quantitative performance
CN110596060A (zh) 一种检测前列腺特异性抗原的光谱分析中荧光传感器的构建方法及其应用
CN110609133A (zh) 一种检测癌胚抗原的荧光比率型光谱分析方法及其应用
CN113203718B (zh) 一种基于荧光共振能量转移的gpc3检测方法
Xie et al. Rational construction of fluorescent molecular imprinted polymers for highly efficient glycoprotein detection
Ge et al. Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy
Chen et al. Covalent conjugation of avidin with dye-doped silica nanopaticles and preparation of high density avidin nanoparticles as photostable bioprobes
CN106093396A (zh) 一种基于Au‑GQD@PtPd的免疫传感器的制备方法及应用
Yan et al. Fluorescence immunosensor based on p-acid-encapsulated silica nanoparticles for tumor marker detection
Xiang et al. Rapid self-assembly of Au nanoparticles on rigid mesoporous yeast-based microspheres for sensitive immunoassay
Gao et al. Significance of the antibody orientation for the lateral flow immunoassays: A mini-review
Wang et al. Competitive ELISA based on pH-responsive persistent luminescence nanoparticles for autofluorescence-free biosensor determination of ochratoxin A in cereals
CN114965392B (zh) 一种基于NGQDs-MoS2荧光共振能量转移结合适配体检测GP73的方法
CN111426667A (zh) 一种基于量子点-核酸适配体-氧化石墨烯建立的对β-乳球蛋白检测的荧光方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant