CN114957802A - 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法 - Google Patents

基于纤维素光子晶体禁带调制的稀土荧光膜制备方法 Download PDF

Info

Publication number
CN114957802A
CN114957802A CN202210390651.0A CN202210390651A CN114957802A CN 114957802 A CN114957802 A CN 114957802A CN 202210390651 A CN202210390651 A CN 202210390651A CN 114957802 A CN114957802 A CN 114957802A
Authority
CN
China
Prior art keywords
cellulose
preparation
nay
chiral
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210390651.0A
Other languages
English (en)
Other versions
CN114957802B (zh
Inventor
罗玉霞
陈卓
韩卿
刘青棣
何平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210390651.0A priority Critical patent/CN114957802B/zh
Publication of CN114957802A publication Critical patent/CN114957802A/zh
Application granted granted Critical
Publication of CN114957802B publication Critical patent/CN114957802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:步骤1,通过Gd3+掺杂制备纳米棒,利用D‑酒石酸改性获得手性纳米棒;步骤2,将步骤1得到的手性纳米棒与CNCs共组装,并在混合液中加入小分子EG和大分子PVA,最后加入交联剂戊二醛,搅拌均匀;步骤3,将步骤2所得的混合溶液放入超声仪器中进行超声,然后将超声完成的混合液倒入聚苯乙烯培养皿中采用蒸发自组装方式成膜;步骤4,成膜之后,将膜取出,利用盐酸进行蒸汽交联。本发明将手性纳米棒与CNC共组装成具有手性向列相的光子薄膜。

Description

基于纤维素光子晶体禁带调制的稀土荧光膜制备方法
技术领域
本发明属于稀土发光技术领域,涉及一种基于纤维素光子晶体禁带调制的稀土荧光膜制备方法。
背景技术
镧系离子(Ln3+)具有从可见光到近红外的丰富的尖锐发射带、大的抗斯托克位移、窄的发射带宽、长激发态寿命、高的光稳定性和低的细胞毒性,因此是一种宝贵的战略资源,广泛应用于显示、传感、激光等领域。这些应用均有赖于对其发光性能的精准调控,目前调控的策略主要有表面化学改性、核壳结构构筑、等离子体共振和光子晶体结构局域场调控等。其中,通过光子晶体的局域场作用调谐镧系离子的光学性质是一种极其有效的方式。纤维素光子晶体因其来源丰富、制备简单、环保等优势而被广泛研究。利用其光子晶体禁带结构来调控镧系离子发光,使得复合材料拥有纤维素带来的可调控结构色的同时还具有镧系离子的光学性能。
发明内容
本发明的目的是提供一种基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,该方法将NaYF4纳米粒子可以与纤维素纳米晶体(CNCs)共组装,获得了一种新的手性光子膜。
本发明所采用的技术方案是,基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
步骤1,通过Gd3+掺杂制备NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒,利用D-酒石酸改性获得手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒,命名为DYbEr;
步骤2,将步骤1得到的手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒与CNCs共组装,并在混合液中加入EG或PVA,最后加入交联剂戊二醛,搅拌均匀,获得混合溶液;
步骤3,将步骤2所得的混合溶液放入超声仪器中进行超声,然后将超声完成的混合液倒入聚苯乙烯培养皿中采用蒸发自组装方式成膜;
步骤4,成膜之后,将膜取出,利用盐酸进行蒸汽交联。
本发明的特点还在于:
步骤1中,NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒的制备过程为:利用水热法在200℃下反应2h合成NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒,其中稀土元素总含量为0.4mmol,掺杂Gd3+的比例为40%,Y3+为40%,Yb3+为18%,Er3+为2%。
步骤1中,利用盐酸去除NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒中的油酸配体之后,通过络合反应使得D-酒石酸作为配体,获得手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒,命名为DYbEr。
步骤2中,CNC:EG或PVA的质量比为9:1、8:2、7:3。
步骤3中,超声完成的混合液倒入聚苯乙烯培养皿中采用蒸发自组装的时间为2~3天。
本发明的有益效果是,本发明采用手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒与CNCs共组装,利用EG和PVA调控薄膜的手性向列相结构,获得不同结构色的同时,利用薄膜的光子禁带调谐NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02的光学性质。此外利用交联剂GA对薄膜进行交联之后,获得的薄膜在外部环境(温度、湿度)变化的情况下手性向列相结构不会发生变化,相较于只加入EG或PVA的薄膜更加稳定。
附图说明
图1是本发明基于纤维素光子晶体禁带调制的稀土荧光膜制备方法中加入PVA、GA和DYbEr的CNC薄膜;
图2是加入PVA、GA和DYbEr的CNC薄膜的透过光谱;
图3(a)、3(b)是本发明基于纤维素光子晶体禁带调制的稀土荧光膜制备方法中在交叉偏振器的偏光显微镜(POM)下观察不同PVA含量薄膜的图像;
图4是图3(a)在扫描电子显微镜下的横截面图像;
图5是将本发明基于纤维素光子晶体禁带调制的稀土荧光膜制备方法中10PVA薄膜与DYbEr在980nm光源激发下的荧光光谱图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
1.纤维素纳米晶(CNC)的合成;
目前,主要用硫酸和盐酸水解法制备CNC,除此之外也有用磷酸,氢溴酸来制备粒子颗粒为纳米级的纳米晶。CNC悬浮液通过盐酸水解制备得到的,其溶液表面仍然存在羟基带有弱电,导致胶体稳定性很差易形成絮状物。相比之下,通过硫酸水解得到的CNC悬浮液表面有带电的磺酸酯(-O-HSO3),使CNC在水溶液中分散更稳定。将强酸如硫酸添加到纤维素中后,酸中的水合氢离子迁移到有序的无定形区域并且破坏纤维素主链上的糖苷键。值得注意地是,渗透的有效性和糖苷键的分离程度取决于外部因素如:酸类型、酸浓度、水解温度和纤维素来源。同样,这些因素也影响纳米晶的性质,如形状、长度和直径等因此,仔细选择纤维素的类型和控制酸强度、水解过程中酸水解的时间和湿度及高压均质的条件是非常重要的。否则可能导致延长反应时间(如酸水解程度不够)和碳化(酸浓度过高或反应时间过长超过最佳的反应时间)。
2.手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒(DYbEr)的制备;
NaYF4作为镧系掺杂无机纳米粒子的重要成员,是一种非常好的发光材料宿主。由于其低声子能量、高环境和热稳定性、无毒性和生物相容性,被认为是镧系离子的最佳基质。利用Gd3+离子掺杂取代NaYF4晶格中的Y3+离子后,可以获得能量传递效率高的六方相NaYF4纳米棒。而在有机溶剂中合成的NaYF4纳米粒子通常被油酸酯配体包裹,使纳米离子疏水。为了使得NaYF4在光子晶体中发挥作用,纳米粒子的表面修饰是必要的。利用盐酸除去了NaYF4纳米粒子里的油酸配体,纯化后,将无配体的纳米颗粒加入到新配体D-酒石酸溶液中,通过络合反应形成新的配体。
掺杂Gd3+离子之后,200℃反应两小时就能获得六方相NaY0.4Gd0.4F4:Yb3+ 0.18,Er3 + 0.02纳米棒。
利用盐酸去除NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒中的油酸配体之后,通过络合反应使得D-酒石酸成为新的配体,获得手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒(DYbEr)。
3.光子薄膜的制备;
首先将4%纤维素纳米晶(CNCs)按照CNC:EG或PVA质量比为9:1、8:2、7:3的配比得到了混合液,在该混合液中加入1.5wt%的戊二醛和5mg DYbEr,将混合溶液均匀搅拌4h,将均匀搅拌后的混合液在超声仪器中超声,且超声功率为300W,超声时间为30min。然后将混合液倒入聚苯乙烯培养皿(直径=60毫末,高度=15毫米)中,采用蒸发自组装的方式静置2~3天。成膜之后利用1mol/L盐酸蒸汽交联1h。
实施例1
基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
将乙二醇和聚乙烯醇溶解在去离子水中备用,质量分数为4wt%。将戊二醛溶液稀释,质量分数为1wt%。将4wt%纤维素纳米晶体悬浮液放入超声清洗机中超声五分钟。称量4.5g 4wt%CNC悬浮液和0.5g 4wt%乙二醇溶液,倒入一号烧杯中,样品命名为10EG。称量4.5g 4wt%CNC悬浮液和0.5g 4wt%聚乙烯醇溶液,倒入二号烧杯中,样品命名为10PVA。搅拌2小时之后,加入50mg 1wt%戊二醛溶液,继续搅拌1小时。向两个烧杯中分别加入5mg制备好的手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02(Y,Gd,Yb,Er总量为0.4mmol)纳米棒,搅拌1小时。将烧杯放入超声清洗机中超声半小时,混合液倒入60mm的聚苯乙烯培养皿中,放置在室温中蒸发2~3天。等待聚苯乙烯中形成薄膜之后,取出薄膜,竖直放置在容量500mL的烧杯中。向60mm玻璃培养皿中加入10mL盐酸(1mol/L),放置于上述烧杯中,用保鲜膜封口,蒸汽交联1小时。最后将薄膜取出暴露在空气中24h,挥发掉表面的盐酸。
实施例2
基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
将乙二醇和聚乙烯醇溶解在去离子水中备用,质量分数为4wt%。将戊二醛溶液稀释,质量分数为1wt%。将4wt%纤维素纳米晶体悬浮液放入超声清洗机中超声五分钟。称量4g 4wt%CNC悬浮液和1g 4wt%乙二醇溶液,倒入三号烧杯中,样品命名为20EG。称量4g4wt%CNC悬浮液和1g 4wt%聚乙烯醇溶液,倒入四号烧杯中,样品命名为20PVA。搅拌2小时之后,加入50mg 1wt%戊二醛溶液,继续搅拌1小时。向两个烧杯中分别加入5mg制备好的手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02(Y,Gd,Yb,Er总量为0.4mmol)纳米棒,搅拌1小时。将烧杯放入超声清洗机中超声半小时,混合液倒入60mm的聚苯乙烯培养皿中,放置在室温中蒸发2~3天。等待聚苯乙烯中形成薄膜之后,取出薄膜,竖直放置在容量500mL的烧杯中。向60mm玻璃培养皿中加入10mL盐酸(1mol/L),放置于上述烧杯中,用保鲜膜封口,蒸汽交联1小时。最后将薄膜取出暴露在空气中24h,挥发掉表面的盐酸。
实施例3
基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
将乙二醇和聚乙烯醇溶解在去离子水中备用,质量分数为4wt%。将戊二醛溶液稀释,质量分数为1wt%。将4wt%纤维素纳米晶体悬浮液放入超声清洗机中超声五分钟。称量3.5g 4wt%CNC悬浮液和1.5g 4wt%乙二醇溶液,倒入五号烧杯中,样品命名为20EG。称量3.5g 4wt%CNC悬浮液和1.5g 4wt%聚乙烯醇溶液,倒入六号烧杯中,样品命名为20PVA。搅拌2小时之后,加入50mg 1wt%戊二醛溶液,继续搅拌1小时。向两个烧杯中分别加入5mg制备好的手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02(Y,Gd,Yb,Er总量为0.4mmol)纳米棒,搅拌1小时。将烧杯放入超声清洗机中超声半小时,混合液倒入60mm的聚苯乙烯培养皿中,放置在室温中蒸发2~3天。等待聚苯乙烯中形成薄膜之后,取出薄膜,竖直放置在容量500mL的烧杯中。向60mm玻璃培养皿中加入10mL盐酸(1mol/L),放置于上述烧杯中,用保鲜膜封口,蒸汽交联1小时。最后将薄膜取出暴露在空气中24h,挥发掉表面的盐酸。
图1是实施例1加入了PVA、GA和手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒后制备的10PVA光子薄膜,此液晶薄膜偏黄绿光且韧性和强度极好。
图2是加入了PVA、GA和手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒后制备的光子薄膜的透过光谱,从图谱可以看出随着PVA含量的增加,薄膜的光子禁带出现了红移。
图3是在交叉偏振器的偏光显微镜(POM)下观察20PVA和30PVA光子薄膜的图像。
图3(a)是20PVA光子薄膜的偏光图,在100倍镜下观察到该光子薄膜偏黄绿。
图3(b)是30PVA光子薄膜的偏光图,在100倍镜下观察到该光子薄膜偏红。
图4为图3(a)光子薄膜横截面的扫描电子显微镜图像,从图4中可以观察到薄膜手性向列相的螺距结构。
图5的荧光光谱是本发明实例1制备的10PVA薄膜与DYbEr在980nm激发下获得的。
本发明中用NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒和光子薄膜的荧光强度做对照,很明显的看出薄膜光子禁带对NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒光学性质的影响。
在荧光测试中发现光子薄膜对NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒光学性质具有调谐作用,当NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒自发辐射处于光子薄膜的光子禁带中时,纳米棒的自发辐射被减弱;当NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒自发辐射处于光子薄膜的光子禁带的边缘时,纳米棒的自发辐射被增强。
CNC自组装形成手性向列相之后,能够显示出鲜艳的结构颜色。镧系离子掺杂的NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒在相应的光波激发下显示镧系离子的特征荧光发射。因此将CNC与DYbEr共组装在一起后,可以同时获得CNC薄膜结构导致的结构色和镧系离子的荧光发射。通过将小分子乙二醇(EG)和大分子聚乙烯醇(PVA)掺杂到CNC悬浮液中,从而影响CNC的自组装过程,可以实现纤维素基薄膜中手性向列相结构螺距,亦即光子禁带的调控,进而实现薄膜结构色与镧系离子发光性质的调控。

Claims (5)

1.基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,具体包括如下步骤:
步骤1,通过Gd3+掺杂制备NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒,利用D-酒石酸改性获得手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒;
步骤2,将步骤1得到的手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒与CNCs共组装,并在混合液中加入EG或PVA,最后加入交联剂戊二醛,搅拌均匀,得混合溶液;
步骤3,将步骤2所得的混合溶液放入超声仪器中进行超声,然后将超声完成的混合液倒入聚苯乙烯培养皿中采用蒸发自组装方式成膜;
步骤4,成膜之后,将膜取出,利用盐酸进行蒸汽交联。
2.根据权利要求1所述的基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,其特征在于:所述步骤1中,手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒的制备过程为:掺杂Gd3+离子的比例为40%,获得NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒之后先用盐酸去除掉油酸,再将D-酒石酸配体引入到纳米棒中。
3.根据权利要求2所述的基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,其特征在于:所述步骤1中,利用盐酸去除NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒中的油酸配体之后,通过络合反应使得D-酒石酸作为配体,获得手性NaY0.4Gd0.4F4:Yb3+ 0.18,Er3+ 0.02纳米棒。
4.根据权利要求3所述的基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,其特征在于:所述步骤2中,CNC:EG或PVA的质量比为9:1、8:2或7:3。
5.根据权利要求3所述的基于纤维素光子晶体禁带调制的稀土荧光膜制备方法,其特征在于:所述步骤3中,超声完成的混合液倒入聚苯乙烯培养皿中采用蒸发自组装的时间为2~3天。
CN202210390651.0A 2022-04-14 2022-04-14 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法 Active CN114957802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210390651.0A CN114957802B (zh) 2022-04-14 2022-04-14 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210390651.0A CN114957802B (zh) 2022-04-14 2022-04-14 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法

Publications (2)

Publication Number Publication Date
CN114957802A true CN114957802A (zh) 2022-08-30
CN114957802B CN114957802B (zh) 2023-06-02

Family

ID=82977510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210390651.0A Active CN114957802B (zh) 2022-04-14 2022-04-14 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法

Country Status (1)

Country Link
CN (1) CN114957802B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018839A (ja) * 2002-06-20 2004-01-22 Konica Minolta Holdings Inc 希土類付活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体、及び放射線像変換パネル
CN101921285A (zh) * 2009-06-15 2010-12-22 浙江师范大学 溶剂热合成d-酒石酸稀土配合物的方法
CN105237221A (zh) * 2015-10-26 2016-01-13 湖北大学 一种富稀土元素包膜材料及其制备方法和应用
CN107406765A (zh) * 2015-03-24 2017-11-28 默克专利有限公司 无机发光材料和无机发光材料转换型led
US20200083416A1 (en) * 2016-12-02 2020-03-12 Merck Patent Gmbh Method for preparing an optoelectronic device from a crosslinkable polymer composition
CN111386330A (zh) * 2017-11-30 2020-07-07 默克专利股份有限公司 包含半导体性发光纳米颗粒的组合物
CN113045787A (zh) * 2021-04-07 2021-06-29 陕西科技大学 一种光限幅特性的纳米纤维素液晶纸的制备方法
CN113321827A (zh) * 2021-05-17 2021-08-31 江南大学 一种纤维素基手性液晶薄膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018839A (ja) * 2002-06-20 2004-01-22 Konica Minolta Holdings Inc 希土類付活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体、及び放射線像変換パネル
CN101921285A (zh) * 2009-06-15 2010-12-22 浙江师范大学 溶剂热合成d-酒石酸稀土配合物的方法
CN107406765A (zh) * 2015-03-24 2017-11-28 默克专利有限公司 无机发光材料和无机发光材料转换型led
CN105237221A (zh) * 2015-10-26 2016-01-13 湖北大学 一种富稀土元素包膜材料及其制备方法和应用
US20200083416A1 (en) * 2016-12-02 2020-03-12 Merck Patent Gmbh Method for preparing an optoelectronic device from a crosslinkable polymer composition
CN111386330A (zh) * 2017-11-30 2020-07-07 默克专利股份有限公司 包含半导体性发光纳米颗粒的组合物
CN113045787A (zh) * 2021-04-07 2021-06-29 陕西科技大学 一种光限幅特性的纳米纤维素液晶纸的制备方法
CN113321827A (zh) * 2021-05-17 2021-08-31 江南大学 一种纤维素基手性液晶薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
董娅慧等: "β-NaGdF4 ∶ Yb3 + ,Er3 + / 纤维素纳米晶胆甾型", 《发光学报》 *
董娅慧等: "β-NaGdF4 ∶ Yb3 + ,Er3 + / 纤维素纳米晶胆甾型", 《发光学报》, vol. 42, no. 12, 31 December 2021 (2021-12-31) *

Also Published As

Publication number Publication date
CN114957802B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Li et al. Dy3+ and Eu3+ Co-doped NaGdF4 nanofibers endowed with bifunctionality of tunable multicolor luminescence and paramagnetic properties
Zhang et al. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange
Stouwdam et al. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles
Song et al. Electrospinning preparation, structure, and photoluminescence properties of YBO3: Eu3+ nanotubes and nanowires
Zhao et al. Is BiPO4 a better luminescent host? Case study on doping and annealing effects
Liu et al. Shape-controlled synthesis of monodispersed nano-/micro-NaY (MoO 4) 2 (doped with Eu 3+) without capping agents via a hydrothermal process
Chen et al. Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion
Wang et al. Fabrication and luminescent properties of CaWO 4: Ln 3+(Ln= Eu, Sm, Dy) nanocrystals
CN104150473A (zh) 一种氮掺杂石墨烯量子点的化学制备方法
Shi et al. Circularly polarized luminescence from semiconductor quantum rods templated by self-assembled cellulose nanocrystals
Cao et al. Hydrothermal synthesis and white luminescence of Dy3+‐Doped NaYF4 microcrystals
Li et al. Carbon nanodots enhance and optimize the photoluminescence of micro-spherical YBO3: Eu3+ phosphors
CN109852372B (zh) 一种磷脂胶束封装的CsPbBr3纳米晶复合材料及其应用
CN106947476A (zh) 一种氮掺杂荧光石墨烯量子点及其制备方法
CN109133922B (zh) 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法
Xing et al. Highly uniform Gd (OH) 3 and Gd2O3: Eu3+ hexagram-like microcrystals: glucose-assisted hydrothermal synthesis, growth mechanism and luminescence property
CN102134485A (zh) 一种大量制备水溶性荧光碳纳米粒子的方法
Qiao et al. Plant tissue imaging with bipyramidal upconversion nanocrystals by introducing Tm 3+ ions as energy trapping centers
Yang et al. Weakening thermal quenching to enhance luminescence of Er3+ doped β‐NaYF4 nanocrystals via acid‐treatment
CN101792666B (zh) 稀土磷酸盐纳米荧光粉及其制备方法
Junjie et al. Influence of urea on microstructure and optical properties of YPO4: Eu3+ phosphors
CN107955610B (zh) 一种尺寸可调上转换NaYF4纳米晶的制备方法
CN114957802B (zh) 基于纤维素光子晶体禁带调制的稀土荧光膜制备方法
CN108795429B (zh) 一种掺杂氟化镥锂闪烁微晶及其制备方法和应用
CN116462225A (zh) 一种CsPbBr3纳米片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant