CN114956256A - 紫外光驱动过一硫酸盐光催化降解tcep及评价方法 - Google Patents

紫外光驱动过一硫酸盐光催化降解tcep及评价方法 Download PDF

Info

Publication number
CN114956256A
CN114956256A CN202210680948.0A CN202210680948A CN114956256A CN 114956256 A CN114956256 A CN 114956256A CN 202210680948 A CN202210680948 A CN 202210680948A CN 114956256 A CN114956256 A CN 114956256A
Authority
CN
China
Prior art keywords
tcep
degradation
peroxymonosulfate
driven
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210680948.0A
Other languages
English (en)
Other versions
CN114956256B (zh
Inventor
孙建腾
于晓龙
姚润林
何振贤
崔龙
周海军
黄嘉慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Publication of CN114956256A publication Critical patent/CN114956256A/zh
Application granted granted Critical
Publication of CN114956256B publication Critical patent/CN114956256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明提供紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,涉及化学物质废水降解技术领域。该紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,包括以下步骤:S1.准备降解实验所需的化学品三‑(2‑氯乙基)磷酸酯(TCEP≥99%),分析纯KCl(≥99%)、分析纯Na2CO3(≥99%)、分析纯KH2PO4(≥99.8%)等化学品以及模式菌株‑大肠杆菌(Escherichia coliATCC11303),然后其他化学试剂均为高纯度分析纯,并且所有的溶液都是用超纯水制备。本发明通过研究TCEP的动力学、反应机理、环境因素影响、UV/PMS处理TCEP能耗,此外,借助高分辨质谱仪分析了TCEP的降解中间体和转化模式。并利用蛋白质组学对模式微生物‑Escherichia coli暴露TCEP及其降解产物后,在分子水平通过对大肠杆菌功能蛋白合成、分子代谢功能、代谢网络变化揭示降解产物的毒性变化,从而能够深入评估UV/PMS技术安全性及适用性。

Description

紫外光驱动过一硫酸盐光催化降解TCEP及评价方法
技术领域
本发明涉及化学物质废水降解技术领域,具体为紫外光驱动过一硫酸盐光催化降解TCEP及评价方法。
背景技术
三-(2-氯乙基)磷酸脂(TCEP)作为一种典型的氯化有机磷酸酯(OPEs),由于其对健康的危害和对水基质中传统生物修复的抗性,被认为是新兴的污染物,尽管紫外光驱动的自由基高级氧化技术在去除难降解的新兴有机污染物方面表现出良好的性能,但其中间产物的残留生物毒性和潜在的环境风险已成为人们关注的新问题。
有机磷酸酯(OPEs)是一类人工合成的化学物质,可作为阻燃剂和增塑剂应用于许多商业产品,如家用家具、液压油、电子外壳以及地板抛光剂,近年来,随着对多溴联苯醚(PBDEs)的禁止和限制,OPEs的消费和生产水平不断提高,在大多数情况下,OPEs没有共价结合到宿主材料上,会通过挥发、淋溶和磨损引发环境泄漏问题,这些含有OPEs的商业产品的广泛存在和使用,导致它们扩散到水、沉积物、空气和土壤中,三-(2-氯乙基)磷酸酯(TCEP)是一种典型的氯代OPEs,因其在不同环境隔间中的相对含量而显示出潜在的健康风险。
近年来,基于硫酸根自由基的高级氧化工艺SR-AOPs受到越来越多的关注,与其他处理方法相比,其具有可行性广、操作简单、稳定性高、降解中间产物少等独特优点,然而,报道关于紫外光活化过一硫酸盐去除OPEs的研究很少,过一硫酸盐PMS比过硫酸盐具有更短的O-O键长,因此其降解污染物的性能更好,然而,利用UV/PMS对TCEP的降解机理、潜在转化模式的研究较少。值得注意的是,由于天然杂质清除氧化剂物种,目标污染物在降解过程中可能发生不完全矿化,因此,应加强降解中间体的定量和定性分析以及毒性评估,通过指导反应程度和能源成本,为UV/PMS的科学实施做出贡献。
发明内容
(一)解决的技术问题
针对现有技术对氯代OPEs去除效果低问题,本发明提供了紫外光驱动过一硫酸盐光催化降解TCEP及技术安全性与适用性评价方法,解决了降解过程中间产物的残留生物毒性和潜在的环境风险的问题,以期为UV-AOPs在水污染治理与水质净化方面的实际应用提供理论支撑。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,包括以下步骤:
S1.准备降解用的化学品和菌株
准备待测TCEP,纯度99%,大肠杆菌,用分析纯99%的KCl、分析纯99.8%的Na2CO3、分析纯99.8%的KH2PO4配制pH缓冲液,以上所有的溶液都用超纯水制备;
S2.进行批量化实验
使用辐照仪将待测TCEP反应液表面的辐照强度调整为5.0mW cm-2,反应釜为圆形石英容器,最大容积为150mL,并将PMS的初始浓度设定在5~75mg L-1范围内,初始TCEP浓度为1mg L-1,,实验温度维持在26±1℃,然后用pH缓冲液调节pH值为6.6-7.0,在300r min-1的磁力搅拌器上进行反应,在规定动力学时间取样点取出5~10mL的溶液,加入抗坏血酸终止自由基反应,随后将样品置于4℃保存,以备进一步分析。在反应体系中加入不同剂量的KCl、Na2CO3、KH2PO4来探究环境水体中天然阴离子对降解体系的影响机制,同时,用EtOH、TBA和抗坏血酸来评价自由基对TCEP降解的贡献;
S3.TCEP及其中间产物的仪器分析
使用串联质谱仪进行TCEP的定量分析,并选用高分辨质谱仪鉴定TCEP的降解产物;
S4.进行EPR实验
使用光谱仪捕获TCEP降解产物中的自由基;
S5.离子释放和矿化测量
使用分析仪监测Cl-和PO4 3-的浓度,DIONEX IonPacAS15柱的流动相为30.0mMNaOH溶液,并且使用液体示踪分析仪对总有机碳(TOC)的含量进行测定;
S6.蛋白质组学分析
蛋白质组学分析包括以下四个步骤:
1.暴露于目标污染物中;
2.蛋白质消化;
3.使用iTRAQ标记肽段;
4.使用配备Nanospray III源和NanoLC 400系统的TripleTOF 5600HRMS进行多肽分析。
进一步地,在步骤S3中,采用带有Phenomenex Kinetex C18色谱柱的超高效液相色谱系统对TCEP进行定量分析,色谱条件为:用自动进样器进样10μL,柱温40℃,流动相为乙腈(A)和0.1%溶于Milli-Q水中的甲酸(B),总流速0.3mL min-1;梯度洗脱程序分别为:0min(5%A)、0.3min(5%A)、1.8min(50%A)、3.2min(90%A)、5.0min(5%A)、7.0min(5%A)。
进一步地,在步骤S6中,将大肠杆菌在LB培养基中以150r min-1培养12小时,随后收集细胞并用冰冻PBS洗涤;细胞在25℃、160r min-1的旋转摇床上在黑暗中暴露于24小时。
进一步地,其特征在于,所述步骤S2中通过加入体积为70μL的EtOH和TBA时,TCEP的去除率分别降低到20.9±4.7%和37.1±4.7%。
进一步地,HCO3-、SO4 2-和HA均对TCEP的去除产生负面影响,即:抑制作用随着HCO3-、SO4 2-浓度和HA剂量的增加而增强。
进一步地,抗坏血酸的存在对去除效果有抑制作用。
进一步地,所述步骤S3中通过对HRMS降解中间产物的综合分析,刻画了TCEP的转化模式,通过串联质谱仪数据筛选并确定了产物A:C4H9Cl2O4P,m/z 222.969、产物B:C2H6ClO4P,m/z 160.976和产物C:C6H11Cl2O6P,m/z280.974三个稳定的中间体。
进一步地,所述产物A的转化过程包括以下三个步骤:
首先,SO4 ·-通过加成反应攻击TCEP分子中的磷酸中心;
第二,分离出一个氧-乙基-氯臂;
第三,SO4 ·-通过加入一个带有电子传递链的H2O分子而破裂并留下产物A。
进一步地,随着pH、HA浓度以及HCO3 -和SO4 2-的浓度增加,EE/O值同步增加。
(三)有益效果
本发明提供了紫外光驱动过一硫酸盐光催化降解TCEP及评价方法。具备以下有益效果:
1、本发明提供了紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,通过研究TCEP的动力学、反应机理、UV/PMS处理的能耗以及外界因素对氧化系统的影响,此外,借助高分辨质谱仪HRMS分析了潜在的降解中间体和转化模式,特别地,利用模型生物大肠杆菌的蛋白质组学和代谢网络评估了降解产物的毒性变化,从而能够得到更有效的实验结论,为UV/PMS的科学实施做出指导。
2、本发明提供了紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,该UV/PMS降解TCEP的反应符合准一级反应,Kobs为0.1094min-1,主要的活性氧化剂为SO4 ·-,由于不完全矿化,TCEP转化为几个羟基和脱氯中间体,蛋白质组学分析表明,DpS、LIgA、Hold、SodB、DanJ和UspG等应激反应蛋白、氧化磷酸化途径和氨基酸代谢途径分别下调和上调,表明这些降解产物的毒性明显减弱,所以得到UV/PMS对TCEP进行羟基化和脱氯是有效的,从而能够促进TCEP的降解,从而有效的对废水中的TCEP进行快速降解。
3、本发明提供了紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,该方法在TCEP降解过程中,采用中性或酸性pH,并通过预处理提前去除部分杂质,有利于节能降耗,有效降低UV/PMS系统的电能成本,更加节约能源。
附图说明
图1为本发明单独UV体系、水体系、单独PMS体系和UV/PMS体系降解TCEP结果示意图;
图2为本发明TCEP在UV/PMS反应体系中的转化途径结构示意图;
图3为本发明TCEP降解中间体的演化过程示意图;
图4为本发明TCEP在实际水样中的去除效率示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
如图1-4所示,本发明实施例提供紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,包括以下步骤:
S1.准备降解用的化学品和菌株
准备三-(2-氯乙基)磷酸酯,纯度99%,大肠杆菌,分析纯99%的KCl、分析纯99.8%的Na2CO3、分析纯99.8%的KH2PO4等化学品,然后使用现有的最高纯度制备其他化学试剂,并且所有的溶液都是用超纯水制备;
S2.进行批量化实验
使用型号为HAAS-3000的辐照仪将反应液表面的中等辐照强度调整为5.0mW cm-2,反应釜为圆形石英容器,最大容积为150mL,并将PMS的初始浓度设定在5~75mg L-1范围内,以降解TCEP,实验温度维持在26±1℃,pH 6.6-7.0,然后用pH缓冲液调节pH值,在300rmin-1的磁力搅拌器反应,在设定的时间取出5~10mL的溶液,加入抗坏血酸清除过硫酸盐,随后将样品置于4℃保存,以备进一步分析,最后分别用单独蒸馏水、UV照射体系和PMS体系进行对照试验。在影响因素实验中,在溶液中加入不同剂量的KCl、Na2CO3、KH2PO4。同时,用EtOH、TBA和抗坏血酸来进行自由基淬灭实验依此来评价不同自由基物种对TCEP降解的贡献;
S3.TCEP及其中间产物的仪器分析
使用TripleQuad5500串联质谱仪进行TCEP的定量分析,并选用AB SCIEX X500RQTOF高分辨质谱鉴定TCEP的降解产物;
S4.进行EPR实验
使用A300 EMXplus-10/12EPR光谱仪捕获TCEP降解产物中的自由基;
S5.离子释放和矿化测量
使用ICS-2500型分析仪监测Cl-和PO4 3-的浓度,DIONEX IonPacAS15柱的流动相为30.0mM NaOH溶液,使用液体TOC示踪分析仪对总有机碳TOC的含量进行测定;
S6.蛋白质组学分析
蛋白质组学分析包括以下四个步骤:
暴露于目标污染物中;
a.暴露于目标污染物中;
b.蛋白质消化;
c.使用iTRAQ标记肽段;
d.使用配备Nanospray III源和NanoLC 400系统的TripleTOF 5600HRMS进行多肽分析。
S7.实际水体中的降解分析
为了评价实际水体中TCEP的去除效果,分别在水源地和饮用水处理厂采集了出水,然后进行实际水基质中TCEP的去除实验,在最佳条件下,TCEP在源水和出水中均可进行降解。
步骤S2中对UV照射体系、单独水体系、PMS体系和UV/PMS体系进行了测试,相关结果如图1a和b所示,TCEP在三个对照组浓度均没有变化,证明TCEP不能被UV照射而直接去除。这主要是由于TCEP特定的氯代烷基链与磷酸中心相连,导致了其分子结构稳定而没有产生任何电离。TCEP的降解遵循准一级反应,速率常数Kobs为0.1094min-1,随着降解反应的进行,TOC值呈下降趋势,如图1c,在光解30分钟后,TCEP完全降解时,约有39%的TOC被去除,说明在TCEP氧化过程中产生了不同的中间产物,通过Cl-和PO4 3-的释放规律也可证明这一点(图1d)。理论上,TCEP分别含有约0.37mg L-1的Cl-和0.33mg L-1的PO4 3-,在光催化反应结束时,Cl-的浓度从0增加到0.37mg L-1,表明C-Cl末端全部断裂,而PO4 3-的释放率仅为55.5%,说明TCEP降解不完全。
步骤S2中通过加入体积为70μL的自由基清除剂,研究了不同自由基物种在TCEP降解过程中的贡献,在反应体系中分别加入EtOH和TBA时,反应30min后TCEP的去除率分别降低到20.9±4.7%和37.1±4.7%,这也证明了EtOH和TBA对TCEP的去除具有明显抑制作用。而在添加抗坏血酸的情况下,TCEP的降解率很低,抗坏血酸的存在对TCEP去除效果有明显的抑制作用,其Kobs由0.1094min-1降至0.0047min-1。这主要是由于大部分参与去除TCEP的自由基物种可能被抗坏血酸淬灭。TBA与·OH反应速度(k·OH=3.8~7.6×108M-1s-1)比其与SO4 ·-(kSO4·-=4~9.1×105M-1s-1)的反应速度快,而EtOH与SO4 ·-(kSO4·-==1.6~7.7×107M-1s-1)和与·OH(k·OH=1.2~2.8×109M-1s-1)的反应速率相近,在没有自由基清除剂的情况下,TCEP在30min内的降解率接近99%,因此,如图1a所示,UV/PMS体系降解TCEP的主要自由基物种为是SO4 ·-和·OH。
步骤S3中通过对HRMS降解中间产物的综合分析,刻画了TCEP的转化模式,末端C-Cl键和中心磷酸盐被认为是自由基物种攻击TCEP主要的两个位点。最终,通过碎片离子和同位素分析并确定了三终产物,即产物A:C4H9Cl2O4P,m/z 222.969、产物B:C2H6ClO4P,m/z160.976和产物C:C6H11Cl2O6P,m/z 280.974,产物A的转化过程包括以下三个步骤:
首先,SO4 ·-通过加成反应攻击TCEP分子中的磷酸中心;
第二,分离出一个氧-乙基-氯臂;
第三,SO4 ·-通过加入一个带有电子传递链的H2O分子而破裂并生成产物A。
产物A按同样的方式进一步反应,生成产物B,产物C6H13Cl2O5P*是C-Cl末端被SO4 ·-裂解并加入H2O分子取代后形成的,通过标准的自由基氧化过程,α-H被提取到Cl中,最终生成产物C。
步骤S6中蛋白质组学分析的目标污染物样本包括:
(1)、60mL 1mg L-1TCEP溶液;
(2)、45min反应溶液,含中间体混合物。
大肠杆菌被选作蛋白质组学分析的模式生物,大肠杆菌在LB培养基中以150rmin-1培养12小时,随后收集菌体,在PBS中洗涤3次,将一定浓度的细胞接种到准备好的20mL培养基中,于黑暗中在25℃、150rmin-1的旋转摇床上暴露24小时,随后,进行蛋白质消化、iTRAQ标记和HRMS检测。
根据TCEP的降解动力学,将大肠杆菌暴露于45min反应溶液24小时后,通过比较TCEP及其产物胁迫后大肠杆菌蛋白动态表达规律,评估了TCEP和降解产物的毒性变化。定义TCEP及其产物中蛋白质的丰度高于正常细胞1.2倍或低于正常细胞0.83倍,则该蛋白质分别被视为上调和下调,为了进一步定量阐明TCEP及其降解中间体的毒性变化,筛选了262个上调蛋白和266个下调蛋白进行研究。
步骤S7中的TCEP在不同实际水样中的去除效率如图4所示,与出水样品相比,TCEP在两个源水体系中Kobs均有显著下降,表明源水背景组分对TCEP的去除造成较大影响,源水A和B的Kobs分别从0.1094min-1降至0.0034min-1和0.0096min-1,而出水a的Kobs为0.0147min-1和b的Kobs为0.0204min-1’其降幅较小,说明杂质、天然有机物和阴离子对TCEP的去除有抑制作用,这是因为天然有机物和阴离子会竞争或捕获活性自由基物种,从而降低TCEP与自由基之间的转移效率。源水A和B中TOC和阴离子含量相对较高,表明芳香族有机物对TCEP去除的抑制作用强于出水样品杂质对TCEP去除的抑制作用,因此,在实际水处理过程中,对杂质进行预处理可以提高OPEs的去除效率。
步骤S1-S7中UV/PMS系统的电能成本采用EE/O分析方法进行计算,UV/PMS在最佳条件下其EE/O为0.024kWh m-3order-1。在影响因素实验中,随着Kobs的增加,EE/O呈下降趋势,当PMS浓度从75mg L-1降至5mg L-1时,EE/O由0.021升至0.117kWh m-3order-1,pH值在3.0~9.0时,EE/O维持在0.024~0.038kWh m-3order-1之间,而在强碱下,EE/O明显升高至pH=11.0,EE/O为0.212kWh m-3order-1,天然阴离子,如:CO3 2-和H2PO4 -,对EE/O的影响较小,而Cl-对EE/O有明显的负面影响,导致EE/O升高为0.218kWh m-3order-1,表明阴离子的存在会增加实际处理成本。上述结果表明,在TCEP去除过程中,采用中性或酸性pH,并通过预处理去除部分杂质,有利于节能降耗。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,包括以下步骤:
S1.准备降解用的化学品和菌株
准备待测TCEP,纯度99%,大肠杆菌,用分析纯99%的KCl、分析纯99.8%的Na2CO3、分析纯99.8%的KH2PO4配制pH缓冲液,以上所有的溶液都用超纯水制备;
S2.进行批量化实验
使用辐照仪将待测TCEP反应体系辐照强度调整为5.0mW cm-2,反应釜为圆形石英容器,最大容积为150mL,并将PMS的初始浓度设定在5~75mg L-1范围内,初始TCEP浓度为1mg L-1,实验温度维持在26±1℃,然后用pH缓冲液调节pH值为6.6-7.0,在300r min-1的磁力搅拌器上进行反应,在规定的时间内取出5~10mL的溶液,加入抗坏血酸淬灭反应,随后将样品置于4℃保存,以备进一步分析。单独蒸馏水体系、单独UV照射体系和单独PMS体系设置为对照组。在反应体系中加入不同剂量的KCl、Na2CO3、KH2PO4来探究环境水体中天然阴离子对降解体系的影响机制,同时,用EtOH、TBA和抗坏血酸来评价自由基对TCEP降解的贡献;
S3.TCEP及其中间产物的仪器分析
使用串联质谱仪进行TCEP的定量分析,并选用高分辨质谱仪鉴定TCEP的降解产物;
S4.进行EPR实验
使用电子顺磁捕获TCEP降解过程中的自由基(定性分析);
S5.离子释放和矿化率检测
使用分析仪监测Cl-和PO4 3-的浓度,DIONEX IonPacAS15柱的流动相为30.0mM NaOH溶液,并且使用液体示踪分析仪对总有机碳(TOC)的含量进行测定;
S6.蛋白质组学分析
蛋白质组学分析包括以下四个步骤:
(a)暴露于目标污染物中;
(b)蛋白质消化;
(c)使用iTRAQ标记肽段;
(d)使用配备Nanospray III源和NanoLC 400系统的TripleTOF 5600 HRMS进行多肽分析。
2.根据权利要求1所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,在步骤S3中,采用带有Phenomenex Kinetex C18色谱柱的超高效液相色谱系统对TCEP进行定量分析,色谱条件为:用自动进样器进样10μL,柱温40℃,流动相为乙腈(A)和0.1%溶于Milli-Q水中的甲酸(B),总流速0.3mL min-1;梯度洗脱程序分别为:0min(5%A)、0.3min(5%A)、1.8min(50%A)、3.2min(90%A)、5.0min(5%A)、7.0min(5%A)。
3.根据权利要求1或2所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,在步骤S6中,将大肠杆菌在LB培养基中以150rmin-1培养12小时,随后收集细胞并用冰冻PBS洗涤;细胞在25℃、160r min-1的旋转摇床上在黑暗中暴露24小时。
4.根据权利要求1或2所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,所述步骤S2中通过加入体积为70μL的EtOH和TBA时,TCEP的去除率分别降低到20.9±4.7%和37.1±4.7%。
5.根据权利要求1或2所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,CO3 2-、Cl-和H2PO4 -均对TCEP的去除产生负面影响,即:抑制作用随着CO3 2-、Cl-和H2PO4 -剂量的增加而增强。
6.根据权利要求1或2所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,抗坏血酸的存在对去除效果有抑制作用。
7.根据权利要求1或2所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,所述步骤S3中通过对HRMS降解中间产物的综合分析,刻画了TCEP的转化模式,通过串联质谱仪数据筛选并确定了产物A:C4H9Cl2O4P,m/z 222.969、产物B:C2H6ClO4P,m/z160.976和产物C:C6H11Cl2O6P,m/z 280.974三个稳定的中间体。
8.根据权利要求7所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,所述产物A的转化过程包括以下三个步骤:
首先,SO4 ·-通过加成反应攻击TCEP分子中的磷酸中心;
第二,分离出一个氧-乙基-氯臂;
第三,SO4 ·-通过加入一个带有电子传递链的H2O分子而破裂并留下产物A。
9.根据权利要求1-8之一所述的紫外光驱动过一硫酸盐光催化降解TCEP及评价方法,其特征在于,随着pH、HA浓度以及HCO3 -和SO4 2-的浓度增加,EE/O值同步增加。
CN202210680948.0A 2022-03-09 2022-06-15 紫外光驱动过一硫酸盐光催化降解tcep及评价方法 Active CN114956256B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022102258031 2022-03-09
CN202210225803 2022-03-09

Publications (2)

Publication Number Publication Date
CN114956256A true CN114956256A (zh) 2022-08-30
CN114956256B CN114956256B (zh) 2023-08-01

Family

ID=82964333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210680948.0A Active CN114956256B (zh) 2022-03-09 2022-06-15 紫外光驱动过一硫酸盐光催化降解tcep及评价方法

Country Status (1)

Country Link
CN (1) CN114956256B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744055A (zh) * 2012-07-20 2012-10-24 武汉大学 活性炭负载氧化锌催化剂及其在降解有机污染物中应用
WO2015048339A2 (en) * 2013-09-25 2015-04-02 Pronutria, Inc. Compositions and formulations for non-human nutrition and methods of production and use thereof
CN106211783A (zh) * 2013-10-04 2016-12-07 基因组股份公司 醇脱氢酶变体
CN111974404A (zh) * 2020-08-05 2020-11-24 中国环境科学研究院 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744055A (zh) * 2012-07-20 2012-10-24 武汉大学 活性炭负载氧化锌催化剂及其在降解有机污染物中应用
WO2015048339A2 (en) * 2013-09-25 2015-04-02 Pronutria, Inc. Compositions and formulations for non-human nutrition and methods of production and use thereof
CN106211783A (zh) * 2013-10-04 2016-12-07 基因组股份公司 醇脱氢酶变体
CN111974404A (zh) * 2020-08-05 2020-11-24 中国环境科学研究院 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法

Also Published As

Publication number Publication date
CN114956256B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Li et al. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis
Fang et al. Comparison of UV/Persulfate and UV/H2O2 for the removal of naphthenic acids and acute toxicity towards Vibrio fischeri from petroleum production process water
Lai et al. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles
Zhang et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation
Zhu et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2
Park et al. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction
Ye et al. Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2: degradation products and impacts on bacterial proteome
Zhu et al. Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2-naphthol-4-sulfonic acid using Fenton's reagent
Krishna et al. On-line preconcentration and recovery of palladium from waters using polyaniline (PANI) loaded in mini-column and determination by ICP-MS; elimination of spectral interferences
Chmayssem et al. Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A
Zhou et al. Photochemical behavior of microbial extracellular polymeric substances in the aquatic environment
Wang et al. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation
Qu et al. Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and their transformation products
Sirtori et al. Solar photo-Fenton degradation of nalidixic acid in waters and wastewaters of different composition. Analytical assessment by LC–TOF-MS
Xu et al. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: Efficiency, product and mechanism
Pérez et al. Recent advances in the sample preparation, liquid chromatography tandem mass spectrometric analysis and environmental fate of microcystins in water
Chen et al. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions
Padhye et al. Occurrence and fate of nitrosamines and their precursors in municipal sludge and anaerobic digestion systems
Yu et al. Fate and removal of aromatic organic matter upon a combined leachate treatment process
Maqbool et al. Exploring the fate of dissolved organic matter at the molecular level in the reactive electrochemical ceramic membrane system using fluorescence spectroscopy and FT-ICR MS
Iancu et al. A new analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants
Liu et al. Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9
Zhou et al. Degradation of emerging pharmaceutical micropollutants in municipal secondary effluents by low-pressure UVC-activated HSO5− and S2O82− AOPs
Chao et al. A low‐voltage pulse electrolysis method for the degradation of anthraquinone and azo dyes in chloride medium by anodic oxidation on Ti/IrO2‐RuO2‐SnO2 electrodes
Zheng et al. Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant