CN114959423B - 一种高硅含钛奥氏体不锈钢的冶炼方法 - Google Patents

一种高硅含钛奥氏体不锈钢的冶炼方法 Download PDF

Info

Publication number
CN114959423B
CN114959423B CN202210636521.0A CN202210636521A CN114959423B CN 114959423 B CN114959423 B CN 114959423B CN 202210636521 A CN202210636521 A CN 202210636521A CN 114959423 B CN114959423 B CN 114959423B
Authority
CN
China
Prior art keywords
titanium
slag
stainless steel
ladle
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210636521.0A
Other languages
English (en)
Other versions
CN114959423A (zh
Inventor
陈兴润
潘吉祥
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Original Assignee
Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd filed Critical Gansu Jiu Steel Group Hongxing Iron and Steel Co Ltd
Priority to CN202210636521.0A priority Critical patent/CN114959423B/zh
Publication of CN114959423A publication Critical patent/CN114959423A/zh
Application granted granted Critical
Publication of CN114959423B publication Critical patent/CN114959423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种高硅含钛奥氏体不锈钢的冶炼方法,包括以下步骤:(1)钢水在AOD转炉脱碳、还原、脱硫处理后出钢至钢包;(2)钢包吊至扒渣站扒除炉渣;(3)将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣加入步骤(2)中钢包;(4)LF进站化渣;(5)LF钛合金化;(6)LF弱吹;(7)连铸。本发明对连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣循环利用,降低了生产成本。加入的炉渣中TiO2基本处于饱和,提高了渣中TiO2的活度,抑制了钛的氧化反应,提高了钛的收得率。本发明在高硅含量下,控制钢液中铝含量,避免了氧化铝和镁铝尖晶石的产生,LF精炼过程中形成液态夹杂物,避免了水口结瘤和表面缺陷的问题。

Description

一种高硅含钛奥氏体不锈钢的冶炼方法
技术领域
本发明属于不锈钢冶炼技术领域,尤其涉及一种高硅含钛奥氏体不锈钢的冶炼方法。
背景技术
高硅含钛奥氏体不锈钢主要应用于食品包装、传送机械等行业,对耐腐蚀性能、焊接性能都有较高的要求,同时要求有较高的强度,且抗拉强度要求大于900MPa、屈服强度要求大于400MPa,远远超出了常规奥氏体不锈钢的要求。
高硅含钛奥氏体不锈钢成分设计中,为提高抗晶间腐蚀性能,要求钛含量大于0.3%;为提高耐高温、高浓度硝酸和硫酸腐蚀的性能,硅含量一般控制在1.5%左右。此外,高硅含钛奥氏体不锈钢中还包含铜元素和钼元素,因此较普通的含钛奥氏体不锈钢(例如321等)生产难度更大。高的钛含量,在冶炼过程中容易形成TiN和TiOx夹杂物,造成水口结瘤和表面缺陷。而硅元素虽然是脱氧元素,但是钢液中硅含量太高,则炉渣中SiO2含量也高,炉渣中的SiO2和钛元素又会发生反应,降低钛的收得率。
发明内容
本发明的目的是提供一种新的高硅含钛奥氏体不锈钢的冶炼方法,以克服现有高硅含钛奥氏体不锈钢冶炼方法存在水口结瘤和表面缺陷以及钛收得率低的缺陷。
为实现其目的,本发明采用以下技术方案:
一种高硅含钛奥氏体不锈钢的冶炼方法,包括以下步骤:
步骤一、将钢水在AOD转炉进行脱碳、还原和脱硫处理,处理后将钢液出钢至钢包一,所述钢液的成分以重量百分比计为:C 0.030-0.040%、Si 1.30-1.50%、Mn 0.45-0.55%、P≤0.035%、Cr 13.80-14.20%、Ni 6.90-7.10%、Cu 0.60-0.80%、Mo 0.80-0.90%、S≤0.002%、N≤0.01%,Al≤0.005%,其余为Fe 与不可避免的杂质;
步骤二、将步骤一中钢包一吊运至扒渣站,进行扒渣处理,扒除炉渣;
步骤三、将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包吊运至扒渣站,将该钢包中炉渣加入到步骤二的钢包一中;
步骤四、LF进站化渣:钢包一进入LF进行通电,将钢水温度升至1580~1600℃;炉渣化好后,氩气流量控制在300~500NL/min,吹氩10~15min;
步骤五、LF钛合金化:氩气流量控制在300~500NL/min,喂入钛线,钛的收得率按85%计算,喂入钛线130-150米/吨;
步骤六、LF弱吹:氩气流量调至200~300NL/min,吹氩20~30min,得到钢液;
步骤七、将步骤六所得钢液铸成钢坯,得到高硅含钛奥氏体不锈钢产品。
作为本发明技术方案的进一步优选,步骤二中,所述扒除炉渣的厚度≤30mm。大于30mm由于炉渣中SiO2含量高,会导致钛收得率低。
进一步地,步骤三中,所述连铸浇铸完毕的含钛超纯铁素体不锈钢钢包中炉渣的成分以重量百分比计为:CaO 60-65%,SiO2 5-10%,Al2O3 20-25%,MgO≤6%,TiO2.5-3.5%,FeO+Cr2O0.2-0.5%。
进一步地,步骤七中,所述高硅含钛奥氏体不锈钢产品的成分以重量百分比计为:C 0.040-0.050%、Si 1.55-1.65%、Mn 0.45-0.55%、P≤0.035%、Cr 13.80-14.20%、Ni 6.90-7.10%、Cu 0.60-0.80%、Mo 0.80-0.90%、S≤0.002%、N≤0.012%,Al≤0.005%,Ti 0.30-0.36%,其余为Fe 与不可避免的杂质。
本发明有益效果是:
1、本发明高硅含钛奥氏体不锈钢的冶炼方法,通过对连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣进行循环利用,降低了生产成本。加入的含钛超纯铁素体不锈钢钢包内炉渣中TiO2基本饱和,提高了炉渣中TiO2的活度,抑制了钛的氧化反应,提高了钛的收得率。
2、本发明中含钛奥氏体不锈钢的LF精炼方法,减少了在LF精炼过程中加入石灰、萤石和CaO-Al2O3基精炼渣的造渣环节,缩短了生产周期,避免了造渣过程中的增氮现象,保证了高硅含钛奥氏体不锈钢低的钛氮浓度积。
3、本发明中含钛奥氏体不锈钢的LF精炼方法,在高硅含量的情况下,控制钢液中铝含量,避免了氧化铝和镁铝尖晶石的产生,LF精炼过程中形成的全部是液态夹杂物,避免了水口结瘤和表面缺陷的问题,提高了钢水纯净度。
附图说明
图1为本发明实施例1生产的高硅含钛奥氏体不锈钢301H中夹杂物显微照片;
图2为本发明实施例2生产的高硅含钛奥氏体不锈钢301H中夹杂物显微照片;
图3为本发明实施例3生产的高硅含钛奥氏体不锈钢301H中夹杂物显微照片。
具体实施方式
下面结合具体实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
钢种301H,高硅含钛奥氏体不锈钢的冶炼方法,包括以下步骤:
1、钢水在AOD转炉进行脱碳、还原和脱硫处理,处理后将钢液出钢至钢包一,钢液按重量百分比的具体成分为:C 0.030%、Si 1.30%、Mn 0.45%、P 0.035%、Cr 13.80%、Ni6.90%、Cu 0.60%、Mo 0.80%、S 0.002%、N 0.01%,Al 0.005%,其余为Fe与不可避免的杂质;
2、AOD扒渣站扒除炉渣:将钢包一吊运至扒渣站,进行扒渣处理,炉渣厚度30mm;
3、将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包吊运到扒渣站,将该钢包内炉渣加入到钢包一中。连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣按重量百分比计,具体成分为:CaO 60%,SiO10%,Al2O20%,MgO 6%,TiO2 3.5%,FeO+Cr2O3 0.5%;
4、LF进站化渣:钢包一进入LF进行通电,钢水温度升至1580℃;炉渣化好后,氩气流量控制在300NL/min,吹氩10min;
5、LF钛合金化:氩气流量控制在300NL/min,喂入钛线,钛的收得率按85%计算,喂入钛线130米/吨;
6、LF弱吹:氩气流量调至200NL/min,吹氩20min;
7、将步骤6所得钢液铸成钢坯,得到高硅含钛奥氏体不锈钢产品。高硅含钛奥氏体不锈钢产品,按重量百分比计,具体成分为:C 0.040%、Si 1.55%、Mn 0.45%、P 0.035%、Cr13.80%、Ni 6.90%、Cu 0.60%、Mo 0.80%、S 0.002%、N 0.012%,Al 0.005%、Ti 0.30%,其余为Fe 与不可避免的杂质;
图1为实施例1生产的高硅含钛奥氏体不锈钢301H中夹杂物显微照片。从图中可以看出,夹杂物尺寸小于10微米,不锈钢产品无水口结瘤和表面缺陷的问题。
实施例2
钢种301H,高硅含钛奥氏体不锈钢的冶炼方法,包括以下步骤:
1、钢水在AOD转炉进行脱碳、还原和脱硫处理,处理后将钢液出钢至钢包一,钢液按重量百分比计,具体成分为:C 0.040%,Si 1.50%,Mn 0.55%,P 0.030%,Cr 14.20%,Ni7.10%,Cu 0.80%,Mo 0.90%,S 0.0015%,N 0.008%,Al 0.002%,其余为Fe与不可避免的杂质;
2、AOD扒渣站扒除炉渣:将钢包一吊运至扒渣站,进行扒渣处理,炉渣厚度20mm;
3、将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包吊运到扒渣站,将该钢包内炉渣加入到钢包一中。连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣按重量百分比计,具体成分为:CaO 65%,SiO2 5%,Al2O3 25%,MgO 2.3%,TiO2 2.5%,FeO+Cr2O3 0.2%;
4、LF进站化渣:钢包一进入LF进行通电,钢水温度升至1600℃;炉渣化好后,氩气流量控制在500NL/min,吹氩15min;
5、LF钛合金化:氩气流量控制在500NL/min,喂入钛线,钛的收得率按85%计算,喂入钛线150米/吨;
6、LF弱吹:氩气流量调至300NL/min,吹氩30min;
7、将步骤6所得钢液铸成钢坯,得到高硅含钛奥氏体不锈钢产品。高硅含钛奥氏体不锈钢产品,按重量百分比计,具体成分为:C 0.050%、Si 1.65%、Mn 0.55%、P 0.03%、Cr14.20%、Ni 7.10%、Cu 0.80%、Mo 0.90%、S 0.0015%、N 0.01%,Al 0.002%、Ti 0.36%,其余为Fe与不可避免的杂质;
图2为实施例2生产高硅含钛奥氏体不锈钢301H中夹杂物显微照片。从图中可以看出,夹杂物尺寸小于10微米,不锈钢产品无水口结瘤和表面缺陷的问题。
实施例3
钢种301H,高硅含钛奥氏体不锈钢的冶炼方法,包括以下步骤:
1、钢水在AOD转炉进行脱碳、还原和脱硫处理,处理后将钢液出钢至钢包一,钢液按重量百分比计,具体成分为:C 0.035%、Si 1.42%、Mn 0.51%、P 0.033%、Cr 13.90%、Ni7.02%、Cu 0.68%、Mo 0.86%、S 0.001%、N 0.009%,Al 0.003%,其余为Fe与不可避免的杂质;
2、AOD扒渣站扒除炉渣:将钢包一吊运至扒渣站,进行扒渣处理,炉渣厚度25mm;
3、将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包吊运到扒渣站,将该钢包内炉渣加入到钢包一中。连铸浇铸完毕的含钛超纯铁素体不锈钢钢包内炉渣按重量百分比计,具体成分为:CaO 62%,SiO2 8%,Al2O3 22%,MgO 4.5%、TiO2 3.1%,FeO+Cr2O3 0.4%;
4、LF进站化渣:钢包一进入LF进行通电,钢水温度升至1590℃;炉渣化好后,氩气流量控制在400NL/min,吹氩12min;
5、LF钛合金化:氩气流量控制在400NL/min,喂入钛线,钛的收得率按85%计算,喂入钛线140米/吨;
6、LF弱吹:氩气流量调至250NL/min,吹氩24min;
7、将步骤6所得钢液铸成钢坯,得到高硅含钛奥氏体不锈钢产品。高硅含钛奥氏体不锈钢产品,按重量百分比计,具体成分为:C 0.042%、Si 1.58%、Mn 0.51%、P 0.033%、Cr13.95%、Ni 7.02%、Cu 0.68%、Mo 0.86%、S 0.001%、N 0.011%、Al 0.003%、Ti 0.33%,其余为Fe与不可避免的杂质;
图3为实施例3生产的高硅含钛奥氏体不锈钢301H中夹杂物显微照片。从图中可以看出,夹杂物尺寸小于10微米,不锈钢产品无水口结瘤和表面缺陷的问题。

Claims (3)

1.一种高硅含钛奥氏体不锈钢的冶炼方法,其特征在于,包括以下步骤:
步骤一、将钢水在AOD转炉进行脱碳、还原和脱硫处理,处理后将钢液出钢至钢包一,所述钢液的成分以重量百分比计为:C 0.030-0.040%、Si 1.30-1.50%、Mn 0.45-0.55%、P≤0.035%、Cr 13.80-14.20%、Ni 6.90-7.10%、Cu 0.60-0.80%、Mo 0.80-0.90%、S≤0.002%、N≤0.01%,Al≤0.005%,其余为Fe 与不可避免的杂质;
步骤二、将步骤一中钢包一吊运至扒渣站,进行扒渣处理,扒除炉渣;
步骤三、将连铸浇铸完毕的含钛超纯铁素体不锈钢钢包吊运至扒渣站,将该钢包中炉渣加入到步骤二的钢包一中;所述连铸浇铸完毕的含钛超纯铁素体不锈钢钢包中炉渣的成分以重量百分比计为:CaO 60-65%,SiO2 5-10%,Al2O3 20-25%,MgO≤6%,TiO2 2.5-3.5%,FeO+Cr2O3 0.2-0.5%;
步骤四、LF进站化渣:钢包一进入LF进行通电,将钢水温度升至1580~1600℃;炉渣化好后,氩气流量控制在300~500NL/min,吹氩10~15min;
步骤五、LF钛合金化:氩气流量控制在300~500NL/min,喂入钛线,钛的收得率按85%计算,喂入钛线130-150米/吨;
步骤六、LF弱吹:氩气流量调至200~300NL/min,吹氩20~30min,得到钢液;
步骤七、将步骤六所得钢液铸成钢坯,得到高硅含钛奥氏体不锈钢产品。
2.如权利要求1所述的一种高硅含钛奥氏体不锈钢的冶炼方法,其特征在于,步骤二中,所述扒除炉渣的厚度≤30mm。
3.如权利要求1所述的一种高硅含钛奥氏体不锈钢的冶炼方法,其特征在于,步骤七中,所述高硅含钛奥氏体不锈钢产品的成分以重量百分比计为:C 0.040-0.050%、Si 1.55-1.65%、Mn 0.45-0.55%、P≤0.035%、Cr 13.80-14.20%、Ni 6.90-7.10%、Cu 0.60-0.80%、Mo0.80-0.90%、S≤0.002%、N≤0.012%,Al≤0.005%,Ti 0.30-0.36%,其余为Fe 与不可避免的杂质。
CN202210636521.0A 2022-06-07 2022-06-07 一种高硅含钛奥氏体不锈钢的冶炼方法 Active CN114959423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210636521.0A CN114959423B (zh) 2022-06-07 2022-06-07 一种高硅含钛奥氏体不锈钢的冶炼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210636521.0A CN114959423B (zh) 2022-06-07 2022-06-07 一种高硅含钛奥氏体不锈钢的冶炼方法

Publications (2)

Publication Number Publication Date
CN114959423A CN114959423A (zh) 2022-08-30
CN114959423B true CN114959423B (zh) 2023-04-14

Family

ID=82959168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210636521.0A Active CN114959423B (zh) 2022-06-07 2022-06-07 一种高硅含钛奥氏体不锈钢的冶炼方法

Country Status (1)

Country Link
CN (1) CN114959423B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125221A (en) * 1979-03-23 1980-09-26 Daido Steel Co Ltd Production of low-carbon stainless steel by plasma arc melting
SE0104192D0 (sv) * 2001-12-11 2001-12-11 Sandvik Ab Utskiljningshärdbar austenitisk legering
JP2005290449A (ja) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd 微細介在物含有ステンレス鋼とその製造方法
CN101338396A (zh) * 2008-04-29 2009-01-07 永兴特种不锈钢股份有限公司 一种用aod冶炼极低碳高硅不锈钢的方法
CN106256920A (zh) * 2015-06-17 2016-12-28 宝钢不锈钢有限公司 一种具有良好抗氧化性能的含钛奥氏体不锈钢及其制造方法
CN109972060A (zh) * 2019-05-07 2019-07-05 四川维珍高新材料有限公司 一种低镍高强度双相不锈钢材料及其制备方法
CN110331340A (zh) * 2019-07-30 2019-10-15 深圳市裕丰隆金属材料有限公司 一种304亚稳态奥氏体不锈钢及其制备工艺
JP2019178363A (ja) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 製造性に優れた高Si含有のオーステナイト系ステンレス鋼
CN110484685A (zh) * 2019-09-18 2019-11-22 宝钢德盛不锈钢有限公司 含钛不锈钢结瘤的控制方法
CN110982982A (zh) * 2019-11-13 2020-04-10 甘肃酒钢集团宏兴钢铁股份有限公司 一种含钛奥氏体不锈钢的lf精炼方法
CN113604724A (zh) * 2021-08-04 2021-11-05 浦项(张家港)不锈钢股份有限公司 一种904l超级奥氏体不锈钢及其制备方法
CN113943902A (zh) * 2021-10-21 2022-01-18 宝武特冶航研科技有限公司 一种高硅高钛含铝不锈钢低气体含量控制冶炼方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418416B1 (en) * 2016-02-17 2020-12-02 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic two-phase stainless steel material and method for manufacturing same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125221A (en) * 1979-03-23 1980-09-26 Daido Steel Co Ltd Production of low-carbon stainless steel by plasma arc melting
SE0104192D0 (sv) * 2001-12-11 2001-12-11 Sandvik Ab Utskiljningshärdbar austenitisk legering
JP2005290449A (ja) * 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd 微細介在物含有ステンレス鋼とその製造方法
CN101338396A (zh) * 2008-04-29 2009-01-07 永兴特种不锈钢股份有限公司 一种用aod冶炼极低碳高硅不锈钢的方法
CN106256920A (zh) * 2015-06-17 2016-12-28 宝钢不锈钢有限公司 一种具有良好抗氧化性能的含钛奥氏体不锈钢及其制造方法
JP2019178363A (ja) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 製造性に優れた高Si含有のオーステナイト系ステンレス鋼
CN109972060A (zh) * 2019-05-07 2019-07-05 四川维珍高新材料有限公司 一种低镍高强度双相不锈钢材料及其制备方法
CN110331340A (zh) * 2019-07-30 2019-10-15 深圳市裕丰隆金属材料有限公司 一种304亚稳态奥氏体不锈钢及其制备工艺
CN110484685A (zh) * 2019-09-18 2019-11-22 宝钢德盛不锈钢有限公司 含钛不锈钢结瘤的控制方法
CN110982982A (zh) * 2019-11-13 2020-04-10 甘肃酒钢集团宏兴钢铁股份有限公司 一种含钛奥氏体不锈钢的lf精炼方法
CN113604724A (zh) * 2021-08-04 2021-11-05 浦项(张家港)不锈钢股份有限公司 一种904l超级奥氏体不锈钢及其制备方法
CN113943902A (zh) * 2021-10-21 2022-01-18 宝武特冶航研科技有限公司 一种高硅高钛含铝不锈钢低气体含量控制冶炼方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
chen,xr.Influence of refining process and utilization of different slags on conclusion, titanium yield and total oxygen content of Ti-stabilized 321 stainless steel.《Journal of Iron and Steel Research International》.2020,全文. *
成东全等.硅含量对含钛不锈钢全氧和夹杂物的影响.《炼钢》.2019,全文. *
郭宁,秦紫瑞.超低碳低铬镍高硅铸造不锈钢组织及点蚀行为.石油机械.1998,(05),全文. *

Also Published As

Publication number Publication date
CN114959423A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN110982982A (zh) 一种含钛奥氏体不锈钢的lf精炼方法
JP5833767B2 (ja) 高アルミ低シリコン超純フェライトステンレススチールの製錬方法
CN101633038B (zh) 一种降低不锈钢连铸坯表面缺陷的方法
CN108823346B (zh) 一种低成本生产二级探伤q345r中厚钢板的方法
KR20130025383A (ko) 초저 탄소 AlSi-킬드 강에서 Ti를 매우 낮게 제어하는 방법
CN110819896A (zh) 一种精密压延用超薄奥氏体不锈钢带材的冶炼方法
CN110724787A (zh) 一种含硫含铝钢的冶炼方法
CN110669986B (zh) 一种310s不锈钢制备方法及310s不锈钢
CN108893682B (zh) 模具钢钢坯及其制备方法
CN112626302B (zh) 一种高洁净度微合金化高强钢的冶炼方法
CN112899437A (zh) 一种无铝低合金无取向硅钢氧含量控制方法
CN113215476A (zh) 一种生产工业纯铁的方法
CN113249542A (zh) 一种提高弹簧钢纯净度及夹杂物塑性化的冶炼工艺、弹簧钢
CN112029961A (zh) 一种含氮超级不锈钢的铝脱氧方法
KR20090065994A (ko) 오스테나이트계 스테인리스강 제조방법
CN111304532B (zh) 一种耐热奥氏体不锈钢及其制备方法
CN114959423B (zh) 一种高硅含钛奥氏体不锈钢的冶炼方法
CN109554517B (zh) 一种小方坯连铸机生产含钛铁素体不锈钢小方坯的方法
CN115261564B (zh) 非晶软磁薄带用非铝脱氧原料纯铁及其制备方法
CN115558834A (zh) 一种中厚板钢种及其冶炼方法
CN111154945B (zh) 一种Ti、V微合金化铝脱氧含硫非调质钢中液析氮化物的控制方法
CN113604724B (zh) 一种904l超级奥氏体不锈钢及其制备方法
CN114855090A (zh) 一种高强韧性风电齿轮钢及其制备方法
CN110872672A (zh) 一种含钒钛铁水冶炼食品级马口铁基料的方法
CN113699313B (zh) 一种含钛不锈钢的冶炼工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant