CN114956183B - 一种将氧空位可控制备到三氧化钨特定晶面上的方法 - Google Patents

一种将氧空位可控制备到三氧化钨特定晶面上的方法 Download PDF

Info

Publication number
CN114956183B
CN114956183B CN202210481622.5A CN202210481622A CN114956183B CN 114956183 B CN114956183 B CN 114956183B CN 202210481622 A CN202210481622 A CN 202210481622A CN 114956183 B CN114956183 B CN 114956183B
Authority
CN
China
Prior art keywords
preparing
oxygen vacancy
tungsten trioxide
specific crystal
crystal face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210481622.5A
Other languages
English (en)
Other versions
CN114956183A (zh
Inventor
刘太丰
张青岩
刘汝月
杨建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202210481622.5A priority Critical patent/CN114956183B/zh
Publication of CN114956183A publication Critical patent/CN114956183A/zh
Application granted granted Critical
Publication of CN114956183B publication Critical patent/CN114956183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种将氧空位可控制备到三氧化钨特定晶面上的方法,该制备方法包括以下步骤:S1,将二水合钨酸钠溶于去离子水中,向水溶液加入HCl连续搅拌t1,用去离子水离心彻底清洗凝胶后,将沉淀转移到HCl溶液中,室温搅拌t2,将溶液转移到四氟乙烯内衬不锈钢高压釜中,在烘箱中保存t3,冷却至室温后,用去离子水和无水乙醇洗涤数次,干燥,将制备的前驱体进行退火处理,得到最终产物标记为WO3‑001;S2,WO3‑001和NaBH4以一定的比例混合并彻底研磨,混合粉末在N2气氛下煅烧t4,然后用蒸馏水和无水乙醇洗涤,去除残留的NaBH4,最后,在室温下干燥产物。利用此方法成功地制备了以(001)面为主要暴露面的高分散纳米片,并以NaBH4为还原剂在其表面构建稳定的氧空位。

Description

一种将氧空位可控制备到三氧化钨特定晶面上的方法
技术领域
本发明涉及半导体基光催化水分解技术领域,更具体地说,涉及一种将氧空位可控制备到三氧化钨特定晶面上的方法。
背景技术
能源资源的日益减少和环境的恶化迫切要求人们开发新能源。利用太阳能分解水制氢是实现太阳能转换的重要途径,是解决环境污染和能源问题的方法之一。半导体基光催化分解水是一种非常有前景的太阳能转换技术。三氧化钨(WO3)作为常见的氧化型半导体,因其具有合适的带隙、稳定性较好、成本低、无毒且环境友好等优点在半导体光催化研究中备受关注。然而,由于其可见光吸收较弱、光生载流子的复合率较高,三氧化钨的在光催化应用上仍然受到很多限制。只有通过材料改性才能克服上述不足,其中通过控制样品形貌使其暴露不同的晶面是一种非常有效的方法。实验已经证明,不同的晶面上催化活性显著不同。近年来有很多关于合成WO3不同晶面并将其应用到光催化研究中的报道。Gong等人采用溶剂热法合成了一种有高暴露比例的 (002)面单斜WO3,发现其具有良好的光电转换效率[1]。Liu等人制备了具有不同晶面的WO3阵列,并将双助催化剂担载到不同晶面上,这样导致光生电子和空穴在WO3的不同晶面上定向沉积,实现了光生电荷的有效空间分离[2]。 Zhang等人采用水热法合成了高暴露比例(100)面的WO3单晶,与没有特定晶面暴露的WO3相比,其价带边位置更正,所以其表现出更优异的光催化水氧化性能[3]。上述实验表明,晶面工程是一种有效增强半导体光催化性能的方法。
缺陷工程也是提高半导体光催化性能的一种有效的改性方法。Liang等人设计了一种超薄缺氧立方相WO3半导体,实现了红外光驱动的二氧化碳还原 [4]。Ma等人制备了具有氧和钨空位的WO3,空位的形成提高了载流子密度从而导致电导率升高,因此,利用此种方法制备的WO3光阳极的光电化学性能大幅提升[5]。Wang等人用乙二胺锂合成了具有表面缺陷的WO3,这些缺陷导致 WO3表面形成了薄的无序层,表面无序层使其导带位置高于氢还原电位,从而使不具有产氢活性的WO3实现了分解水产氢[6]。
虽然晶面工程和缺陷工程可以促进WO3光催化性能,但是鲜有报道在WO3特定晶面上可控合成氧空位的方法。由于晶体中原子的排列不同,在不同的晶面上构造氧空位时所使用的合成方法会有差异。因此,亟需提供一种将氧空位可控分布到特定晶面上的材料制备方法。
[1]Gong H,Ma R,Mao F,et al.Light-induced spatial separation ofcharges toward different crystal facets of square-like WO3[J].Chem Commun(Camb),2016,52(80):11979-11982。
[2]Liu J,Xu S-M,Li Y,et al.Facet engineering of WO3 arrays towardhighly efficient and stable photoelectrochemical hydrogen generation fromnatural seawater[J].Applied Catalysis B: Environmental,2020,264:118540。
[3]Zhang N,Chen C,Mei Z,et al.Monoclinic Tungsten Oxide with {100}Facet Orientation and Tuned Electronic Band Structure for EnhancedPhotocatalytic Oxidations[J].ACS Appl Mater Interfaces,2016, 8(16):10367-74。
[4]Liang L,Li X,Sun Y,et al.Infrared Light-Driven CO2 OverallSplitting at Room Temperature[J].Joule,2018,2(5):1004-1016。
[5]Ma M,Zhang K,Li P,et al.Dual Oxygen and Tungsten Vacancies on aWO3 Photoanode for Enhanced Water Oxidation[J].Angewandte ChemieInternational Edition in English,2016,55(39):11819-23。
[6]Wang L,Tsang C-S,Liu W,et al.Disordered layers on WO3nanoparticles enable photochemical generation of hydrogen from water[J].Journal of Materials Chemistry A,2019,7(1):221-227。
发明内容
1.要解决的技术问题
由于晶体中原子的排列不同,在不同的晶面上构造氧空位时所使用的合成方法会有差异。现有技术中缺乏一种将氧空位可控分布到特定晶面上的材料制备方法。
2.技术方案
为解决上述问题,本发明采用如下的技术方案。
一种将氧空位可控制备到三氧化钨特定晶面上的方法,该制备方法包括以下步骤:
S1,将二水合钨酸钠溶于去离子水中,向水溶液加入HCl连续搅拌t1,用去离子水离心彻底清洗凝胶后,将沉淀转移到HCl溶液中,室温搅拌t2,将溶液转移到高压釜中,在烘箱中保存t3,冷却至室温后,用去离子水和无水乙醇洗涤数次,干燥,将制备的前驱体进行退火处理,得到最终产物标记为 WO3-001;
S2,WO3-001和NaBH4以一定比例混合并彻底研磨,混合粉末在惰性气体气氛下煅烧t4,然后用蒸馏水和无水乙醇洗涤,去除残留的NaBH4,最后,在室温下干燥产物。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法, t1为80min,t2为32h,t3为5h,t4为10min。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中的二水合钨酸钠重量为1g,去离子水设置为20ml。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中的向水溶液加入的HCl10ml。
所述步骤S1中将沉淀转移到HCl溶液中,HCl设置为50ml。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中的HCl浓度均为2mol/L。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中,烘箱温度设置为200℃,干燥温度设置为80℃,S2中N2气氛煅烧的温度为300℃。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中退火温度为500℃,退火时间为2h。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S1中制得的最终产物为择优暴露(001)面的WO3纳米片。
进一步的,本发明的将氧空位可控制备到三氧化钨特定晶面上的方法,所述步骤S2中WO3和NaBH4的混合质量比为(5:1)~(60:1)。
3.有益效果
相比于现有技术,本发明的优点在于:利用此方法成功地制备了以(001) 面为主要暴露面的高分散纳米片,并以NaBH4为还原剂在其表面构建稳定的氧空位。实现了对WO3水氧化反应过程中光吸收和表面反应的同时优化,为进一步研究缺陷和晶面的协同作用提供了新的见解。
附图说明
图1(a)、(d)为实施例1和2制得的WO3-001和WB-50:1的SEM图;
图1(b)、(e)为实施例1和2制得的WO3-001和WB-50:1的TEM图;
图1(c)、(f)为实施例1和2制得的WO3-001和WB-50:1的HRTEM图;
图2(a)为实施例1和2制得的WO3-001和WB-X:1的XRD图,
图2(b)为实施例1制得的WO3-001的(001)、(010)和(100)面的暴露百分比图;
图3(a)为实施例1和2制得的WO3-001和WB-X:1的紫外可见漫反射光谱图,
图3(b)为实施例2制得的WB-60:1水氧化反应前后的吸收图和样品照片;
图4(a)和(c)为实施例1制得的WO3-001 W 4f和O1s的XPS光谱图;
图4(b)和(d)为实施例2制得的WB-50:1的W 4f和O1s的XPS光谱图;
图5为实施例2制得的WB-50:1和WB-5:1的ESR图;
图6为实施例1和2制得的WO3-001和WB-X:1的水氧化活性图;
图7(a)为实施例1和2制得的WO3-001和WB-X:1的光电流图,
图7(b)为实施例1和2制得的WO3-001和WB-X:1的阻抗图;
图8为实施例1和2制得的WO3-001和WB-50:1的LSV图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
择优暴露(001)面的WO3纳米片的制备
将1g二水合钨酸钠溶于20ml去离子水中,向上述水溶液加入10ml HCl 连续搅拌80min。用去离子水离心彻底清洗凝胶后,将沉淀转移到50ml 2 mol/L的HCl溶液中,室温搅拌32h。将溶液转移到四氟乙烯内衬不锈钢高压釜(体积100ml)中,在200℃烘箱中保存5h。冷却至室温后,用去离子水以及无水乙醇洗涤几次,在80℃下干燥。将制备的前驱体在500℃下退火2h,得到最终产物标记为WO3-001。
实施例2
含缺陷WO3纳米片的制备
将WO3-001和NaBH4按5:1、40:1、50:1、60:1的比例混合并彻底研磨。混合粉末在300℃N2气氛下煅烧10min,然后用蒸馏水和无水乙醇洗涤,去除残留的NaBH4。最后,在室温下干燥产物,分别标记为WB-5:1、WB-40:1、 WB-50:1、WB-60:1
实施例3
催化剂的表征
样品的晶体结构是在德国Bruker Apex II X射线衍射仪(XRD)上使用 Cu Kα辐射测量的。用扫描电子显微镜(SEM,GeminiSEM-500Zeiss)和透射电子显微镜(TEM,JEM-2100)进行了样品的形貌表征。在Thermo ESCALAB 250Xi光谱仪上对样品进行了X射线光电子能谱(XPS)测量,并以污染物碳(284.8eV)的结合能作为参考分析了样品的表面电子结构。采用有积分球的岛津U-3010型紫外-可见漫反射光谱仪(UV-vis DRS)测定样品的光学吸收性能。电子顺磁共振谱(ESR)通过电子顺磁共振仪(A300-10/12,German Bruker)测得。
实施例4
(1)催化剂光电化学性能测试
样品的光电化学试验都是在电化学工作站(CHI660,中国,上海)上测试的。采用标准的三电极模式,分别以旋涂了样品的FTO和铂丝作为工作电极和对电极,以饱和甘汞电极(SCE)作为参比电极,0.1mol/L的Na2SO4溶液作为电解液。使用300W氙灯(PLS-SXE300/300UV)和420nm截止滤光片(λ≥420nm)作为光源。测量前,先通20min氮气,以去除溶液中的气体。在20s的时间间隔和0.5V的偏压下测得催化剂的周期性光电流-时间(I-t)曲线。在0.5-2.2V的电位范围内测试样品的线性扫描伏安曲线(LSV),EIS测试施加0.5V的偏压。
光催化活性测试
光催化分解水产氧活性测试在OLPCRS-3(上海博弈科学仪器有限公司) 的反应系统上进行。反应器是专用的三岔口石英反应器。反应体系的入射光源为300W氙灯(CEL-HXF300,北京),光强固定为200mW/cm2。100mg样品分散到275ml 0.04mol/L的Fe(NO3)3溶液中。预先对体系抽真空20min 以除去溶液中溶解的气体。反应液在不断搅拌下光照5h。在反应过程中,每小时手动取1ml气体,用在线GC-2014C气相色谱仪(SHIMADZU,岛津) 进行分析检测,从而确定光催化活性。
由图1和图2可以看出,与原始的WO3-001相比,经NaBH4处理后的样品形貌和晶形结构没有明显的变化,仍然为纳米片层结构,主要暴露面仍然为 (001)面,说明氧空位的形成并没有破坏原始WO3的晶型结构和晶面特征。
由图3可以看出,经NaBH4处理后的样品在可见光区域的吸收曲线有明显的加强,这初步证明了通过NaBH4还原成功地在WO3表面构造了氧空位,同时氧空位浓度增加使其在可见光区的吸收逐渐增强,这与样品颜色从黄色到橄榄绿色再到深蓝色的颜色变化相一致。从产氧反应前后的吸收图来看,光吸收基本不变,这说明样品进行产氧反应中,氧空位是稳定存在的。
由图4可以看出,由于要满足电中性的要求,W5+的存在间接表明氧空位的存在。同时由图5也可看出,在相同条件下,WB-50:1在g=2.003处表现出相对较强的ESR信号强度,这是由被氧空位捕获的未配对电子引起的,较高的峰值强度对应较高的氧空位浓度。表明经NaBH4处理后的样品表面存在氧空位。峰强顺序为WB-5:1>WB-50:1,这意味着WO3中氧空位浓度随着NaBH4用量的增加而增加,在WB-5:1中氧空位的浓度最大。
由图6和图7可以看出,当WO3和NaBH4的混合质量比为50:1时,样品的水氧化活性最高、瞬态光电流密度最大、样品的电阻最低,这说明可控构筑氧空位有利于载流子的分离,同时氧空位只有在最合适的浓度时才能达到最佳的产氧活性。
由图8可以看出,与原始WO3-001相比,构筑氧空位后的样品WB-50:1起始电位变低,说明了氧空位不仅有利于可见光的吸收和载流子的分离,更重要的是降低了水氧化反应发生的起始电位。
本实施例通过水热法制备了高度分散的WO3纳米片,并以此催化剂为模型,构建氧空位获得高效的产氧催化剂。采用密度泛函理论计算表明WO3(001) 面上的水氧化过电位低于(010)和(100)面,因此选用(001)面作为研究的对象。同时,稳定存在的氧空位能够显著降低水氧化的过电位,利用此方法成功地制备了以(001)面为主要暴露面的高分散纳米片,并以NaBH4为还原剂在其表面构建稳定的氧空位。纳米片中特定暴露的(001)优势面和氧空位的共同作用实现了对WO3水氧化反应过程中光吸收和表面反应的同时优化,为进一步研究缺陷和晶面的协同作用提供了新的见解。
以上所述,仅为本发明较佳的具体实施方式;但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其改进构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (7)

1.一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:该制备方法包括以下步骤:
S1,将二水合钨酸钠溶于去离子水中,向水溶液加入HCl连续搅拌t1,用去离子水离心彻底清洗凝胶后,将沉淀转移到HCl溶液中,室温搅拌t2,将溶液转移到高压釜中,在烘箱中保存t3,冷却至室温后,用去离子水和无水乙醇洗涤数次,干燥,将制备的前驱体进行退火处理,得到最终产物标记为WO3-001;
S2,WO3-001和NaBH4以一定比例混合并彻底研磨,混合粉末在惰性气体气氛下煅烧t4,然后用蒸馏水和无水乙醇洗涤,去除残留的NaBH4,最后,在室温下干燥产物;
t1为80min,t2为32h,t3为5h,t4为10min;
所述步骤S1中,烘箱温度设置为200℃,S2中煅烧的温度为300℃;
所述步骤S1中退火温度为500℃;
所述步骤S1中制得的最终产物为择优暴露(001)面的WO3纳米片;
所述步骤S2中WO3和NaBH4的混合质量比为(5:1)~(60:1)。
2.根据权利要求1所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中的二水合钨酸钠重量为1g,去离子水设置为20ml。
3.根据权利要求1所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中的向水溶液加入的HCl 10ml。
4.根据权利要求1所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中将沉淀转移到HCl溶液中,HCl设置为50ml。
5.根据权利要求4所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中的HCl浓度均为2mol/L。
6.根据权利要求1所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中,干燥温度设置为80℃,S2中惰性气体采用N2
7.根据权利要求1所述的一种将氧空位可控制备到三氧化钨特定晶面上的方法,其特征在于:所述步骤S1中退火时间为2h。
CN202210481622.5A 2022-05-05 2022-05-05 一种将氧空位可控制备到三氧化钨特定晶面上的方法 Active CN114956183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210481622.5A CN114956183B (zh) 2022-05-05 2022-05-05 一种将氧空位可控制备到三氧化钨特定晶面上的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210481622.5A CN114956183B (zh) 2022-05-05 2022-05-05 一种将氧空位可控制备到三氧化钨特定晶面上的方法

Publications (2)

Publication Number Publication Date
CN114956183A CN114956183A (zh) 2022-08-30
CN114956183B true CN114956183B (zh) 2023-02-17

Family

ID=82982190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210481622.5A Active CN114956183B (zh) 2022-05-05 2022-05-05 一种将氧空位可控制备到三氧化钨特定晶面上的方法

Country Status (1)

Country Link
CN (1) CN114956183B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874389A (zh) * 2015-05-05 2015-09-02 上海应用技术学院 一种具有氧空位介孔WO3-x可见光催化剂及其制备方法和应用
CN114225944A (zh) * 2021-12-31 2022-03-25 杭州电子科技大学 一种富含氧空位的wo3纳米阵列光催化剂的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874389A (zh) * 2015-05-05 2015-09-02 上海应用技术学院 一种具有氧空位介孔WO3-x可见光催化剂及其制备方法和应用
CN114225944A (zh) * 2021-12-31 2022-03-25 杭州电子科技大学 一种富含氧空位的wo3纳米阵列光催化剂的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations;Ning Zhang et al.;《ACS Appl. Mater. Interfaces》;20160405;第1-29页 *
WO3 nanocrystals with tunable percentage of (0 0 1)-facet exposure;Dieqing Zhang et al.;《Applied Catalysis B: Environmental》;20120505;第398-404页 *

Also Published As

Publication number Publication date
CN114956183A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Diab et al. Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation
Li et al. Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution
Zhu et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles
Jiao et al. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH
Zhang et al. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution
Wang et al. Synthesis of MFe2O4 (M= Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity
Liu et al. Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification
Zhang et al. Novel 3DOM-SrTiO3/Ag/Ag3PO4 ternary Z-scheme photocatalysts with remarkably improved activity and durability for contaminant degradation
Zhang et al. Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p–n heterojunction for photocatalytic hydrogen evolution
Yang et al. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO2, BaTiO3, and SrTiO3) nanoassembly for enhanced CO2 photoreduction through surface/interface synergy
Xia et al. Sustainable solar-light-driven SrTiO3/PbBiO2Br nanocomposites with enhanced photocatalytic activity
Zhang et al. One-dimensional CdS nanowires–CeO 2 nanoparticles composites with boosted photocatalytic activity
Lin et al. Photocatalytic water splitting for hydrogen production on Au/KTiNbO5
Zhong et al. One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@ MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation
Tahir et al. Ru-embedded 3D g-C3N4 hollow nanosheets (3D CNHNS) with proficient charge transfer for stimulating photocatalytic H2 production
Wang et al. Construction of octahedral BiFeWOx encapsulated in hierarchical In2S3 core@ shell heterostructure for visible-light-driven CO2 reduction
Cui et al. ZnO nanorods modified with noble metal-free Co 3 O 4 nanoparticles as a photocatalyst for efficient ethylene degradation under light irradiation
Li et al. Rare earth perovskite modified cobalt disulfide catalysts controlled by reaction solvent synthesis to form a pn heterojunction
Zou et al. Photocatalytic performance and mechanism of hydrogen evolution from water over ZnCdS/Co@ CoO in sacrificial agent-free system
Song et al. Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol
Pei et al. Hierarchical Zn1-xCdxS microclusters with superior visible-light-driven photocatalytic hydrogen generation performance
Kang et al. Utilization of a ZnS (en) 0.5 photocatalyst hybridized with a CdS component for solar energy conversion to hydrogen
CN105771953B (zh) 一种钛酸锌/二氧化钛复合纳米材料的制备方法
Alzahrani et al. CuCo2O4/CeO2 S-scheme photocatalyst for promoted CO2 photoreduction to CH3OH
Dang et al. A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant