CN114958009B - 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法 - Google Patents

一种蚕丝基高强度离子凝胶柔性传感材料的制备方法 Download PDF

Info

Publication number
CN114958009B
CN114958009B CN202210571096.1A CN202210571096A CN114958009B CN 114958009 B CN114958009 B CN 114958009B CN 202210571096 A CN202210571096 A CN 202210571096A CN 114958009 B CN114958009 B CN 114958009B
Authority
CN
China
Prior art keywords
cnfene
silk
silk fibroin
solution
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210571096.1A
Other languages
English (en)
Other versions
CN114958009A (zh
Inventor
余厚咏
葛丹
何霞
廖怡琦
苗舟羽
欧阳兆锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210571096.1A priority Critical patent/CN114958009B/zh
Publication of CN114958009A publication Critical patent/CN114958009A/zh
Application granted granted Critical
Publication of CN114958009B publication Critical patent/CN114958009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于导电复合材料制备领域,特别涉及一种柔性高强丝素蛋白(SF)基导电复合材料的制备方法。具体步骤是将丝素蛋白(SF)作为模板,室温状态下,缓慢加入无水氯化钙(CaCl2)再滴加适量甘油,搅拌均匀,最后加入带弱酸性的本征导电纳米纤维素(CNFene),通过金属离子螯合以及与甘油形成双网络结构生成SF/CNFene杂化材料,倒入干净的培养皿中,烘干,即得到均匀的柔性传感材料。该材料不仅兼具优异的生物相容性和导电性,还拥有抗冻性能和优异的力学性能、强粘性,优异的传感性能,可以进行全方位的人体运动监测,在应变传感、智能机器人交互和柔性可穿戴电子设备等领域具有广泛的应用前景。

Description

一种蚕丝基高强度离子凝胶柔性传感材料的制备方法
技术领域
本发明属于导电复合材料制备领域,特别涉及一种柔性高强SF基导电复合材料的制备方法。
背景技术
随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究智能机器人的过程中,主要涉及到智能传感等技术。传感皮肤是一种可以让机器人产生“触觉”的系统,它能像衣服一样附着在设备表面,让智能机器人感知到物体所在的地点和物体硬度等信息。因此,目前智能机器人领域亟需一种制备简单、成本低、传感性能优异的传感皮肤材料。
丝素蛋白(SF)因其本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态等优势,在全生物降解、药物缓释载体、保湿面膜、光学或防伪材料、柔性显示设备等领域已经有初步商业化应用。Hou-Yong Yu等人在期刊Chemical Engineering Journal上发表的《Robust naturalbiomaterial based flexible artificial skin sensor with high transparency andmultiple signals capture》文章介绍了SF作为基质,制备传感器,在运动监测、智能机器人传感皮肤等领域具有巨大潜力。
目前市场上仿生传感皮肤材料还不多,主要有硅胶、水凝胶、柔性电极材料等。硅胶材料虽然弹性、耐温效果较好,但其加工工艺较复杂且成本较高;水凝胶和柔性电极材料是目前研究仿生皮肤主要应用的材料,但其缺乏生物体皮肤的感觉反馈能力,这在一定程度上限制了其应用领域。因此,目前关键在于如何使传感皮肤材料具有高灵敏度的传感反馈能力,以达到智能穿戴设备可以及时反馈人体的舒适度及健康状况,如此便可用于医学材料如假肢,使其具有类似生物体皮肤的触觉;也可应用于智能机器人,改善机械性能,提高响应能力、传感反馈能力,可得到大力推广。
(CN208805290U)提出使用三层硅橡胶复合得到机器人感官用传感皮肤复合材料,但其提出的传感皮肤材料仍存在诸多问题,如无粘合性能、力学性能较差、传感性能差。
基于此,需要一种或多种新材料解决上述存在的问题。
发明内容
基于现有技术中存在的上述缺点和不足,本发明的目的之一是提供一种柔性高强度离子凝胶膜导电复合材料的制备方法,该方法制备简单,操作简便,绿色无污染,且方便大规模生产;本发明的目的之二是提供一种结构稳定、导电性能佳、力学性能较好、传感性能优异的导电复合材料。
一种蚕丝基高强度离子凝胶柔性传感材料,所述传感材料成分包括基质、木质纤维、盐;所述传感材料还具有网格结构。
作为优选方案,传感材料成分还包括醇。
作为优选方案,所述基质为丝素蛋白。
作为优选方案,所述盐为氯化钙。
作为优选方案,所述醇为甘油。
一种蚕丝基高强度离子凝胶柔性传感材料的制备方法,包括以下步骤:
(1)向丝素蛋白溶液中加入盐,得到混合溶液;
(2)将木质纤维原料剪碎,在氮气保护下,加入硫酸溶液,控温、搅拌、离心后,得到纳米纤维素分散液;
(3)将步骤(2)中得到的纳米纤维素分散液加到步骤(1)的混合溶液中,搅拌,得到丝素蛋白导电复合溶液;
(4)将步骤(3)得到的丝素蛋白导电复合溶液平铺,烘干,即得到蚕丝基高强度离子凝胶柔性传感材料。
作为优选方案,还包括向所述步骤(1)得到的混合溶液中加入甘油。
所述步骤(1)中丝素蛋白溶液固液比为1g:20~30mL;丝素蛋白与盐质量比为7~8:2~3;丝素蛋白:甘油的质量比为10:1~3;温度在40℃~90℃,搅拌3~4h。
所述步骤(2)中硫酸质量分数为60%~70%。
所述步骤(3)中丝素蛋白:纳米纤维素质量比为100:2~5;所述步骤(4)中烘干温度在40℃~60℃。
一种蚕丝基高强度离子凝胶柔性传感材料应用于运动监测、智能机器人传感皮肤。
作为优选方案,所述步骤(1)中丝素蛋白溶液固液比为1g:20~30mL。
本发明中,丝素蛋白溶液固液比为1g:20~30mL,是因为丝素蛋白内部有着独特的β折叠和α螺旋赋予其独特的力学和内部结构,过高的固液比会使丝素蛋白乳化成膏体,直接影响材料整体性能;而过低浓度导致成形太薄。
作为优选方案,所述步骤(1)中丝素蛋白与CaCl2质量比为7~8:2~3。
本发明中,丝素蛋白与CaCl2质量比为7~8:2~3是因为虽然生物质钙离子打断丝素蛋白的β折叠,从而暴露氢键结合点,生物质钙离子与丝素蛋白结合会赋予其强大的粘附性和抗冻性,但是过多的钙离子会使SF成为溶胶,变成液态,难以成膜;过少的钙离子难以打乱丝素蛋白中的β折叠。
作为优选方案,所述步骤(1)中丝素蛋白:甘油的质量比为10:1~3。
本发明中,丝素蛋白:甘油的质量比为10:1~3是因为过量的甘油会使材料塑化过度,整体变成膏体;而过少的甘油会影响材料韧性。
作为优选方案,所述步骤(2)中硫酸质量分数为60%~70%。
本发明中,硫酸质量分数为60%-70%是因为过高的硫酸质量分数不仅会使木质纤维水解过度,而且可能使木质纤维提前炭化;而硫酸质量分数过低,木质纤维达不到炭化要求。
作为优选方案,所述步骤(3)中丝素蛋白:纳米纤维素质量比为100:2~5。
本发明具有的有益效果是:
(1)本发明利用来源广泛、制备简单的SF为原料,具有绿色环保、机械性能良好的优点;
(2)本发明使用的制备方法简单,易成批量生产,市场需求大,具有可观的社会效益和经济效益;
(3)本发明制备的导电复合材料具有生物相容性好、自粘强度高、力学性能强、可自愈合、牢度高、快捷方便等优点,能够在一定程度上替代目前使用的硅胶、水凝胶、柔性电极材料,可用于医学材料如假肢,使其具有类似生物体皮肤的触觉;也可应用于智能机器人,改善机械性能,提高响应能力、传感反馈能力,具有广阔的应用前景。
附图说明
图1为实施例1制备的SF基的含有二价钙离子和本征导电CNFene的导电复合材料的横截面的场发射扫描电镜图。
图2为对比例1制备的SF基质的含有本征导电纳米纤维素的复合材料的横截面场发射扫描电镜(FE-SEM)测试图。
图3为实施例2制备的SF基的含有二价钙离子和本征导电CNFene的导电复合材料的传感性能测试图,以及与其他传感材料的性能对比。
图4为实施例2制备的SF基的含有二价钙离子和本征导电CNFene的导电复合材料的粘性测试图。
图5为实施例2制备的SF基的含有二价钙离子和本征导电CNFene的导电复合材料的力学性能测试图。
图6为实施例1、2、3和对比例1、2制备的SF基不同的导电复合材料的热学(DTG)性能测试图。
具体实施方式
下面结合具体实例,进一步阐述本发明。这些实施案例仅用于说明本发明而不用于限制本发明的范围。此外,本领域技术人员可以对本发明做各种改动或修改,这些形式同样落于本申请所附权利要求书所限定的范围。
本发明提出制备一种以丝素蛋白(SF)为基底材料含有本征导电的纳米纤维素(CNFene)的仿生膜作为仿生皮肤。利用金属盐CaCl2作为导电物质之一,且钙离子对SF和CNFene进行螯合作用,添加适量甘油,增加成膜性能,45℃烘干24h,作为智能机器人的传感皮肤,来进行运动监测和信号传输。
实施例对不同浓度的本征导电纳米纤维素以及钙离子和甘油的加入的导电复合材料具有优异的导电性、自愈性能和传感性能验证。
实施例1
S1:配制固液比为1g:25mL的丝素蛋白溶液,室温搅拌10min;
S2:配制固液比为1g:50mL的本征导电纳米纤维素分散液。取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30min,后将温度升至40℃,继续搅拌30min,再将温度调至90℃,快速搅拌4h,通过初步水解、二次水解和三次石墨化,最终生成CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的CNFene分散液;
S3:配置分散液固液比;将适当质量的无水氯化钙倒入SF溶液,其中SF:Ca2+的质量分数为7:3,搅拌10min,后将CNFene分散液缓慢滴加到含有二价钙离子的SF溶液中,快速搅拌10min,其中SF:CNFene的质量比为100:2,最后滴加少量甘油,其中SF:甘油的质量比为10:3,快速搅拌30min,即得到SF基质的钙离子螯合的含有导电CNFene的导电复合物溶液,将导电复合溶液均匀的倒在培养皿中,45℃烘干,得到SF基的含有二价钙离子和本征导电CNFene的导电复合材料。
实施例2
S1:配制固液比为1g:25mL的丝素蛋白溶液,室温搅拌10min;
S2:配制固液比为1g:50mL的本征导电纳米纤维素分散液。取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30min,后将温度升至40℃,继续搅拌30min,再将温度调至90℃,快速搅拌4h,通过初步水解、二次水解和三次石墨化,最终生成CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的CNFene分散液;
S3:配置分散液固液比;将适当质量的无水氯化钙倒入SF溶液,其中SF:Ca2+的质量分数为7:3,搅拌10min,后将CNFene分散液缓慢滴加到含有二价钙离子的SF溶液中,快速搅拌10min,其中SF:CNFene的质量比为100:3,最后滴加少量甘油,其中SF:甘油的质量比为10:3,快速搅拌30min,即得到SF基质的钙离子螯合的含有导电CNFene的导电复合物溶液,将导电复合溶液均匀的倒在培养皿中,45℃烘干,得到SF基的含有二价钙离子和本征导电CNFene的导电复合材料。
实施例3
S1:配制固液比为1g:25mL的丝素蛋白溶液,室温搅拌10min;
S2:配制固液比为1g:50mL的本征导电纳米纤维素分散液。取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30min,后将温度升至40℃,继续搅拌30min,再将温度调至90℃,快速搅拌4h,通过初步水解、二次水解和三次石墨化,最终生成CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的CNFene分散液;
S3:配置分散液固液比;将适当质量的无水氯化钙倒入SF溶液,其中SF:Ca2+的质量分数为7:3,搅拌10min,后将CNFene分散液缓慢滴加到含有二价钙离子的SF溶液中,快速搅拌10min,其中SF:CNFene的质量比为100:5,最后滴加少量甘油,其中SF:甘油的质量比为10:3,快速搅拌30min,即得到SF基质的钙离子螯合的含有导电CNFene的导电复合物溶液,将导电复合溶液均匀的倒在培养皿中,45℃烘干,得到SF基的含有二价钙离子和本征导电CNFene的导电复合材料。
对比例1
S1:配制固液比为1g:25mL的丝素蛋白(SF)溶液,室温搅拌10min;
S2:配制固液比为1g:50mL的本征导电纳米纤维素(CNFene)分散液。取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30min,后将温度升至40℃,继续搅拌30min,再将温度调至90℃,快速搅拌4h,通过初步水解、二次水解和三次石墨化,最终生成CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的CNFene分散液;
S3:配置分散液固液比。去离子水,实验室自制,将CNFene分散液缓慢滴加到丝素蛋白(SF)溶液中,最后滴加少量甘油,其中SF:甘油的质量比为10:3,快速搅拌30min,其中SF:CNFene的质量比为100:2;将上述分散好复合物溶液均匀倒在培养皿中,烘干,即得到SF基质的含有本征导电纳米纤维素CNFene的复合材料。
对比例2
S1:配制固液比为1g:25mL的丝素蛋白溶液,室温搅拌10min;
S2:配置分散液固液比;将适当质量的无水氯化钙倒入SF溶液,其中SF:Ca2+的质量分数为7:3,搅拌10min,最后滴加少量甘油,其中SF:甘油的质量比为10:3,快速搅拌30min,即得到含有SF基质的钙离子螯合的复合物溶液,将复合溶液均匀的倒在培养皿中,45℃烘干,得到SF基的含有二价钙离子的复合材料。
对比例3
S1:配制固液比为1g:25mL的丝素蛋白溶液,室温搅拌10min;
S2:配制固液比为1g:50mL的本征导电纳米纤维素分散液。取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30min,后将温度升至40℃,继续搅拌30min,再将温度调至90℃,快速搅拌4h,通过初步水解、二次水解和三次石墨化,最终生成CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的CNFene分散液;
S3:配置分散液固液比;将适当质量的无水氯化钙倒入SF溶液,其中SF:Ca2+的质量分数为7:3,搅拌10min,后将CNFene分散液缓慢滴加到含有二价钙离子的SF溶液中,快速搅拌10min,其中SF:CNFene的质量比为100:3,快速搅拌30min,即得到SF基质的钙离子螯合的含有导电CNFene的导电复合物溶液,将导电复合溶液均匀的倒在培养皿中,45℃烘干,得到SF基的含有二价钙离子和本征导电CNFene的导电复合材料。
对本发明所得到的SF基质的导电复合材料的场发射扫描电镜(FE-SEM)观察复合材料的形貌;使用数字万用电表(Keysight 34461A)对其导电性能进行测试,使用万能试验机(INSTRON)对其拉伸性能进行测试,使用热重分析仪(TG209 F1,Netzsch,Germany)对其热学性能进行测试其结果如下:
(1)场发射扫描电镜(FE-SEM)测试表明含有的导电复合材料结构稳定,性能优异,参见附图1,加入甘油的导电复合材料表面略有褶皱、整体光滑。
(2)万用电表对其导电性能的测试表示其导电性能优异,参见附图3。
(3)蚕丝基柔性传感材料粘性测试,参见附图4。
(4)万能试验机对材料拉伸性能测试表明其力学性能的大幅提高,参见附图5。
(5)热重分析仪对材料热稳定性进行测试表明CNFene加入的量会直接影响热稳定性,在一定范围内提高材料热稳定性,过低降低传感性能,过高降低热稳定性,参见附图6。汇总如表1所示。
表1
由表1可知,从对比例1、对比例2和对比例3可以看出,CNFene在一定含量内使材料热稳定性有提高,钙离子和甘油会促进SF和CNFene的融合,形成更稳定的结构;CNFene和钙离子对材料传感性能都有提升作用;CNFene使材料粘性有提升;通过钙离子螯合,CNFene与甘油SF形成稳定的氢键网络,极大的提高了材料的力学性能。
如附图1,实施例1制备的SF含有二价钙离子和本征导电CNFene的导电复合材料的场发射扫描电镜图所示,该导电复合材料表面略有褶皱、整体光滑,说明各种物质结合好,结构稳定;如附图2,对比例1制备的SF基质的含有本征导电CNFene的复合材料的横截面场发射扫描电镜(FE-SEM)测试图所示,说明该材料截面结构稳定,排列紧致,融合相对差,对于附图1和附图2的比较,我们可以明显观察到加入钙离子的导电材料融合度更高;如附图3-1,实施例2制备的SF基质的含有二价钙离子螯合CNFene的导电复合材料的传感性能测试图所示,将该材料附于手指弯曲处,进行90°的弯曲循环,可检测到电阻的变化,并且电阻的变化规律随着弯曲角度的变化而变化,说明该导电复合材料的传感性能优异;附图3-2表示对比例2中无CNFene的导电复合材料以同样方式测试的传感性能,可以明显观察到加入CNFene的材料传感性能更优异;如附图4,是实施例2制备的SF基质的含有二价钙离子螯合CNFene的导电复合材料的粘性测试,可以观察到材料具有优异的黏附性能;如附图5,实施例2制备的SF基质的含有二价钙离子螯合CNFene的导电复合材料和对比例2得到SF基的含有二价钙离子的复合材料的力学性能测试图所示,我们可以观察到材料加了CNFene以及甘油和钙离子之后的力学性能大幅提升;如附图6,是实施案例1、2、3和对比例1、2制备得到SF基质的复合材料,我们发现在250~300℃时,加入CNFene的导电材料热稳定性高,而加入的CNFene量过多,热稳定性会变差。
因此,本发明产品制备的SF基质的导电复合材料具有优异的导电性、自愈性能和传感性能,制备方法简单,成本低,保水性好,透明度高,具有多重传感功能等优点,这种具有优异强度、保水性和优异传感能力的高度透明的仿生皮肤,可以应用于智能机器人领域,作为机器人的传感皮肤,赋予智能机器人以灵敏的“触觉”,本发明在应变传感器、可穿戴电子设备、智能机器人传感皮肤材料等方面有广阔的应用前景。
以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的技术构思,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (4)

1.一种蚕丝基高强度离子凝胶柔性传感材料的制备方法,其特征在于,包括以下步骤:
(1)向丝素蛋白溶液中加入盐,得到混合溶液;所述盐为氯化钙;丝素蛋白与CaCl2质量比为7~8:2~3;
(2)取生姜放入浓度为64%的浓硫酸溶液中水浴,在高通量氮气氛围下,室温并缓慢搅拌30 min,然后将温度升至40℃,继续搅拌30 min,再将温度调至90℃,快速搅拌4 h,通过初步水解、二次水解和三次石墨化,最终生成本征导电纳米纤维素CNFene,得到溶液冷水浴迅速冷却,离心4次,得到弱酸性的本征导电纳米纤维素CNFene分散液;
(3)将步骤(2)中得到的本征导电纳米纤维素CNFene分散液加到步骤(1)的混合溶液中,加入甘油,搅拌,得到丝素蛋白导电复合溶液;丝素蛋白:甘油的质量比为 10:1~3;
(4)将步骤(3)得到的丝素蛋白导电复合溶液平铺,烘干,即得到蚕丝基高强度离子凝胶柔性传感材料。
2. 根据权利要求1所述的一种蚕丝基高强度离子凝胶柔性传感材料的制备方法,其特征在于:所述步骤(3)中丝素蛋白:CNFene质量比为 100:2~5。
3.如权利要求1~2之一所述的方法制备得到的蚕丝基高强度离子凝胶柔性传感材料,所述传感材料具有网格结构。
4.如权利要求3所述的一种蚕丝基高强度离子凝胶柔性传感材料应用于运动监测、智能机器人传感皮肤。
CN202210571096.1A 2022-05-24 2022-05-24 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法 Active CN114958009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210571096.1A CN114958009B (zh) 2022-05-24 2022-05-24 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210571096.1A CN114958009B (zh) 2022-05-24 2022-05-24 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法

Publications (2)

Publication Number Publication Date
CN114958009A CN114958009A (zh) 2022-08-30
CN114958009B true CN114958009B (zh) 2024-01-16

Family

ID=82955318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210571096.1A Active CN114958009B (zh) 2022-05-24 2022-05-24 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法

Country Status (1)

Country Link
CN (1) CN114958009B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036531A1 (fr) * 1999-11-15 2001-05-25 Zaidan-Houjin Ueda Sen-I Kagaku Shinkoukai Materiau polymere moleculairement composite en fibroine/cellulose et procede de production de ce materiau
CN101772348A (zh) * 2007-05-29 2010-07-07 塔夫茨大学信托人 利用超声处理使丝纤蛋白凝胶化的方法
CN103554520A (zh) * 2013-11-15 2014-02-05 苏州大学 一种离子诱导制备柞蚕丝素蛋白纳米颗粒的方法
CN106479195A (zh) * 2016-10-26 2017-03-08 武汉纺织大学 一种纳米纤维素增强丝素蛋白复合材料及其制备方法
CN106832987A (zh) * 2017-01-10 2017-06-13 浙江理工大学 一种纤维素‑丝胶全降解絮凝材料的制备方法
CN108794771A (zh) * 2018-06-25 2018-11-13 华中科技大学 双网络交联纤维素/丝素蛋白高强度水凝胶及其制备与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036531A1 (fr) * 1999-11-15 2001-05-25 Zaidan-Houjin Ueda Sen-I Kagaku Shinkoukai Materiau polymere moleculairement composite en fibroine/cellulose et procede de production de ce materiau
CN101772348A (zh) * 2007-05-29 2010-07-07 塔夫茨大学信托人 利用超声处理使丝纤蛋白凝胶化的方法
CN103554520A (zh) * 2013-11-15 2014-02-05 苏州大学 一种离子诱导制备柞蚕丝素蛋白纳米颗粒的方法
CN106479195A (zh) * 2016-10-26 2017-03-08 武汉纺织大学 一种纳米纤维素增强丝素蛋白复合材料及其制备方法
CN106832987A (zh) * 2017-01-10 2017-06-13 浙江理工大学 一种纤维素‑丝胶全降解絮凝材料的制备方法
CN108794771A (zh) * 2018-06-25 2018-11-13 华中科技大学 双网络交联纤维素/丝素蛋白高强度水凝胶及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Robust natural biomaterial based fl exible arti fi cial skin sensor with high transparency and multiple signals capture";Maihao Zhu等;《Chemical Engineering Journal》;20200324;1-12页 *
Robust natural biomaterial based fl exible arti fi cial skin sensor with high transparency and multiple signals capture;Maihao Zhu等;Chemical Engineering Journal;说明书第2节,摘要,引言部分 *

Also Published As

Publication number Publication date
CN114958009A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
He et al. Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit
Li et al. Polymerizable deep eutectic solvent‐based skin‐like elastomers with dynamic schemochrome and self‐healing ability
Pan et al. A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties
Liao et al. Wearable, healable, and adhesive epidermal sensors assembled from mussel‐inspired conductive hybrid hydrogel framework
Jin et al. Ultrastretchable, self-adhesive, strain-sensitive and self-healing GO@ DA/Alginate/P (AAc-co-AAm) multifunctional hydrogels via mussel-inspired chemistry
Li et al. Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor
WO2018058874A1 (zh) 一次成型的凝胶纤维复合支架材料及其制备方法与应用
CN111944167A (zh) 一种导电水凝胶及其制备方法和应用
CN109880382B (zh) 一种丝素/石墨烯复合导电薄膜及其制备方法
Zheng et al. Chemically modified silk fibroin hydrogel for environment-stable electronic skin
Chai et al. Highly stretchable and stimulus-free self-healing hydrogels with multiple signal detection performance for self-powered wearable temperature sensors
Li et al. Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
Wang et al. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors
Wu et al. Stretchable and highly sensitive polyelectrolyte microgels-enhanced polyacrylamide hydrogel composite for strain sensing
Yan et al. Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring
Du et al. A washable and breathable metallized fabric designed by silane bionic
CN114958009B (zh) 一种蚕丝基高强度离子凝胶柔性传感材料的制备方法
Ge et al. Intrinsically conductive bifunctional nanocellulose-reinforced robust and self-healable electronic skin: deep insights into multiple bonding network, property reinforcement, and sensing mechanism
Huang et al. Highly stable and reliable capacitive strain sensor for wearable electronics based on anti-dry hydrogel electrode
Cui et al. Tannic acid-coated cellulose nanocrystal-reinforced transparent multifunctional hydrogels with UV-filtering for wearable flexible sensors
Jiang et al. A flexible piezoresistive strain sensor based on black phosphorus/gold nanocomposites interspersed sponge for motion sensing
Ma et al. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors
Chen et al. Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring
Feng et al. Guar Gum-based multifunctional hydrogels with high sensitivity and negligible hysteresis for wearable electronics
Huang et al. Highly ion-conducting, robust and environmentally stable poly (vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant