CN114959634A - 形成磷硅酸盐玻璃层的方法及其结构和系统 - Google Patents

形成磷硅酸盐玻璃层的方法及其结构和系统 Download PDF

Info

Publication number
CN114959634A
CN114959634A CN202210160169.8A CN202210160169A CN114959634A CN 114959634 A CN114959634 A CN 114959634A CN 202210160169 A CN202210160169 A CN 202210160169A CN 114959634 A CN114959634 A CN 114959634A
Authority
CN
China
Prior art keywords
containing layer
reaction chamber
phosphorus
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210160169.8A
Other languages
English (en)
Inventor
李承泫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM IP Holding BV
Original Assignee
ASM IP Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM IP Holding BV filed Critical ASM IP Holding BV
Publication of CN114959634A publication Critical patent/CN114959634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

公开了用于形成磷硅酸盐玻璃层的方法。示例性方法包括形成覆盖衬底的含硅层,并沉积覆盖衬底的含磷层。沉积的含磷层可以包括P2O3和/或表现出小于或等于500℃的熔化温度。沉积的含磷层可被加热以流动并氧化以提供所需的特性。

Description

形成磷硅酸盐玻璃层的方法及其结构和系统
技术领域
本公开总体涉及形成适用于制造电子器件的层和结构的方法。更具体而言,本公开的示例涉及包括形成磷硅酸盐玻璃层的方法、用于形成这种层的系统以及包括磷硅酸盐玻璃层的结构。
背景技术
在器件(例如半导体器件)的制造过程中,通常希望用绝缘或介电材料填充衬底表面上的特征(例如沟槽或间隙)。一些填充特征的技术包括磷硅酸盐玻璃(PSG)的沉积和回流。
可以使用多种化学气相沉积(CVD)技术中的一种来沉积PSG膜,例如大气压CVD(APCVD)、减压CVD(RPCVD)、低压CVD(LPCVD)、等离子体增强CVD(PECVD)等。一旦沉积,PSG膜可以回流—例如在约900℃-1100℃的温度下—以例如填充间隙或沟槽。
尽管这种技术对于一些应用可以很好地工作,但使用传统的PSG沉积技术填充特征具有一些缺点。例如,CVD沉积的PSG表现出相对较差的台阶覆盖,因此在沉积的材料中会形成空隙。这种空隙会在沉积材料回流后保留。此外,通常使用相对较高的温度和较长的退火时间来回流PSG材料,以减少空隙。这种高温和/或长退火时间对于一些应用来说可能是不希望的。
随着对器件性能要求的提高,将传统的PSG沉积和回流技术应用于制造过程通常变得越来越困难。因此,需要用于形成结构的改进方法,特别是用于在结构形成期间填充间隙的方法。
在本部分中阐述的任何讨论(包括问题和解决方案的讨论)已经包括在本公开中,仅是为了提供本公开的背景,并且不应被视为承认任何或所有讨论在本发明被制造时是已知的或以其他方式构成现有技术。
发明内容
本公开的各种实施例涉及形成适用于形成器件的结构的方法。虽然本公开的各种实施例解决现有方法和结构的缺点的方式将在下面更详细地讨论,但总体而言,本公开的示例性实施例提供了用于填充衬底表面上的特征和/或用于形成包含磷、硅和氧的层或膜的改进方法。示例性方法使用相对较低的回流温度,因此可用于优选避免高温回流过程的应用中。
根据本公开的至少一个实施例,提供了一种形成磷硅酸盐玻璃层的方法。该方法包括在反应室内提供衬底;形成覆盖衬底的含硅层;以及沉积覆盖衬底的含磷层,其中沉积含硅层和沉积含磷层的步骤用于形成沉积的磷硅酸盐玻璃层。形成含硅层和沉积含磷层的步骤可以单独和/或共同重复多次,以形成沉积的磷硅酸盐玻璃层。该方法可以沉积含硅层的步骤结束。根据本公开的示例,沉积的含磷层包括P2O3。另外或可替代地,沉积的含磷层的熔化温度可以低于500℃、低于250℃、低于50℃或低于30℃。根据本公开的各种示例,在沉积含磷层的步骤期间,含磷前体流到反应室,而附加氧化剂不流到反应室。示例性含磷前体包括烷基磷化合物,例如选自由磷酸三甲酯(TMPO)、亚磷酸三甲酯(TMPI)、磷酸三乙酯(TEPO)和亚磷酸三乙酯(TEPI)构成的组中的一种或多种的化合物。根据进一步示例,在形成含硅层的步骤期间,含硅前体流到反应室,而附加氧化剂不流到反应室。示例性含硅前体包括氨基硅烷化合物,例如选自由以下构成的组中的一种或多种的化合物:(二甲基氨基)硅烷(DMAS)、双(二甲基氨基)硅烷(BDMAS)、双(二乙基氨基)硅烷(BDEAS)、双(乙基甲基氨基)硅烷(BEMAS)、双(叔丁基氨基)硅烷(BTBAS)、三(二甲基氨基)硅烷(TDMAS)、四(二甲基氨基)硅烷(TKDMAS)和二异丙基氨基硅烷(DIPAS)。根据本公开的进一步示例,形成含硅层的步骤包括将硅前体暴露于惰性气体等离子体。在这些情况下,将硅前体流到反应室的步骤和将硅前体暴露于惰性气体等离子体的步骤可以不重叠。类似地,沉积含磷层的步骤可以包括将含磷前体暴露于惰性气体等离子体。根据这些实施例的示例,将含磷前体流到反应室的步骤和将含磷前体暴露于惰性气体等离子体的步骤不重叠。根据本公开的进一步示例,在形成含硅层和沉积含磷层的步骤期间,惰性气体被连续地提供给反应室。根据进一步示例,该方法包括以下步骤:在非氧化环境中加热衬底,以使沉积的磷硅酸盐玻璃层流动,从而形成流动的磷硅酸盐玻璃层。加热步骤期间的衬底温度可以小于或等于500℃,或小于400℃,或小于300℃。根据另外的示例,该方法包括氧化流动的磷硅酸盐玻璃层的步骤。
根据本公开的又一示例性实施例,一种结构至少部分地根据本文描述的方法形成。
根据本公开的另外示例,提供了一种用于形成如本文所述的磷硅酸盐玻璃层的系统。示例性系统包括:反应室;流体联接到反应室的气体注射系统;用于将含硅前体且可选地将载气引入反应室的第一气体源;用于将含磷前体且可选地将载气引入反应室的第二气体源;用于将惰性气体引入反应室的惰性气体源;用于形成惰性气体等离子体的等离子体源;排气源;以及控制器。控制器可以配置成控制气体流入气体注射系统,并用于使系统执行如本文所述的方法。
从下面参考附图对某些实施例的详细描述中,这些和其他实施例对本领域技术人员来说将变得显而易见;本发明不限于所公开的任何特定实施例。
附图说明
当结合以下说明性附图考虑时,通过参考详细描述和权利要求,可以获得对本公开的示例性实施例的更完整的理解。
图1示出了根据本公开的示例性实施例的方法。
图2示出了根据本公开的至少一个实施例的时序。
图3-6示出了根据本公开示例的结构。
图7示出了根据本公开的至少一个实施例的系统。
图8示出了根据本公开至少一个实施例可用的使用流通系统(FPS)的前体供应系统。
应当理解,附图中的元件是为了简单和清楚而示出的,并不一定是按比例绘制的。例如,图中的一些元件的尺寸可能相对于其他元件被夸大,以有助于提高对本公开的所示实施例的理解。
具体实施方式
尽管下面公开了某些实施例和示例,但本领域技术人员将理解,本发明延伸到具体公开的实施例和/或本发明的用途及其明显的修改和等同物之外。因此,意图是所公开的本发明的范围不应被下面描述的具体公开的实施例所限制。
本公开总体涉及沉积磷硅酸盐玻璃层的方法、形成结构的方法、使用该方法形成的结构以及用于执行该方法和/或形成该结构的系统。举例来说,本文描述的方法可用于用磷硅酸盐玻璃填充特征,例如衬底表面上的间隙(例如沟槽或通孔)。如下文更详细阐述,示例性方法包括沉积或形成磷硅酸盐玻璃层,以及在相对较低的温度下回流沉积的磷硅酸盐玻璃层。
在本公开中,“气体”可以指在常温常压下为气体、蒸发固体和/或蒸发液体的材料,并且可以根据情况而由单一气体或气体混合物构成。除了过程气体之外的气体,即不经过气体分配组件(例如喷淋头、其它气体分配装置等)引入的气体,可以用于例如密封反应空间,其包括密封气体,例如稀有气体。在一些情况下,术语“前体”可以指参与产生另一种化合物的化学反应的化合物,特别是指构成膜基质或膜主骨架的化合物,而术语“反应物”可以指活化前体、改性前体或催化前体反应的化合物,在一些情况下不是前体。在某些情况下,术语前体和反应物可以互换使用。术语“惰性气体”是指在可感知的程度上不参与化学反应的气体和/或当施加等离子体功率时激发前体的气体,但在可感知的程度上不会成为膜基质的一部分。根据本公开的示例,惰性气体可以包括氩气、氦气和氮气中的一种或多种。
如本文所用,术语“衬底”可指可用于形成或可在其上形成器件、电路或膜的任何一种或多种底层材料。衬底可以包括块体材料,比如硅(例如单晶硅)、其他IV族材料,比如锗,或者化合物半导体材料,比如GaAs,并且可以包括覆盖块体材料或位于其下面的一个或多个层。此外,衬底可以包括各种特征,比如形成在衬底的层或块体材料的至少一部分之内或之上的间隙、凹陷、通孔、线等。举例来说,一个或多个特征可以具有约10nm至约100nm的宽度,约30nm至约1000nm的深度或高度,和/或约3至100或约3至约20的纵横比。
在一些实施例中,“膜”是指在垂直于厚度方向的方向上延伸的层。在一些实施例中,“层”是指在表面上形成的具有一定厚度的结构或膜或非膜结构的同义词。膜或层可以由具有某些特性的离散的单个膜或层或者多个膜或层构成,并且相邻膜或层之间的边界可以是或可以不是清晰的,并且可以是或可以不是基于物理、化学和/或任何其他特性、形成过程或顺序和/或相邻膜或层的功能或目的而建立的。层或膜可以是连续的,也可以不是连续的。
如本文所用,术语“含硅层”可指其化学式可表示为包含硅的层。含硅层可以包括其他元素,例如氧、碳、氢、氮等中的一种或多种,这些元素可以来源于前体或反应物。举例来说,含硅层可以包括氧化硅,例如二氧化硅。
如本文所用,术语“含磷层”可以指其化学式可以表示为包含磷的层。含磷层可以包括其他元素,例如氧、碳、氢、氮等中的一种或多种,其可以来源于前体或反应物。举例来说,沉积的含磷层可包括磷氧化物,例如主要包含(例如大于50原子%、大于75原子%、或大于90原子%)P2O3的磷氧化物。
如本文所用,术语“磷硅酸盐玻璃层”可以指其化学式可以表示为包括硅、磷和氧的层。磷硅酸盐玻璃层可以包括其他元素,例如碳、氢、氮等中的一种或多种,这些元素可以来源于前体或反应物。
如本文所用,术语“结构”可以指部分或完全制造的器件结构。举例来说,结构可以包括其上形成有一个或多个层和/或特征的衬底。
如本文所用,术语“循环沉积过程”可以指在处理室中进行沉积循环(通常是多个连续的沉积循环)的气相沉积过程。循环沉积过程可以包括循环化学气相沉积(CVD)和原子层沉积(ALD)过程。循环沉积过程可以包括一个或多个循环,该循环包括前体、反应物和/或惰性气体的等离子体活化。
在本公开中,变量的任意两个数字可以构成该变量的可行范围,并且指示的任何范围可以包括或排除端点。此外,指示的变量任何值(不管它们是否用“约”指示)可以指精确值或近似值,并且包括等同物,并且可以指平均值、中值、代表性、多数等。此外,在本公开中,术语“包括”、“由…构成”和“具有”在一些实施例中可以独立地指“通常或广泛地包括”、“包含”、“基本由…构成”或“由…构成”。在本公开中,任何定义的含义在一些实施例中不一定排除普通和习惯含义。
在本公开中,“连续”可以指不破坏真空、不随时间线中断、没有任何材料介入步骤、不改变处理条件、紧接其后、作为下一步骤或者在一些实施例中除了两个结构之外的两个结构之间没有介入离散的物理或化学结构中的一个或多个。
现在转到附图,图1示出了根据本公开的示例形成磷硅酸盐玻璃层的方法100。图3-6示出了在方法100期间形成或使用的结构。
方法100包括以下步骤:在反应室内提供衬底(步骤102),形成含硅层(步骤104),以及沉积含磷层(步骤106)。如下文更详细描述,步骤104和/或106以及可选的步骤108可以单独和/或共同重复,以形成沉积的磷硅酸盐玻璃层。方法100还可以包括沉积含硅层(步骤108),加热衬底以使沉积的磷硅酸盐玻璃层流动以形成流动的磷硅酸盐玻璃层(步骤110),和/或氧化流动的磷硅酸盐玻璃层(步骤112)。方法100的各种步骤,例如步骤104-108,可以在化学气相沉积(CVD)、等离子体增强CVD(PECVD)、原子层沉积(ALD)或等离子体增强ALD(PEALD)反应器系统的一个或多个室内进行。
步骤102包括向反应室中提供衬底。图3示出了包括特征304和306的示例性衬底302,在特征304和306之间形成有凹槽308。
衬底可被加热到沉积温度。例如,衬底可以包括一个或多个部分制造的器件结构,并且衬底可被加热到小于500℃、小于250℃、小于50℃或小于30℃的沉积温度。另外或可替代地,沉积温度可以大于20℃或大于25℃。此外,可以控制反应室内的压力。例如,在沉积过程中,反应室内的压力可以小于2000Pa、小于1500Pa、或小于1000Pa和/或大于200Pa、大于400Pa、或大于800Pa。
在步骤104期间,形成覆盖衬底的含硅层。根据本公开的示例,使用循环沉积过程形成含硅层。步骤104期间反应室内的温度和压力可以与上面结合步骤102提到的反应室内的温度和压力相同或相似。举例来说,如图2所示,形成含硅层202的循环过程可以包括一个或多个循环,每个循环包括向反应室提供硅前体并将硅前体暴露于惰性气体等离子体。在图示的示例中,形成含硅层202的循环过程可以包括为脉冲204提供硅前体,为等离子体脉冲206提供等离子体功率,以及在时间段208提供惰性气体。根据本公开的示例,可能期望保持含硅层中的氧量相对较低。因此,根据本公开的示例,在形成含硅层的步骤期间,附加氧化剂不流到反应室。在这些情况下,在形成含硅层的步骤期间,只有硅前体和惰性气体流到反应室。脉冲204的持续时间可以从约0.2秒到约5秒。等离子体脉冲206的持续时间可以从约0.2秒到约5秒。在脉冲204期间,硅前体的流量可以从约500sccm至约6000sccm。在步骤208期间,惰性气体的流量可以从约500sccm至约6000sccm。用于在脉冲206期间产生等离子体的功率可以在约50W和约1000W之间。功率的频率可以在约13.56MHz和约60MHz之间。脉冲206的持续时间范围可以从约10%到约100%。
硅前体可以包括氨基硅烷化合物。举例来说,硅前体可以选自由以下构成的组中的一种或多种:(二甲基氨基)硅烷(DMAS)、双(二甲基氨基)硅烷(BDMAS)、双(二乙基氨基)硅烷(BDEAS)、双(乙基甲基氨基)硅烷(BEMAS)、双(叔丁基氨基)硅烷(BTBAS)、三(二甲基氨基)硅烷(TDMAS)、四(二甲基氨基)硅烷(TKDMAS)和二异丙基氨基硅烷(DIPAS)。
如图2所示,根据本公开的示例,使硅前体流到反应室的步骤(硅前体脉冲204)和将硅前体暴露于惰性气体等离子体的步骤(等离子体脉冲206)在时间和/或空间上不重叠。如进一步示出,硅前体脉冲204和等离子体脉冲206可被吹扫脉冲210分开,吹扫脉冲210包括向反应室提供吹扫气体,例如惰性气体。另外或可替代地,形成含硅层202的循环过程可以包括吹扫脉冲211。
尽管图2中仅示出了一个循环,但形成含硅层202的循环过程可以包括一个或多个循环。例如,在进行到步骤106之前,可以重复用于脉冲204和等离子体脉冲206的硅前体。
再次参考图1,步骤106包括沉积覆盖衬底的含磷层。步骤106期间反应室内的温度和压力可以与上面结合步骤102提到的反应室内的温度和压力相同或相似。
根据本公开的示例,如图2所示,使用循环沉积过程212形成含磷层。循环沉积过程212可以包括一个或多个循环(i-n),每个循环包括将含磷前体流动到反应室用于磷前体脉冲214,将含磷前体暴露于惰性气体等离子体用于等离子体脉冲216和惰性气体脉冲218。根据本公开的示例,可能希望保持含磷层中的氧量相对较低。因此,根据本公开的示例,在沉积含磷层的步骤期间,附加氧化剂不流到反应室。在这些情况下,在沉积含磷层212的步骤期间,只有含磷前体和惰性气体流到反应室。根据本公开的示例,沉积的含磷层包括例如主要是P2O3。另外或可替代地,沉积的含磷层的熔化温度可以小于500℃、小于250℃、小于50℃或小于30℃。
等离子体脉冲216的持续时间可以从约0.2秒到约5秒。在脉冲214期间,含磷前体的流量可以从约500sccm至约6000sccm之间。步骤218期间的惰性气体的流量可以与上面结合步骤202描述的相同。用于在脉冲216期间产生等离子体的功率可以在约50W和约1000W之间;功率的频率范围可以从约13.56MHz到约60MHz。脉冲216的持续时间范围可以从约10%到约100%。每个循环i可以包括一个或多个吹扫脉冲215、217,其可以与吹扫脉冲210、211相同或相似。
含磷前体可以包括包含键合到一个或多个(例如4个)氧原子上的磷的化合物,其中一个或多个氧原子键合到C1-C4烃上。作为特定示例,含磷前体可以包括亚磷酸三甲酯(TMPI)、磷酸三乙酯(TEPO)和/或磷酸三甲酯(TMPO)中的一种或多种。
根据本公开的示例,将含磷前体流到反应室的步骤(磷前体脉冲214)和将含磷前体暴露于惰性气体等离子体的步骤(等离子体脉冲216)不重叠。如进一步所示,磷前体脉冲214和等离子体脉冲216可被吹扫脉冲215分开。
回到图1,步骤108可以包括沉积另一个含硅层。步骤108可以与步骤104相同或相似。例如,步骤108可以包括循环过程222,该循环过程222包括为脉冲224提供硅前体,为等离子体脉冲226提供等离子体功率,以及在时间段228提供惰性气体。脉冲224、等离子体脉冲226和时间段228可以与脉冲204、等离子体脉冲206和时间段208相同或相似。
尽管图示为单独的脉冲步骤208、218和228,但在形成/沉积含硅层和沉积含磷层的步骤(步骤104-108)期间,可以向反应室连续提供惰性气体。
图4示出了结构400,包括衬底302和沉积的磷硅酸盐玻璃层402—例如使用步骤102-108形成。如图所示,沉积的磷硅酸盐玻璃层402可以相对共形。
在步骤110期间,一旦在衬底表面上形成所需量的沉积含磷层,加热衬底以使沉积的磷硅酸盐玻璃层流动,从而形成流动的磷硅酸盐玻璃层。图5示出了结构500,包括衬底302和流动的磷硅酸盐玻璃层502。
根据本公开的示例,步骤110在非氧化环境中执行。在非氧化环境中执行步骤110允许沉积的含磷层在相对低的温度下流动。步骤110可以包括将衬底加热到小于或等于500℃、或小于400℃、或小于300℃的温度。在步骤110期间,反应室内的压力可以在约200Pa和约大气压之间。在步骤110期间,可以向反应室提供惰性气体。惰性气体的流量可以在约500sccm和约6000sccm之间。
一旦步骤110完成,方法100可以进行到氧化流动的磷硅酸盐玻璃层的步骤112。图6示出了结构600,其包括氧化的流动磷硅酸盐玻璃层602。
在该步骤期间,氧化剂比如O2,N2O,N2,H2O等中的一种或多种可以在反应室内流动。氧化剂到反应室的流量可以是约500sccm到约6000sccm。在步骤112期间,反应室内的压力可以是约200Pa到约大气压;在步骤112期间,反应室中的温度可以为约300℃至约500℃。氧化剂可导致流动的磷硅酸盐玻璃层氧化为例如形成P2O5
本文进一步描述了一种系统。示例性系统可以包括反应室、等离子体源、气体注射系统、含磷前体气体源、含硅气体前体源、惰性气体源、排气源和控制器。反应室可以包括衬底支撑件和上电极。衬底支撑件可以是或包括下电极。等离子体功率源可以布置用于产生(例如射频)功率波形。气体注射系统与反应室流体连接,并布置用于将硅前体和/或含磷前体引入反应室。可选地,通过载气将硅前体和/或含磷前体引入反应室。排气装置适当地布置用于从反应室中移除反应产物和未使用的前体。控制器被编程或以其他方式配置成使本文别处描述的方法得以实施。如本领域技术人员将理解,控制器与系统的各种功率源、加热系统、泵、机器人和气流控制器或阀通信。
在一些实施例中,气体注射系统包括前体输送系统,其采用载气将前体运送到一个或多个反应室。在一些实施例中,使用流通系统实现载气的连续流动。在流通系统中,载气管线设置有具有前体储器(瓶)的迂回管线,并且主管线和迂回管线被切换,其中当仅载气供给到反应室时,迂回管线关闭,而当载气和前体气体都供给到反应室时,主管线关闭,载气流过迂回管线,并且与前体气体一起从瓶流出。以这种方式,载气可以连续地流入反应室,并且可以通过切换主管线和迂回管线以脉冲的方式运送前体气体。
当前提供的方法可以在任何合适的设备中执行,包括在如图7所示的系统中。类似地,当前提供的结构可以在任何合适的设备中制造,包括如图7所示的系统。
图7是等离子体增强循环沉积设备的示意图,该设备具有被编程以进行本文描述的循环序列的控制器,可用于本公开的至少一些实施例中。在该图中,通过在反应室3的内部11(反应区)中提供一对平行且彼此面对的导电平板电极2、4,从等离子体功率源25向一侧施加RF功率(例如以13.56MHz和/或27MHz),并将另一侧12电接地,在电极之间激发等离子体。温度调节器可以设置在下平台2即下电极中。衬底1放置在其上,并且其温度可以保持恒定在期望的温度。上电极4可以用作气体注射系统35的喷淋板,并且前体气体和/或稀释气体(如果有的话)可以分别从气体源30、31和32通过气体管线19、气体管线21和气体管线22并通过喷淋板4引入反应室3。此外,在反应室3中,提供了具有排气管线17的圆形导管13,反应室3的内部11中的气体通过该导管排出。此外,转移室5设置在反应室3下方,并设置有气体密封管线24,以通过转移室5的内部16将密封气体引入反应室3的内部11,其中设置有用于分隔反应区和转移区的分隔板14。注意,该图中省略了闸阀,通过该闸阀可以将晶片转移到转移室5中或从其转移出。转移室还设置有排气管线6。在一些实施例中,沉积间隙填充流体、流动材料和氧化材料在同一个反应室中完成。在一些实施例中,沉积间隙填充流体以及加热和/或氧化是在包含在同一个系统中的独立反应室中进行的。
在一些实施例中,图8中所示的用于切换惰性气体流和前体气体流的系统可用于根据图7的设备,以脉冲形式引入前体气体,而不会显著波动反应室的压力。
实际上,可以使用流通系统(FPS)来实现载气的连续流动,其中载气管线设置有具有前体储器(瓶)的迂回管线,并且主线和迂回管线被切换,其中当仅载气旨在供给到反应室时,迂回管线关闭,而当载气和前体气体都供给到反应室时,主管线关闭,载气流过迂回管线,并与前体气体一起从瓶中流出。以这种方式,载气可以连续地流入反应室,并且可以通过切换主管线和迂回管线以脉冲运送前体气体。
图8示出了使用流通系统(FPS)的前体供应系统,该系统可用于本文所述系统的实施例中(黑阀表示阀关闭)。如图8中的(a)所示,当将前体供给到反应室时,首先,载气比如Ar(或He)流过具有阀b和c的气体管线,然后进入瓶(储器)20。载气从瓶20流出,同时携带与瓶20内部的蒸气压相对应的量的前体气体,并流过具有阀f和e的气体管线,然后与前体一起供给到反应室。在上述中,阀a和d关闭。如图8中的(b)所示,当仅将载气(其可以是稀有气体,例如He或Ar)供给到反应室时,载气流过具有阀a的气体管线,同时绕过瓶20。在上述中,阀b、c、d、e和f关闭。
本领域技术人员将理解,该设备包括一个或多个控制器40,该控制器被编程或以其他方式配置为使得本文其他地方描述的沉积过程得以进行。控制器40与反应器的各种功率源、加热系统、泵、机器人和气体流量控制器或阀通信,如本领域技术人员将理解。控制器40包括电子电路,包括处理器和软件,以选择性地操作系统中包括的阀、歧管、加热器、泵和其他部件。这种电路和部件用于从相应源(例如瓶20)引入前体、反应物和可选的吹扫气体。控制器可以控制气体供应顺序的定时、衬底和/或反应室3的温度、反应室3内的压力以及各种其他操作,以提供系统的正确操作。控制器可以包括控制软件,以电动或气动地控制阀来控制前体、反应物和吹扫气体流入和流出反应室3。控制器40可以包括执行某些任务的模块,比如软件或硬件部件,例如FPGA或ASIC。应当理解,在控制器包括执行特定任务的软件部件的情况下,控制器被编程来执行该特定任务。模块可以有利地配置为驻留在控制系统的可寻址存储介质即存储器上,并且配置为执行一个或多个过程。
可选地,可以使用双室反应器。双室反应器包括用于处理晶片的两个彼此靠近放置的部分或隔间。在这种双室反应器中,惰性气体可以通过共享管线提供,含前体的气体通过非共享管线提供。
上述公开的示例实施例不限制本发明的范围,因为这些实施例仅仅是本发明实施例的示例。任何等同的实施例都在本发明的范围内。实际上,除了在此示出和描述的那些之外,本公开的各种修改比如所描述的元件的可替换的有用组合对于本领域技术人员来说从描述中会变得显而易见。这种修改和实施例也旨在落入所附权利要求的范围内。

Claims (21)

1.一种形成磷硅酸盐玻璃层的方法,该方法包括以下步骤:
在反应室内提供衬底;
形成覆盖衬底的含硅层;以及
沉积覆盖衬底的含磷层,
其中,沉积含磷层的步骤包括将含磷前体流到反应室,
其中,沉积含硅层和沉积含磷层的步骤用于形成沉积的磷硅酸盐玻璃层,并且
其中,沉积的含磷层包括P2O3
2.根据权利要求1所述的方法,其中,在沉积所述含磷层的步骤中,附加氧化剂不流到反应室。
3.根据权利要求1或2所述的方法,其中,重复形成所述含硅层和沉积所述含磷层的步骤,以形成沉积的磷硅酸盐玻璃层。
4.根据权利要求1-3中任一项所述的方法,其中,形成所述含硅层的步骤包括CVD、ALD、PECVD、PEALD中的一种或多种。
5.根据权利要求1-4中任一项所述的方法,其中,形成所述含硅层的步骤包括将选自由BDEAS、DIPAS构成的组的硅前体流到反应室。
6.根据权利要求1-5中任一项所述的方法,其中,在形成所述含硅层的步骤期间,附加氧化剂不流到反应室。
7.根据权利要求1-6中任一项所述的方法,其中,形成所述含硅层的步骤包括将所述硅前体暴露于惰性气体等离子体。
8.根据权利要求7所述的方法,其中,将所述硅前体流到反应室的步骤和将所述硅前体暴露于惰性气体等离子体的步骤不重叠。
9.根据权利要求1-8中任一项所述的方法,其中,沉积所述含磷层的步骤还包括将所述含磷前体暴露于惰性气体等离子体。
10.根据权利要求9所述的方法,其中,将所述含磷前体流到反应室的步骤和将所述含磷前体暴露于惰性气体等离子体的步骤不重叠。
11.根据权利要求1-10中任一项所述的方法,其中,将所述含磷前体流到反应室的步骤包括将TMPI、TEPO、TMPO中的一种或多种流到反应室。
12.根据权利要求1-11中任一项所述的方法,其中,沉积所述含磷层的步骤包括CVD、ALD、PEALD、PECVD中的一种或多种。
13.根据权利要求7-12中任一项所述的方法,其中,使用选自氩气、氦气、氮气中的一种或多种的惰性气体形成所述惰性气体等离子体。
14.根据权利要求13所述的方法,其中在形成所述含硅层和沉积所述含磷层的步骤期间,向反应室连续提供所述惰性气体。
15.根据权利要求1-14中任一项所述的方法,其中,沉积的含磷层的熔化温度小于500℃、小于250℃、小于50℃或小于30℃。
16.根据权利要求1-14中任一项所述的方法,还包括以下步骤:在非氧化环境中加热所述衬底,以使沉积的磷硅酸盐玻璃层流动,从而形成流动的磷硅酸盐玻璃层。
17.根据权利要求16所述的方法,其中,加热步骤期间的温度小于或等于500℃,或小于400℃,或小于300℃。
18.根据权利要求16或17所述的方法,还包括氧化流动的磷硅酸盐玻璃层的步骤。
19.一种形成磷硅酸盐玻璃层的方法,该方法包括以下步骤:
在反应室内提供衬底;
形成覆盖衬底的含硅层;以及
沉积覆盖衬底的含磷层,
其中,形成含硅层和沉积含磷层的步骤用于形成沉积的磷硅酸盐玻璃层,并且
其中,沉积的含磷层的熔化温度小于或等于500℃。
20.一种根据权利要求1-19中任一项所述的方法形成的结构。
21.一种系统,包括:
反应室;
流体联接到反应室的气体注射系统;
用于将含硅前体且可选地将载气引入反应室的第一气体源;
用于将含磷前体且可选地将载气引入反应室的第二气体源;
用于将惰性气体引入反应室的惰性气体源;
用于形成惰性气体等离子体的等离子体功率源;
排气源;以及
控制器,其中,控制器配置成控制气体流入气体注射系统,并用于使所述系统执行根据权利要求1至19中任一项所述的方法。
CN202210160169.8A 2021-02-25 2022-02-22 形成磷硅酸盐玻璃层的方法及其结构和系统 Pending CN114959634A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163153556P 2021-02-25 2021-02-25
US63/153,556 2021-02-25

Publications (1)

Publication Number Publication Date
CN114959634A true CN114959634A (zh) 2022-08-30

Family

ID=82900518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210160169.8A Pending CN114959634A (zh) 2021-02-25 2022-02-22 形成磷硅酸盐玻璃层的方法及其结构和系统

Country Status (4)

Country Link
US (1) US20220267903A1 (zh)
KR (1) KR20220121720A (zh)
CN (1) CN114959634A (zh)
TW (1) TW202240007A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083989A (ja) * 1996-07-16 1998-03-31 Matsushita Electric Ind Co Ltd パターン形成方法
JP2001284347A (ja) * 2000-03-31 2001-10-12 Canon Sales Co Inc 成膜方法及び半導体装置の製造方法
US9257274B2 (en) * 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
TWI627303B (zh) * 2011-11-04 2018-06-21 Asm國際股份有限公司 將摻雜氧化矽沉積在反應室內的基底上的方法

Also Published As

Publication number Publication date
KR20220121720A (ko) 2022-09-01
TW202240007A (zh) 2022-10-16
US20220267903A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US11626316B2 (en) Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US20210320003A1 (en) Method of forming a nitrogen-containing carbon film and system for performing the method
US10847365B2 (en) Method of forming conformal silicon carbide film by cyclic CVD
US20210143003A1 (en) Method of forming a structure including silicon oxide
KR20210100535A (ko) 탄소 재료를 포함한 구조체를 형성하는 방법, 이 방법을 사용하여 형성된 구조체, 및 이 구조체를 형성하기 위한 시스템
US20220005693A1 (en) Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
KR20190061877A (ko) 박막 증착 방법
US20220223411A1 (en) Methods for depositing gap-filling fluids and related systems and devices
CN114959634A (zh) 形成磷硅酸盐玻璃层的方法及其结构和系统
US20220319832A1 (en) Method and system for depositing silicon nitride with intermediate treatment process
US20220319831A1 (en) Method and system for forming silicon nitride layer using low radio frequency plasma process
US11970769B2 (en) Cyclical deposition methods
US20220336204A1 (en) Method of filling gap with flowable carbon layer
US20220108881A1 (en) Method and system for forming silicon nitride on a sidewall of a feature
US20240060174A1 (en) Method of forming material within a recess
US20220254628A1 (en) Method and system for forming boron nitride on a surface of a substrate
US20240175124A1 (en) Cyclical deposition methods and structures formed using the methods
US20230215763A1 (en) Systems and methods for cleaning and treating a surface of a substrate
US20220178023A1 (en) Method of forming a structure including silicon-carbon material, structure formed using the method, and system for forming the structure
TW202310683A (zh) 形成包括碳化矽層的結構之方法以及填充基材表面上的溝槽之方法
JP2023162144A (ja) シリコンオキシカーバイド層を形成するためのプラズマ強化方法およびシステムならびにそれを使用して形成された構造
KR20240017753A (ko) 처리된 실리콘-탄소 재료를 형성하는 방법
WO2019042687A1 (en) METHOD FOR DEPOSITING INSULATING MATERIAL IN INTERCONNECTION HOLE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination