CN114939877B - A mobile operating spherical robot for lunar base construction - Google Patents
A mobile operating spherical robot for lunar base construction Download PDFInfo
- Publication number
- CN114939877B CN114939877B CN202210547443.7A CN202210547443A CN114939877B CN 114939877 B CN114939877 B CN 114939877B CN 202210547443 A CN202210547443 A CN 202210547443A CN 114939877 B CN114939877 B CN 114939877B
- Authority
- CN
- China
- Prior art keywords
- spherical
- robot
- arm
- operating
- rigid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009411 base construction Methods 0.000 title claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 23
- 238000010168 coupling process Methods 0.000 claims abstract description 23
- 238000005859 coupling reaction Methods 0.000 claims abstract description 23
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 2
- 238000003032 molecular docking Methods 0.000 claims description 2
- 102000016904 Armadillo Domain Proteins Human genes 0.000 claims 1
- 108010014223 Armadillo Domain Proteins Proteins 0.000 claims 1
- 241000289632 Dasypodidae Species 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 239000011664 nicotinic acid Substances 0.000 claims 1
- 230000001568 sexual effect Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 3
- 230000006978 adaptation Effects 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明公开一种用于月球基地建造的可移动操作球形机器人。发明所述可移动操作球形机器人包括:柔索驱动可展开球壳(1)、“刚‑柔”耦合超冗余操作臂基座(2)、软性末端缓冲关节(3)、“刚‑柔”耦合伸缩关节(4)、球内天线(5)、球内太阳帆(6)、自动释放和锁定机构(7)、灵巧臂(8)、灵巧臂末端(9)。通过“刚‑柔”耦合超冗余操作臂的构型变化作为球形移动状态的质心变化机构,实现球形机器人的灵活平稳滚动,到达指定位置后,双灵巧臂能够辅助球壳完全打开,两个大型超冗余操作臂与灵巧臂协同操作并完成对外操作,机器人具备可对外操作的球内多臂特性,移动状态下能够实现多机器人的组合协作越障,实现环境适应与多机协作。
The invention discloses a movable operating spherical robot used for lunar base construction. The movable operating spherical robot described in the invention includes: a flexible cable-driven deployable spherical shell (1), a "rigid-soft" coupled super-redundant operating arm base (2), a soft end buffer joint (3), a "rigid-soft" coupling "Soft" coupling telescopic joint (4), in-sphere antenna (5), in-sphere solar sail (6), automatic release and locking mechanism (7), dexterous arm (8), dexterous arm end (9). Through the "rigid-flexible" coupling of the configuration change of the super-redundant operating arm as the center-of-mass changing mechanism of the spherical moving state, the spherical robot can roll flexibly and smoothly. After reaching the designated position, the double dexterous arms can assist the spherical shell to fully open. The large super-redundant operating arm and the dexterous arm cooperate to operate and complete external operations. The robot has the characteristics of multi-arms in the ball that can be operated externally. It can realize the combined cooperation of multiple robots to overcome obstacles in the mobile state, realizing environmental adaptation and multi-machine collaboration.
Description
技术领域Technical field
本发明涉及一种用于月球基地建造的可移动操作球形机器人,具体地说一种带有超冗余操作臂的球形机器人,可以通过球体内部机械臂的作用实现球形机器人的全向移动、球壳开合、对外操作等,同时可通过与其他机器人的相互通信,实现环境适应与多机协作,属于机器人领域。The present invention relates to a movable operating spherical robot for the construction of a lunar base, specifically a spherical robot with a super-redundant operating arm, which can realize the omnidirectional movement of the spherical robot and the ball through the action of the mechanical arm inside the sphere. Shell opening and closing, external operations, etc., and at the same time, environmental adaptation and multi-machine collaboration can be achieved through mutual communication with other robots, which belongs to the field of robotics.
背景技术Background technique
月面运输与操作设施作为国际月球科研站的核心组成部分,为月面长期工作支持系统和月面科研设施系统提供物品运输与操作,我国的航天技术研发成就已为往返地外星球提供了成熟的条件,因此,开展外星球基地建造机器人的研究已成为国内外关注的重点和必然发展趋势。月球环境极恶劣:路面崎岖、真空、昼夜温差大、月尘污染、长月夜、低重力等等,对机器人的设计提出了巨大的挑战。球形机器人具有全向移动、密闭、防倾覆、驱动少的优势,使其具备快速灵活运动能力和极端环境下自我保护能力。针对月球表面的极端环境和基地建造的复杂任务约束,笔者通过球形机器人与机械臂的创新融合,提出一种用于月球基地建造的可移动操作球形机器人,为我国月球基地建造提供技术参考。As a core component of the international lunar scientific research station, lunar surface transportation and operation facilities provide item transportation and operation for the long-term lunar surface work support system and lunar surface scientific research facility system. my country's aerospace technology research and development achievements have provided mature solutions for traveling to and from extraterrestrial planets. Therefore, the research on robots for constructing extraterrestrial bases has become a focus of attention and an inevitable development trend at home and abroad. The lunar environment is extremely harsh: rugged roads, vacuum, large temperature difference between day and night, lunar dust pollution, long moonlit nights, low gravity, etc., which poses huge challenges to the design of robots. The spherical robot has the advantages of omnidirectional movement, airtightness, anti-overturning, and less driving, giving it the ability to move quickly and flexibly and to protect itself in extreme environments. In view of the extreme environment of the lunar surface and the complex task constraints of base construction, the author proposes a movable operating spherical robot for lunar base construction through the innovative integration of spherical robots and mechanical arms, providing technical reference for the construction of my country's lunar base.
申请号为202110540392.0公开了一种球形机器人,该机器人球壳内设置有滚动驱动装置和跳跃驱动装置,滚动驱动装置包括支撑机构、承载机构、伺服电机组一和伺服电机组二,跳跃驱动装置包括跳跃机构、锁紧机构和配重平台,提供一种结构紧凑空间利用率高的自助弹跳自救球形机器人。该发明具有良好的通过性,但其并不具备对外操作能力。The application number is 202110540392.0, which discloses a spherical robot. The robot spherical shell is provided with a rolling drive device and a jump drive device. The rolling drive device includes a support mechanism, a load-bearing mechanism, a servo motor group one and a servo motor group two. The jump drive device includes The jumping mechanism, locking mechanism and counterweight platform provide a self-help jumping and self-rescuing spherical robot with compact structure and high space utilization. This invention has good passability, but it does not have external operation capabilities.
申请号为202110393069.5公开了一种带臂球形探测机器人,该机器人通过舵机驱动力和重摆及机械臂的重力作用下进行滚动,通过变形组件调节球形壳体展开或闭合,在球壳打开情况下实现机械臂的对外操作。该专利在球体内加装的机械臂仅能在球壳打开时实现对外操作。The application number is 202110393069.5, which discloses a spherical detection robot with an arm. The robot rolls under the driving force of the steering gear, the weight of the pendulum and the mechanical arm, and adjusts the expansion or closing of the spherical shell through the deformation component. When the spherical shell is open, Realize the external operation of the robotic arm. The patented mechanical arm installed inside the sphere can only operate externally when the sphere shell is opened.
申请号为201621174315.9公开了一种球形搬运机器人,该发明所述球形机器人以非开合的形式,将两机械臂置于球形机器人两侧,可夹持或放置物品,但其受限于球体本身,可操作空间不大,操作性不高,舍弃了在移动过程中封闭球壳对于本身机械臂的保护作用。The application number is 201621174315.9, which discloses a spherical handling robot. The spherical robot in this invention places two mechanical arms on both sides of the spherical robot in a non-opening and closing form, and can clamp or place items, but it is limited by the sphere itself. , the operable space is not large, the operability is not high, and the protective effect of the closed spherical shell on the mechanical arm itself is abandoned during the movement.
综合现有球形机器人和大型空间机械臂的研究思路以及外星球表面复杂极端的任务需求,本发明将球形机器人与超冗余大型空间机械臂的设计理念相融合,提出了一种用于月球基地建造的可移动操作球形机器人:球形机器人赋予机械臂快速灵活运动能力与极端复杂外星球环境下自我保护能力,同时机械臂赋予球形机器人强大的对外操作能力与多机器人单元之间的协作能力,使机器人能够在月球表面极端环境下的基地建设任务中,实现高效可靠的移动和对外操作,具有极大的潜在优势和深远的研究价值。Based on the existing research ideas of spherical robots and large-scale space manipulators and the complex and extreme mission requirements on the surface of alien planets, the present invention integrates the design concepts of spherical robots and super-redundant large-scale space manipulators, and proposes a lunar base The movable operating spherical robot built: The spherical robot gives the mechanical arm the ability to move quickly and flexibly and the ability to protect itself in extremely complex alien planet environments. At the same time, the mechanical arm gives the spherical robot powerful external operation capabilities and the ability to collaborate between multiple robot units, making it possible to The robot can achieve efficient and reliable movement and external operations in base construction tasks in the extreme environment of the lunar surface, which has great potential advantages and far-reaching research value.
发明内容Contents of the invention
本发明提出了一种用于月球基地建造的可移动操作球形机器人。发明所述机器人通过“刚-柔”耦合超冗余操作臂的构型变化作为球形移动状态的质心变化机构,实现球形机器人的灵活平稳滚动;到达指定位置后,双灵巧臂能够辅助球壳完全打开;两个大型超冗余操作臂与灵巧臂(8)协同操作,完成建造作业。机器人具备可对外操作的球内多臂特性,移动状态下能够实现多机器人的组合协作越障,同时灵巧臂可伸出球壳外进行运动中操作。对外操作状态下能够实现多个超冗余操作臂和灵巧臂的相互协作,完成复杂操作任务。The invention proposes a movable operating spherical robot for lunar base construction. The robot in the invention realizes the flexible and smooth rolling of the spherical robot through the configuration change of the "rigid-flexible" coupled super-redundant operating arm as a center-of-mass changing mechanism in the spherical moving state; after reaching the designated position, the double dexterous arms can assist the spherical shell to complete the movement. Open; two large super-redundant operating arms and smart arms (8) operate in cooperation to complete the construction operation. The robot has the characteristics of multi-arms in the ball that can be operated externally. It can realize the combined cooperation of multiple robots to overcome obstacles in the moving state. At the same time, the dexterous arms can be extended outside the ball shell for operation in motion. In the external operation state, multiple super-redundant operating arms and smart arms can cooperate with each other to complete complex operating tasks.
为实现上述目的,本发明提供的解决方案是:In order to achieve the above objectives, the solution provided by the present invention is:
所述球形机器人包括柔索驱动可展开球壳(1)、“刚-柔”耦合超冗余操作臂基座(2)、软性末端缓冲关节(3)、“刚-柔”耦合伸缩关节(4)、球内天线(5)、球内太阳帆(6)、自动释放和锁定机构(7)、灵巧臂(8)、灵巧臂末端(9)。The spherical robot includes a flexible cable-driven deployable spherical shell (1), a "rigid-soft" coupled super-redundant operating arm base (2), a soft end buffer joint (3), and a "rigid-soft" coupled telescopic joint. (4), In-sphere antenna (5), In-sphere solar sail (6), Automatic release and locking mechanism (7), Smart arm (8), Smart arm end (9).
所述“刚-柔”耦合超冗余操作臂基座(2),在球形巡航模式下通过自动释放和锁定机构(7)与柔索驱动可展开球壳(1)进行连接,球内太阳帆(6)附于球壳内表面,“刚-柔”耦合超冗余操作臂基座(2)、软性末端缓冲关节(3)、“刚-柔”耦合伸缩关节(4)为球形机器人内部“刚-柔”耦合超冗余操作臂构成单元。“刚-柔”耦合超冗余操作臂通过基座(2)与柔索驱动可展开球壳(1)相连,操作臂末端通过缓冲关节(3)与操作臂连接,“刚-柔”耦合伸缩关节(4)替代了刚性连杆,使得整个操作臂组成具有10个自由度的超冗余操作臂。软性末端缓冲关节(3)为操作臂的末关节,包含对外操作手抓。灵巧臂(8)的首段与超冗余操作臂基座(2)连接,灵巧臂末端(9)可作为支撑单端展开。The "rigid-flexible" coupling super-redundant operating arm base (2) is connected to the flexible cable-driven expandable spherical shell (1) through the automatic release and locking mechanism (7) in the spherical cruise mode, and the sun inside the ball The sail (6) is attached to the inner surface of the spherical shell. The "rigid-soft" coupling super-redundant operating arm base (2), the soft end buffer joint (3), and the "rigid-soft" coupling telescopic joint (4) are spherical. The robot's internal "rigid-flexible" coupling super-redundant operating arm constitutes a unit. "rigid-soft" coupling super-redundant operating arm is connected to the flexible cable-driven expandable spherical shell (1) through the base (2), and the end of the operating arm is connected to the operating arm through a buffer joint (3), "rigid-soft" coupling The telescopic joint (4) replaces the rigid link, allowing the entire operating arm to form a super-redundant operating arm with 10 degrees of freedom. The soft end buffer joint (3) is the end joint of the operating arm, including the external operating hand grip. The first section of the smart arm (8) is connected to the super-redundant operating arm base (2), and the end of the smart arm (9) can be deployed as a single-end support.
本发明的运动原理为:The movement principle of the present invention is:
在球形巡航模式下,机器人柔索驱动可展开球壳(1)处于密闭状态,球形机器人通过超冗余操作臂作为球形移动状态的质心变化机构,基于质心偏移产生的重力矩的原理,通过“刚-柔”耦合伸缩关节(4)的转动产生质心偏移,实现机器人的灵活平稳滚动。In the spherical cruise mode, the robot's flexible cable-driven deployable spherical shell (1) is in a closed state. The spherical robot uses a super-redundant operating arm as a center-of-mass changing mechanism in the spherical moving state. Based on the principle of the gravity moment generated by the offset of the center of mass, The rotation of the "rigid-soft" coupled telescopic joint (4) produces a mass center offset, enabling the robot to roll flexibly and smoothly.
球形机器人上的灵巧臂(8),可在球形巡航模式下,将球壳左右两端的灵巧臂末端(9),分别伸出作为支撑,将整个球壳抬升,使机器人灵巧臂作业模式具备球-腿特性进而提升其越障高度,实现短距离步态行走,提升其越障通过性;对于垂直高度超过球形机器人半径和灵巧臂可支撑最大高度的障碍,通过灵巧臂间的对接功能实现多个机器人的组合形成开链串联型拓扑结构,实现多机协作越障。The smart arm (8) on the spherical robot can, in the spherical cruise mode, extend the smart arm ends (9) at the left and right ends of the spherical shell respectively as supports to lift the entire spherical shell, so that the robot's smart arm operation mode has the characteristics of a ball. -The characteristics of the legs further increase its obstacle surmounting height, enabling short-distance walking and improving its obstacle surmounting ability; for obstacles whose vertical height exceeds the radius of the spherical robot and the maximum height that the dexterous arm can support, multiple functions can be achieved through the docking function between dexterous arms. The combination of two robots forms an open-chain series topology, enabling multi-machine collaboration to overcome obstacles.
机器人可通过球壳展开,进入双操作臂作业模式,此时球壳内侧展开,使球内太阳帆(6)开始工作为机器人提供能源,双操作臂由超冗余操作臂基座(2)和灵巧臂末端(9)作为支撑,使左右两个超冗余操作臂,可在空间内实现对外大范围操作。The robot can be deployed through the spherical shell and enter the dual operating arm operating mode. At this time, the inside of the spherical shell is expanded, allowing the solar sail (6) in the ball to start working to provide energy for the robot. The dual operating arms are supported by a super-redundant operating arm base (2) and the end of the smart arm (9) as a support, so that the two left and right super-redundant operating arms can achieve large-scale external operations in the space.
机器人可实现与环境和其他机器人之间的相互通信,通过球内天线(5)单个球形机器人可获知其他机器人的位置,通过预先输入的任务需求,分别移动至预先任务定点,做球壳展开进入双操作臂作业模式,多机器人相互配合,实现协同作业,共同完成月球极端环境下的基地建造复杂任务。The robot can communicate with the environment and other robots. A single spherical robot can learn the position of other robots through the in-ball antenna (5). Through the pre-input task requirements, it can move to the pre-task fixed point and expand the spherical shell to enter. In the dual-operating arm operation mode, multiple robots cooperate with each other to achieve collaborative operations and jointly complete the complex tasks of base construction in the extreme environment of the moon.
本发明的优点与效益:Advantages and benefits of the invention:
本专利提出了一种用于月球基地建造的可移动操作球形机器人,用机械臂取代重摆的功能提升球形机器人的对外操作能力,通过球壳内部冗余机械臂之间的协作满足内部机构功能需求,结合具备大变形展开能力的球壳,能够使球形机器人在发挥自身优势的同时,在越障能力与对外操作能力方面均会得到大幅度提升,在对外操作状态下可实现多个超冗余操作臂的相互协作,使机器人具备强大的自我保护、越障能力和对外操作能力,能够有效应对月球表面的维修维护、巡查等复杂任务。具有极大的潜在优势和深远的研究价值。This patent proposes a movable operating spherical robot for the construction of lunar bases. The mechanical arm is used to replace the pendulum function to improve the external operation capability of the spherical robot. The internal mechanism functions are satisfied through the cooperation between redundant mechanical arms inside the spherical shell. demand, combined with the spherical shell with large deformation and expansion capabilities, the spherical robot can not only give full play to its own advantages, but also be greatly improved in terms of obstacle surmounting capabilities and external operation capabilities. It can achieve multiple super-redundant operations in the external operation state. The mutual cooperation of the remaining operating arms gives the robot strong self-protection, obstacle surmounting capabilities and external operation capabilities, and can effectively handle complex tasks such as maintenance and inspection on the lunar surface. It has great potential advantages and far-reaching research value.
附图说明Description of the drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings required to be used in the embodiments will be briefly introduced below.
图1是所述球形机器人整体结构内部示意图;Figure 1 is an internal schematic diagram of the overall structure of the spherical robot;
图2是所述球形机器人在球形巡航模式下的示意图;Figure 2 is a schematic diagram of the spherical robot in spherical cruise mode;
图3是所述球形机器人在灵巧臂作业模式下的示意图;Figure 3 is a schematic diagram of the spherical robot in the smart arm operation mode;
图4是所述球形机器人在双操作臂作业模式下的示意图;Figure 4 is a schematic diagram of the spherical robot in dual operating arm operating mode;
图中的附图标记为:The reference numbers in the figure are:
1--柔索驱动可展开球壳 2--“刚-柔”耦合超冗余操作臂基座1--Flexible cable-driven expandable spherical shell 2--"rigid-flexible" coupling super-redundant operating arm base
3--软性末端缓冲关节 4—“刚-柔”耦合伸缩关节3--Soft end buffer joint 4-"rigid-soft" coupling telescopic joint
5--球内天线 6--球内太阳帆5--Inner-sphere antenna 6--Inner-sphere solar sail
7--自动释放和锁定机构 8--灵巧臂7--Automatic release and locking mechanism 8--Smart arm
9--灵巧臂末端9--End of dexterous arm
具体实施方式Detailed ways
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to better understand the technical solution of the present invention, the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
如图1所示,为所述机器人整体结构内部示意图,此图是为了更好的展示机器人内部结构示意图,为变形过程示意图,需注意此状态下机器人处于不稳定状态。As shown in Figure 1, it is an internal schematic diagram of the overall structure of the robot. This diagram is to better display the schematic diagram of the internal structure of the robot and is a schematic diagram of the deformation process. It should be noted that the robot is in an unstable state in this state.
如图2所示,为所述机器人在球形巡航模式下的示意图,机器人此时处于封闭状态,确保此状态下机器人内部与外界隔离,在机器人需要在此状态下静止时,可通过机器人内部的陀螺仪和加速度感测器驱动“刚-柔”耦合伸缩关节(4)的电机,使机器人保持动态平衡,在机器人需要在此状态下移动时,球形机器人通过超冗余操作臂作为球形移动状态的质心变化机构,通过“刚-柔”耦合伸缩关节(4)的同向转动,实现机器人的灵活平稳滚动。As shown in Figure 2, it is a schematic diagram of the robot in the spherical cruise mode. The robot is in a closed state at this time to ensure that the inside of the robot is isolated from the outside world. When the robot needs to be stationary in this state, it can be closed through the The gyroscope and acceleration sensor drive the motor of the "rigid-flexible" coupling telescopic joint (4) to maintain the robot's dynamic balance. When the robot needs to move in this state, the spherical robot uses a super-redundant operating arm as a spherical moving state The center-of-mass changing mechanism realizes flexible and smooth rolling of the robot through the co-directional rotation of the "rigid-soft" coupling telescopic joint (4).
如图3所示,为所述球形机器人在灵巧臂作业模式的示意图,球形机器人上的灵巧臂(8),可在球形巡航模式下,将球壳左右两端的灵巧臂末端(9),分别伸出作为支撑,将整个球体抬升,使整个机器人可视为两腿式机器人,机器人内部的陀螺仪和加速度感测器可驱动“刚-柔”耦合伸缩关节(4)的电机,使机器人保持动态平衡,通过灵巧臂(8)实现短距离步态行走,实现机器人的台阶式越障。As shown in Figure 3, it is a schematic diagram of the spherical robot in the smart arm operating mode. The smart arm (8) on the spherical robot can move the smart arm ends (9) at the left and right ends of the spherical shell in the spherical cruise mode, respectively. Stretch out as a support to lift the entire sphere, so that the entire robot can be regarded as a two-legged robot. The gyroscope and acceleration sensor inside the robot can drive the motor of the "rigid-soft" coupling telescopic joint (4) to keep the robot Dynamic balance, short-distance gait walking is realized through the smart arm (8), and the robot can climb obstacles in steps.
如图4所示,为所述球形机器人在双操作臂作业模式示意图,其变化过程是由球形巡航模式下机器人根据其他球形机器人的位置,基于预输入任务,确定操作基点后到达指定位置,由两端的灵巧臂(8)的灵巧臂末端(9)伸出,并支撑于地面,然后通过自动释放和锁定机构(7)完成球壳展开使球内太阳帆(6)开始工作,此时两个超冗余操作臂可依托超冗余操作臂基座(2)和灵巧臂末端(9)作为支撑,使左右两个超冗余操作臂,可在空间内实现对外大范围操作。As shown in Figure 4, it is a schematic diagram of the spherical robot operating in dual operating arm mode. The change process is that in the spherical cruise mode, the robot determines the operating base point and reaches the designated position based on the positions of other spherical robots based on the pre-input task. The smart arm ends (9) of the smart arms (8) at both ends stretch out and are supported on the ground. Then the automatic release and locking mechanism (7) completes the expansion of the spherical shell so that the solar sail (6) in the ball starts to work. At this time, the two Each super-redundant operating arm can rely on the super-redundant operating arm base (2) and the smart arm end (9) as a support, so that the left and right super-redundant operating arms can achieve large-scale external operations in the space.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210547443.7A CN114939877B (en) | 2022-05-18 | 2022-05-18 | A mobile operating spherical robot for lunar base construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210547443.7A CN114939877B (en) | 2022-05-18 | 2022-05-18 | A mobile operating spherical robot for lunar base construction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114939877A CN114939877A (en) | 2022-08-26 |
CN114939877B true CN114939877B (en) | 2023-11-10 |
Family
ID=82907324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210547443.7A Active CN114939877B (en) | 2022-05-18 | 2022-05-18 | A mobile operating spherical robot for lunar base construction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114939877B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116591542B (en) * | 2023-05-31 | 2024-11-12 | 华中科技大学 | Method and system for constructing lunar buildings for lunar lander descent and reuse |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101314222A (en) * | 2008-05-12 | 2008-12-03 | 北京邮电大学 | Vision-enabled spherical robot with arms |
CN106627007A (en) * | 2016-10-31 | 2017-05-10 | 苏州大学 | Amphibious spherical robot of changeable structure |
CN206218046U (en) * | 2016-10-26 | 2017-06-06 | 中国航天空气动力技术研究院 | Spherical transfer robot |
WO2017105294A1 (en) * | 2015-12-14 | 2017-06-22 | Игорь Викторович РЯДЧИКОВ | Two-legged walking robot |
CN107187509A (en) * | 2017-05-17 | 2017-09-22 | 上海大学 | A kind of ball shape robot with walking function |
CN109331477A (en) * | 2018-12-11 | 2019-02-15 | 佛山科学技术学院 | A ball-throwing bionic deformation robot |
CN109774807A (en) * | 2019-03-13 | 2019-05-21 | 北京邮电大学 | A high-speed rolling three-drive spherical robot with dual working modes and variable center of mass based on a hyper-redundant manipulator |
CN113212579A (en) * | 2021-05-10 | 2021-08-06 | 北京邮电大学 | Ball wheel leg composite mobile robot capable of being operated outwards |
CN214057144U (en) * | 2020-12-31 | 2021-08-27 | 内蒙古工业大学 | An amphibious deformable spherical hexapod robot |
CN113788082A (en) * | 2021-09-17 | 2021-12-14 | 山东科技大学 | Reconfigurable spherical robot, control system and control method thereof |
CN114227660A (en) * | 2021-12-17 | 2022-03-25 | 北京空间飞行器总体设计部 | A rigid-flexible coupled hyper-redundant intelligent sensing manipulator and method of using the same |
-
2022
- 2022-05-18 CN CN202210547443.7A patent/CN114939877B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101314222A (en) * | 2008-05-12 | 2008-12-03 | 北京邮电大学 | Vision-enabled spherical robot with arms |
WO2017105294A1 (en) * | 2015-12-14 | 2017-06-22 | Игорь Викторович РЯДЧИКОВ | Two-legged walking robot |
CN206218046U (en) * | 2016-10-26 | 2017-06-06 | 中国航天空气动力技术研究院 | Spherical transfer robot |
CN106627007A (en) * | 2016-10-31 | 2017-05-10 | 苏州大学 | Amphibious spherical robot of changeable structure |
CN107187509A (en) * | 2017-05-17 | 2017-09-22 | 上海大学 | A kind of ball shape robot with walking function |
CN109331477A (en) * | 2018-12-11 | 2019-02-15 | 佛山科学技术学院 | A ball-throwing bionic deformation robot |
CN109774807A (en) * | 2019-03-13 | 2019-05-21 | 北京邮电大学 | A high-speed rolling three-drive spherical robot with dual working modes and variable center of mass based on a hyper-redundant manipulator |
CN214057144U (en) * | 2020-12-31 | 2021-08-27 | 内蒙古工业大学 | An amphibious deformable spherical hexapod robot |
CN113212579A (en) * | 2021-05-10 | 2021-08-06 | 北京邮电大学 | Ball wheel leg composite mobile robot capable of being operated outwards |
CN113788082A (en) * | 2021-09-17 | 2021-12-14 | 山东科技大学 | Reconfigurable spherical robot, control system and control method thereof |
CN114227660A (en) * | 2021-12-17 | 2022-03-25 | 北京空间飞行器总体设计部 | A rigid-flexible coupled hyper-redundant intelligent sensing manipulator and method of using the same |
Non-Patent Citations (3)
Title |
---|
An Autonomous Positioning and Navigation System for Spherical Mobile Robot;Kang Hou, Hanxu Sun , Qingxuan Jia , Yanheng Zhang;Procedia Engineering;Volume 29;Pages 2556-2561 * |
新型变结构球形机器人运动分析;孙汉旭,赵伟,张延恒;机械工程学报;第49卷(第19期);第40-47页 * |
星球表面着陆巡视一体化探测机器人研究进展;路达,刘金国,高海波;航空学报;第42卷(第1期);523742(1-17页) * |
Also Published As
Publication number | Publication date |
---|---|
CN114939877A (en) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102616296B (en) | A six-wheeled serial-parallel hybrid robot | |
CN113212579B (en) | Ball wheel leg composite mobile robot capable of being operated outwards | |
CN113753146B (en) | Method for controlling robot to perform idle turning movement and robot | |
CN106272472B (en) | A kind of structure changes spherical shape both arms search and rescue robot | |
CN114939877B (en) | A mobile operating spherical robot for lunar base construction | |
CN207045490U (en) | A kind of spherical Bian Bao robots | |
CN109774807B (en) | Double-working-mode variable-centroid rolling spherical robot based on super-redundant mechanical arm | |
CN100556622C (en) | Simplified Omnidirectional Motion Spherical Robot | |
CN101301756B (en) | Three-freedom degree spherical surface parallel connected anthropomorphic robot bionic hip-joint with bias output | |
CN103029120A (en) | Folding static load balance adjusting parallel platform | |
CN103538644A (en) | Robot with functions of rolling motion and foot walking | |
CN103273981A (en) | Transformable search-and-rescue robot with multiple motion tread | |
CN102029614A (en) | Three-degree-of-freedom spherical space robot wrist | |
CN107284543A (en) | A kind of compound motion mechanical ball | |
CN113625735B (en) | Control method based on leg-arm multiplexing six-foot robot and robot | |
CN1302717A (en) | Movable spherical robot | |
CN100554067C (en) | Three-drive spherical robot | |
CN109015614A (en) | A kind of spatial cell robot for the in-orbit assembling of truss | |
CN112896352A (en) | Spherical robot | |
CN206691377U (en) | A kind of in-orbit assembly system of space truss using robot for space | |
CN115924135A (en) | A rope-driven telescopic pendulum lifting transfer device and transfer method | |
Shu et al. | A multi-configuration track-legged humanoid robot for dexterous manipulation and high mobility: design and development | |
CN115848657A (en) | Lateral swing continuous conveying and transferring device and method for transverse telescopic rod | |
CN102114879B (en) | Biped walking four-bar mechanism | |
CN110294043A (en) | A kind of serial-parallel mirror arm/leg mechanism for bio-robot forelimb mechanical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |