CN114938167A - 离线在线相结合的开关磁阻电机功率调节与效率优化方法 - Google Patents

离线在线相结合的开关磁阻电机功率调节与效率优化方法 Download PDF

Info

Publication number
CN114938167A
CN114938167A CN202210525033.2A CN202210525033A CN114938167A CN 114938167 A CN114938167 A CN 114938167A CN 202210525033 A CN202210525033 A CN 202210525033A CN 114938167 A CN114938167 A CN 114938167A
Authority
CN
China
Prior art keywords
theta
efficiency
power
angle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210525033.2A
Other languages
English (en)
Other versions
CN114938167B (zh
Inventor
葛乐飞
樊子祯
宋受俊
窦满峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210525033.2A priority Critical patent/CN114938167B/zh
Publication of CN114938167A publication Critical patent/CN114938167A/zh
Application granted granted Critical
Publication of CN114938167B publication Critical patent/CN114938167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明涉及一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,首先以固定角度为间隔分别调整关断角和零电压控制角,基于梯度下降法寻找开通角进行功率调节,调节到给定功率后计算发电效率。然后将效率与控制角度的关系利用matlab二元二阶非线性拟合成函数,再通过梯度下降法进行多元函数求极值完成离线最优效率的计算。最后将离线数据作为初始值进行在线的进一步优化。仿真验证了所述方法的有效性,所述方法控制逻辑简单、优化速度较快并且可以保证实时精度的最大效率跟踪。

Description

离线在线相结合的开关磁阻电机功率调节与效率优化方法
技术领域
本发明属于电机控制领域,涉及一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,是一种基于梯度下降法和粒子群优化算法的开关磁阻电机功率调节与效率优化的方法。
背景技术
开关磁阻电机为双凸极结构,结构简单坚固,可靠性高,易于维护,适于恶劣条件下工作,其发电系统融电力电子技术、控制技术、微电子技术为一体,显示出独特的优越性。控制开关磁阻的主要参数有开通角、关断角、绕组相电压等,控制参数多,控制灵活,易于在宽转速范围和不同负载下实现高效优化控制。目前开关磁阻电机在电动汽车、煤矿设备、新能源发电及部分家电等领域都有了大量应用,因此进一步研究开关磁阻电机的功率调节和效率优化具有重要的意义。
由电压方程、磁链方程、转矩方程及运动方程构成的数学模型可以从理论上准确地、完整地描述电机的电磁与力学关系,然而由于开关磁阻电机具有的双凸极结构使其电磁特性具有严重非线性,无法获得控制参数与系统发电效率之间准确的解析函数,因此对各控制参数的优化是十分复杂的。为寻找合适的优化方法国内外学者进行了丰富的研究。
本发明主要针对高速运行下的开关磁阻发电系统的功率调节与效率优化。当电机运行速度高于基速时,相电流不再是可以控制的变量,所以开关角成为十分重要的优化变量。为了找到给定功率下使效率最优的开关角度,现存的方法主要分为离线计算和在线寻优两种。离线计算一般是通过实验或仿真得到不同控制参数在不同工况下与工作效率的映射关系,建立数学模型,接着导入到查找表。但为了提升性能,需要大量和高维的数据,需要占用大量储存空间,也会影响运行速度。同时当环境发生改变,静态的最佳数据往往也不能满足当下的要求。在线寻优不依赖数学模型,可以通过寻优迭代不断寻找最优参数,从而确保系统的最佳效率。但寻优的速率与步长有关,若增大步长可减少寻优时间,但容易引起系统振荡而影响系统的稳定性。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,既包含离线计算速度快的优点,同时又能实时在线调节保证优化精度。
技术方案
一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,其特征在于步骤如下:
步骤1:确定功率、转速后计算应达到的转矩值:
Figure BDA0003643943260000021
式中Tem、P、n分别表示给定转矩、给定功率和转速;
步骤2:将电机关断角θoff和零电压控制角θfw固定,开通角θon初始值设为:
θon=θoffset
其中θset为初始导通角;
步骤3:将控制角度带入开关磁阻发电系统计算平均转矩:
Figure BDA0003643943260000022
式中Tavg、T、Tmeasure分别表示测量平均转矩、电机运行周期时间以及瞬时测量转矩,将测量平均转矩与给定转矩值作差,通过梯度下降法在线调整开通角θon直至测量转矩与给定转矩误差小于0.01,即可完成功率调节;
步骤4:确定开通角后利用以下公式计算电机发电效率:
Pin=Tavg×w
Pout=Pin-Pcapacitor-Pbattery-Pcopper-Peddycurrent-Pinverter-Piron
Figure BDA0003643943260000031
式中Pin、Pout、η、w分别表示输入功率、输出功率、发电效率和电机角速度,Pcapacitor、Pbattery、Pcopper、Peddycurrent、Pinverter、Piron分别表示电容器损耗、电源损耗、铜损耗、涡流损耗、功率变换器损耗和铁损耗;
步骤5:以固定的角度为步长,分别调整θoff和θfw,重复步骤2至步骤4,得到不同控制角度组合下的电机效率;将效率与θoff、θfw利用matlab非线性拟合生成二元二阶函数关系式,利用梯度下降法,分别以θoff、θfw的偏导数为基础寻找函数极值,并计算出效率达到极值时的θoff和θfw
步骤6:将步骤5计算得出的θoff和θfw作为初始值,利用简化粒子群算法在线继续寻找θoff和θfw的最优值后对步骤5的结果作进一步的优化,得到最优控制角度。
有益效果
本发明提出的一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,首先以固定角度为间隔分别调整关断角和零电压控制角,基于梯度下降法寻找开通角进行功率调节,调节到给定功率后计算发电效率。然后将效率与控制角度的关系利用matlab二元二阶非线性拟合成函数,再通过梯度下降法进行多元函数求极值完成离线最优效率的计算。最后将离线数据作为初始值进行在线的进一步优化。仿真验证了所述方法的有效性,所述方法控制逻辑简单、优化速度较快并且可以保证实时精度的最大效率跟踪。
本发明提出的一种离线在线相结合的开关磁阻电机功率调节与效率优化的方法,
本发明的有益效果:①离线计算结果只作为在线优化的初始值,对精度要求较低,无需大量数据占用内存;②在线优化有离线计算结果作为初始值,寻优范围小,无需大量多次迭代,可明显增大优化速率。
附图说明
图1为效率跟随关断角θoff、零电压控制角θfw变化趋势图。
图2为效率与控制角度函数关系的二元二阶非线性拟合效果图。
图3为梯度下降法求多元函数极值流程图。
图4为简化粒子群算法流程图。
图5为简化粒子群算法优化效果图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
现结合实施例、附图对本发明作进一步描述。实例所用电机为一个10kW三相6/4极开关磁阻电机,电机转速为25000rpm。
步骤一:计算应达到的转矩值
Figure BDA0003643943260000041
步骤二:设定电机关断角θoff在220°到330°内、零电压控制角θfw在0°到80°内进行调整,调整步长为10°。每组角度确定后先启动功率调节模块调整开通角,由式(1)计算开通角初始值;
θon=θoff-40° (1)
步骤三:将控制角度带入开关磁阻发电系统计算平均转矩,将测量平均转矩与给定转矩值作差,通过梯度下降法在线调整开通角θon直至测量转矩与给定转矩误差小于0.01,即可完成功率调节。计算平均转矩公式为(2);
Figure BDA0003643943260000042
步骤四:确定开通角后利用式(3)计算电机发电效率:
Pin=Tavg×w
Pout=Pin-Pcapacitor-Pbattery-Pcopper-Peddycurrent-Pinverter-Piron
Figure BDA0003643943260000052
步骤五:以10°为步长,分别调整θoff和θfw,得到不同控制角度组合下的电机效率,效率变化趋势图如图1所示。将效率与θoff、θfw利用matlab非线性拟合生成二元二阶函数关系式,函数如式(4),拟合效果如图2所示。利用梯度下降法,分别以θoff、θfw的偏导数为基础,进行多元函数求极值,记录效率达到极值时的θoff与θfw
计算流程如图3所示;
η=-0.94+0.013θoff-0.0045θfw-0.000024θoff 2+0.000019θoffθfw-0.0000098θfw 2 (4)
得到的最大效率为87.47%,此时的关断角为288.1144°、零电压角为50.0725°;
步骤六:将步骤5得到的θoff与θfw作为初始值,利用简化粒子群算法在输入功率一定的情况下,以损耗最小的原则在线继续寻找θoff、θfw的最优值,对步骤5的结果作进一步的优化。简化粒子群算法的第一组数据只有一维,不再使用多维数据,这样可以加快优化速度。简化粒子群算法20次迭代后的最优θoff、θfw作为最优控制角度,此时达到的效率为本发明可找到的最大效率。得到的最优关断角为288.6399°、零电压角36.9818°,最大效率为87.38%。优化流程如图4所示。由图5可看出,离线计算的结果放在实时系统中并没有达到效率的最高点,在线优化可对离线计算进行进一步的调整。

Claims (1)

1.一种离线在线相结合的开关磁阻电机功率调节与效率优化方法,其特征在于步骤如下:
步骤1:确定功率、转速后计算应达到的转矩值:
Figure FDA0003643943250000011
式中Tem、P、n分别表示给定转矩、给定功率和转速;
步骤2:将电机关断角θoff和零电压控制角θfw固定,开通角θon初始值设为:
θon=θoffset
其中θset为初始导通角;
步骤3:将控制角度带入开关磁阻发电系统计算平均转矩:
Figure FDA0003643943250000012
式中Tavg、T、Tmeasure分别表示测量平均转矩、电机运行周期时间以及瞬时测量转矩,将测量平均转矩与给定转矩值作差,通过梯度下降法在线调整开通角θon直至测量转矩与给定转矩误差小于0.01,即可完成功率调节;
步骤4:确定开通角后利用以下公式计算电机发电效率:
Pin=Tavg×w
Pout=Pin-Pcapacitor-Pbattery-Pcopper-Peddycurrent-Pinverter-Piron
Figure FDA0003643943250000013
式中Pin、Pout、η、w分别表示输入功率、输出功率、发电效率和电机角速度,Pcapacitor、Pbattery、Pcopper、Peddycurrent、Pinverter、Piron分别表示电容器损耗、电源损耗、铜损耗、涡流损耗、功率变换器损耗和铁损耗;
步骤5:以固定的角度为步长,分别调整θoff和θfw,重复步骤2至步骤4,得到不同控制角度组合下的电机效率;将效率与θoff、θfw利用matlab非线性拟合生成二元二阶函数关系式,利用梯度下降法,分别以θoff、θfw的偏导数为基础寻找函数极值,并计算出效率达到极值时的θoff和θfw
步骤6:将步骤5计算得出的θoff和θfw作为初始值,利用简化粒子群算法在线继续寻找θoff和θfw的最优值后对步骤5的结果作进一步的优化,得到最优控制角度。
CN202210525033.2A 2022-05-14 2022-05-14 离线在线相结合的开关磁阻电机功率调节与效率优化方法 Active CN114938167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210525033.2A CN114938167B (zh) 2022-05-14 2022-05-14 离线在线相结合的开关磁阻电机功率调节与效率优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210525033.2A CN114938167B (zh) 2022-05-14 2022-05-14 离线在线相结合的开关磁阻电机功率调节与效率优化方法

Publications (2)

Publication Number Publication Date
CN114938167A true CN114938167A (zh) 2022-08-23
CN114938167B CN114938167B (zh) 2023-07-07

Family

ID=82863836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210525033.2A Active CN114938167B (zh) 2022-05-14 2022-05-14 离线在线相结合的开关磁阻电机功率调节与效率优化方法

Country Status (1)

Country Link
CN (1) CN114938167B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250635A1 (en) * 2014-12-15 2017-08-31 China University Of Mining And Technology Braking torque closed-loop control system and method for switch reluctance motor
CN107947674A (zh) * 2017-11-30 2018-04-20 安徽中科海奥电气股份有限公司 一种开关磁阻电机多目标优化控制方法
CN108322116A (zh) * 2018-02-01 2018-07-24 苏州仙崴机电有限公司 一种开关磁阻电机系统效率优化控制方法
CN108768241A (zh) * 2018-06-22 2018-11-06 淮北思尔德电机有限责任公司 一种开关磁阻电机系统效率优化控制方法
CN112886893A (zh) * 2021-01-11 2021-06-01 山东省科学院自动化研究所 基于关断角优化的开关磁阻电机转矩控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250635A1 (en) * 2014-12-15 2017-08-31 China University Of Mining And Technology Braking torque closed-loop control system and method for switch reluctance motor
CN107947674A (zh) * 2017-11-30 2018-04-20 安徽中科海奥电气股份有限公司 一种开关磁阻电机多目标优化控制方法
CN108322116A (zh) * 2018-02-01 2018-07-24 苏州仙崴机电有限公司 一种开关磁阻电机系统效率优化控制方法
CN108768241A (zh) * 2018-06-22 2018-11-06 淮北思尔德电机有限责任公司 一种开关磁阻电机系统效率优化控制方法
CN112886893A (zh) * 2021-01-11 2021-06-01 山东省科学院自动化研究所 基于关断角优化的开关磁阻电机转矩控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. MADEMLIS ET AL.: "Optimizing performance in current-controlled switched reluctance generators", vol. 20, no. 3, pages 556 - 565, XP011137576, DOI: 10.1109/TEC.2005.853738 *
颜爽 等: "开关磁阻发电机控制参数多目标优化研究", vol. 32, no. 15, pages 66 - 75 *

Also Published As

Publication number Publication date
CN114938167B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN103746624B (zh) 基于模型预测的双凸极永磁同步电机的电流控制方法
CN107302330B (zh) 一种表贴式永磁同步电机最小损耗控制方法
CN111193450A (zh) 一种永磁同步电机复矢量电流调节器的pi参数设计方法
Xin-fang et al. Predictive functional control of a doubly fed induction generator for variable speed wind turbines
Liu et al. A PI-type sliding mode controller design for PMSG-based wind turbine
CN116738636A (zh) 考虑阻抗特性及同步机制的双馈风电场站的多机等值方法
Chakib et al. Comparative study of active disturbance rejection control with RST control for variable wind speed turbine based on doubly fed induction generator connected to the grid
Beniss et al. Improvement of Power Quality Injected into the Grid by Using a FOSMC-DPC for Doubly Fed Induction Generator.
Karami et al. High-order sliding mode control of rotor-side converter in doubly-fed wind power generation system
CN114938167A (zh) 离线在线相结合的开关磁阻电机功率调节与效率优化方法
He et al. Grey prediction pi control of direct drive permanent magnet synchronous wind turbine
CN113659905B (zh) 基于时变扰动补偿的三电平发电系统模型预测控制方法
Wang et al. Model predictive direct current control of DFIG at low switching frequency
CN111371366B (zh) 一种变频水力发电系统模型预测电流控制方法、系统及介质
Golshani et al. Design of optimized sliding mode control to improve the dynamic behavior of PMSG wind turbine with NPC back-to-back converter
Wu et al. Modeling and control of variable speed DFIG pumped storage turbine based on RTDS
Li et al. The application of improved hill-climb search algorithm in wind power generation
Qi et al. Study of brushless doubly-fed control for VSCF wind power generation system connected to grid
Sun et al. Adaptive Global Fast Terminal Sliding Mode Control for MPPT of Direct-driven PMSG
Yue et al. A noval speed control strategy based on multi model framework for continuous wave mud pulser
Ran et al. Robust Adaptive MPPT Control of Wind Turbine Based on Prescribed Performance
Li et al. Vector control strategy of permanent magnet synchronous linear motor based on sliding mode speed controller and model reference adaptive
CN113972676B (zh) 一种改善电力系统暂态稳定性的分布式bess协调控制方法
Huang et al. Research on SRG wind power system based on MPPT control scheme
Nasim et al. Field Control Grid Connected DFIG Turbine System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant