CN114935594B - 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 - Google Patents
一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 Download PDFInfo
- Publication number
- CN114935594B CN114935594B CN202210541229.0A CN202210541229A CN114935594B CN 114935594 B CN114935594 B CN 114935594B CN 202210541229 A CN202210541229 A CN 202210541229A CN 114935594 B CN114935594 B CN 114935594B
- Authority
- CN
- China
- Prior art keywords
- core
- gas sensor
- catalytic material
- sensitive film
- shell nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011258 core-shell material Substances 0.000 title claims abstract description 43
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 title claims abstract description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000002105 nanoparticle Substances 0.000 claims abstract description 30
- 239000000725 suspension Substances 0.000 claims abstract description 25
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 14
- 239000011591 potassium Substances 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 14
- 239000012279 sodium borohydride Substances 0.000 claims description 14
- 239000002270 dispersing agent Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 claims description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011267 electrode slurry Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical group S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 239000008151 electrolyte solution Substances 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 4
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 4
- 238000007650 screen-printing Methods 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 238000007639 printing Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 239000007767 bonding agent Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 238000000835 electrochemical detection Methods 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 15
- 230000004044 response Effects 0.000 description 10
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000011943 nanocatalyst Substances 0.000 description 4
- DSVGQVZAZSZEEX-UHFFFAOYSA-N [C].[Pt] Chemical compound [C].[Pt] DSVGQVZAZSZEEX-UHFFFAOYSA-N 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/56—Treatment of carbon black ; Purification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/301—Reference electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明涉及传感器技术领域,公开了一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器,所述敏感膜的制备方法为:首先制备铁纳米粒子悬浮液,然后加入导电炭黑制备Fe/C悬浮液,向Fe/C悬浮液中加入氯亚铂酸钾溶液,制备Fe@Pt/C核壳纳米粒子悬浊液;离心洗涤后干燥、研磨,得到Fe@Pt/C核壳纳米催化材料,最后制备成敏感膜。本发明制备的Fe@Pt/C核壳纳米催化材料具有良好的催化性能,以其制备的电极膜(20wt.%Fe@Pt)组装的H2S传感器对H2S进行电化学检测,检测灵敏度高,灵敏度可达3.49μA/ppm,同时检测范围大,重复性好,H2S浓度范围在5‑50ppm内有良好的线性关系,重复检测效果稳定。
Description
技术领域
本发明涉及传感器技术领域,具体涉及一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器。
背景技术
H2S是一种无色、易燃、有臭鸡蛋味的气体,作为一种剧毒性物质,对人体具有很大的危害性,因此监测H2S的浓度对人体健康有着重要意义。目前使用较为广泛的电化学气体敏感元件主要依赖进口,价格昂贵。
颗粒均匀的纳米级贵金属催化剂,是保证电化学气体敏感元件催化电极活性的核心物质。铂黑纳米催化剂由于其优异的催化活性和稳定性,被广泛应用于H2S、CO等气体传感器。由于铂黑属于贵金属催化剂,价格昂贵,生产成本高,故大多将其负载于炭黑上,制成铂碳催化剂。铂含量低的铂碳催化剂与纯铂黑相比,相同质量下催化活性大大降低,达不到检测标准,为达到检测标准,须提高铂碳催化剂中铂的含量,增加成本。
Pt@M(M为Fe,Co,Ni等)核壳结构纳米复合材料在燃料电池、生物传感器等领域有所应用,但在气体传感器特别是硫化氢气体传感器领域未见报道。本发明制备的基于Fe@Pt/C核壳纳米催化材料的气体传感器可用于检测硫化氢气体,且传感器性能优异,具有极高的应用价值。
发明内容
本发明的目的在于克服现有技术存在的缺点,提供一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器。
为了实现上述目的,本发明的技术方案之一是:一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:所述敏感膜的制备方法为:
1)取七水合硫酸亚铁和分散剂,溶于去离子水中,并在N2环境下机械搅拌30min,充分溶解成6mg/mL的前驱体溶液,所述七水合硫酸亚铁与分散剂的质量比为19:5;
2)取硼氢化钠溶于去离子水中制备成2.8mg/mL的硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,所述硼氢化钠与七水合硫酸亚铁的质量比为1:5,滴加结束后500r/min持续搅拌1h,反应完全后,在700r/min下加入去离子水,持续搅拌1h,除去残余的硼氢化钠,得到含有铁纳米粒子的黑色悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20min,超声分散后在N2环境下加入导电炭黑,持续搅拌1h得黑色悬浮液,所述导电炭黑与七水合硫酸亚铁的质量比为23:2;
4)称取氯亚铂酸钾并溶于去离子水中制备成6.2mg/mL的氯亚铂酸钾溶液,所述七水合硫酸亚铁中的Fe与氯亚铂酸钾中的Pt的摩尔比为33:10,将氯亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到粒度均匀的Fe@Pt/C核壳纳米催化材料;
6)将步骤5)制得的Fe@Pt/C核壳纳米催化材料与连结剂、分散剂、流平剂、消泡剂和PTFE乳液混合制得电极浆料,所述Fe@Pt/C核壳纳米催化材料、连结剂、分散剂、流平剂、消泡剂与PTFE的质量比为65:8:12:5:5:5,将电极浆料通过丝网印刷技术印刷在PTFE膜上,经干燥、洗涤、200℃的条件下烧结制成敏感膜。
进一步地;步骤1)中所述分散剂为PVP。
进一步地;步骤5)中所述Fe@Pt/C核壳纳米催化材料的粒径约为50nm。
进一步地;步骤6)所述连结剂为羟乙基纤维素,分散剂为聚乙二醇辛基苯基醚,流平剂为BYK-333,消泡剂为BYK-094。
本发明另一技术方案是:一种气体传感器,其特征在于:所述气体传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由权利要求1制备的敏感膜构成的电极。
进一步地;所述气体传感器为硫化氢传感器。
本发明的有益效果:本发明制备的Fe@Pt/C核壳纳米催化材料具有良好的催化性能,以其制备的电极膜组装的H2S传感器对H2S进行电化学检测,检测灵敏度高,灵敏度可达3.49μA/ppm,同时检测范围大,重复性好,H2S浓度范围在5-50ppm内有良好的线性关系,重复检测效果稳定,检测水平高于同用量铂的采用市场购买的Pt/C纳米催化剂制备的电极膜组装的H2S传感器。
本发明基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜制备过程简便、易操作、成本较低。
附图说明
图1为实施例1制备的Fe@Pt/C核壳纳米粒子的SEM图像;
图2为实施例1制备的Fe@Pt/C核壳纳米粒子的TEM图像;
图3为实施例1制备的Fe@Pt/C核壳纳米粒子的Mapping图像;
图4为实施例2组装的H2S传感器进行的时间-电流测试图像;
图5为实施例2组装的H2S传感器进行的H2S浓度-响应电流值测试柱状图;
图6为图5的拟合直线图;
图7为对比例1组装的H2S传感器进行的时间-电流测试图像;
图8为实施例2组装的H2S传感器进行的稳定性测试的响应电流变化柱状图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1:
一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,所述敏感膜的制备方法为:
1)称取0.139g七水合硫酸亚铁和0.0367gPVP(聚乙烯吡咯烷酮),将两者溶于30mL去离子水中,并在N2环境下500r/min机械搅拌30min,充分溶解制成前驱体溶液;
2)称取0.0284g硼氢化钠,溶于10mL去离子水中制成硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,溶液由无色变为黑色,滴加结束后500r/min持续搅拌1h,反应完全后,在500r/min下加入10mL去离子水,持续搅拌1h,除去残余的硼氢化钠,得到铁纳米粒子悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20min,超声分散后在N2环境下加入0.16g导电炭黑,500r/min下持续搅拌1h得黑色悬浮液;
4)称取0.062g氯化亚铂酸钾,溶于10mL去离子水中制成氯化亚铂酸钾溶液,将氯化亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到均匀的粒径约为50nm的Fe@Pt/C核壳纳米催化材料;Fe@Pt/C核壳纳米粒子的SEM图像如图1所示,Fe@Pt/C核壳纳米粒子的TEM图像如图2所示,Fe@Pt/C核壳纳米粒子的Mapping图像如图3所示;由图1和图2所示,制备的Fe@Pt/C核壳纳米粒子呈纳米球的形状,平均粒径50nm左右,分散均匀;由图3Mapping分析图可以看出,Fe@Pt核壳纳米粒子被成功合成;
6)称取0.1g步骤5)制备的Fe@Pt/C核壳纳米催化材料,与0.6mL羟乙基纤维素溶液(2wt.%)、0.2mL聚乙二醇辛基苯基醚溶液(10wt.%)、0.1mLPTFE乳液(10wt.%)、0.1mLBYK-333(10wt.%)、0.1mLBYK-094(10wt.%)混合制成电极浆料,将电极浆料通过丝网印刷技术印刷在PTFE膜上,60℃干燥过夜,用去离子水洗涤后,在真空干燥箱中200℃烧结制成敏感膜。
实施例2:
一种H2S传感器,所述H2S传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由实施例1制备的敏感膜构成的电极,采用现有公知方法组装H2S传感器。
对比例1:
本对比例中所用Pt/C纳米催化剂为市场购买。
一种敏感膜,制备方法为:称取0.1g Pt/C纳米催化剂(10wt.%Pt),与0.6mL羟乙基纤维素溶液(2wt.%)、0.2mL聚乙二醇辛基苯基醚溶液(10wt.%)、0.1mL PTFE乳液(10wt.%)、0.1mLBYK-333流平剂(10wt.%)、0.1mL BYK-094消泡剂(10wt.%)混合制成电极浆料,将电极浆料通过丝网印刷技术印刷在PTFE膜上,60℃干燥过夜,用去离子水洗涤后,在真空干燥箱中200℃烧结制成敏感膜。
一种H2S传感器,所述H2S传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由本对比例1制备的敏感膜构成的电极,采用现有公知方法组装H2S传感器。
测试实验:
采用实施例2组装的H2S传感器进行时间-电流测试试验,使用电化学工作站(CHI660E)控制电压恒定为0.3V,测试结果如图4所示。
采用实施例2组装的H2S传感器进行H2S浓度-响应电流值测试试验,使用电化学工作站(CHI660E)控制电压恒定为0.3V,测试结果如图5、6所示。
采用实施例2组装的H2S传感器进行稳定性测试,测试时间为期一周,用于测试的H2S气体浓度为20ppm,定义第一日测得的响应电流值为100%,其后每日响应电流值相较于第一日响应电流值折算为对应的百分比,测试结果如图8所示。
采用对比例1组装的H2S传感器进行时间-电流测试试验,测试结果如图7所示。
如图4所示,实施例2组装的H2S传感器对H2S具有很好的电流信号响应,响应时间(T90%)在15s左右,恢复时间(T90%)略长,在40s左右。如图5、6所示,在测试范围内(5-50ppm)响应电流值与H2S的浓度具有良好的线性关系,线性相关系数(r)为0.99941,灵敏度达到了3.49μA/ppm。
如图7所示,对比例1组装的H2S传感器相比实施例2组装的H2S传感器的灵敏度低得多,经过计算仅为1.68μA/ppm。这是因为相同的铂用量下,Fe@Pt纳米粒子的数量要比单纯的Pt纳米粒子多得多,催化能力得到增强。而且在催化过程中,只有粒子表面薄薄的一层铂原子参与反应,内层的铂原子不参与反应。本发明通过在铁纳米粒子表面刻蚀铂原子层,在大大降低成本的同时,灵敏度也大大提高。
如图8所示,通过为期一周的重复性测试,相对于第一天,响应电流值相应变化在-2.1%~2.3%的范围内,这表明本发明实施例2组装的H2S气体传感器具有良好的稳定性。
Claims (6)
1.一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:所述敏感膜的制备方法为:
1)取七水合硫酸亚铁和分散剂,溶于去离子水中,并在N2环境下机械搅拌30 min,充分溶解成6 mg/mL的前驱体溶液,所述七水合硫酸亚铁与分散剂的质量比为19:5;
2)取硼氢化钠溶于去离子水中制备成2.8 mg/mL的硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,所述硼氢化钠与七水合硫酸亚铁的质量比为1:5,滴加结束后500 r/min持续搅拌1 h,反应完全后,在700 r/min下加入去离子水,持续搅拌1 h,除去残余的硼氢化钠,得到含有铁纳米粒子的黑色悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20 min,超声分散后在N2环境下加入导电炭黑,持续搅拌1 h得黑色悬浮液,所述导电炭黑与七水合硫酸亚铁的质量比为23:2;
4)称取氯亚铂酸钾并溶于去离子水中制备成6.2 mg/mL的氯亚铂酸钾溶液,所述七水合硫酸亚铁中的Fe与氯亚铂酸钾中的Pt的摩尔比为33:10,将氯亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3 h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到粒度均匀的Fe@Pt/C核壳纳米催化材料;
6)将步骤5)制得的Fe@Pt/C核壳纳米催化材料与连结剂、分散剂、流平剂、消泡剂和PTFE乳液混合制得电极浆料,所述Fe@Pt/C核壳纳米催化材料、连结剂、分散剂、流平剂、消泡剂与PTFE的质量比为65:8:12:5:5:5,将电极浆料通过丝网印刷技术印刷在PTFE膜上,经干燥、洗涤、200℃的条件下烧结制成敏感膜。
2.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤1)中所述分散剂为PVP。
3.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤5)中所述Fe@Pt/C核壳纳米催化材料的粒径约为50 nm。
4.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤6)中所述连结剂为羟乙基纤维素,分散剂为聚乙二醇辛基苯基醚,流平剂为BYK-333,消泡剂为BYK-094。
5.一种气体传感器,其特征在于:所述气体传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5 mol/L 硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由权利要求1所述的敏感膜构成的电极。
6.根据权利要求5所述的气体传感器,其特征在于:所述气体传感器为硫化氢传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210541229.0A CN114935594B (zh) | 2022-05-17 | 2022-05-17 | 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210541229.0A CN114935594B (zh) | 2022-05-17 | 2022-05-17 | 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114935594A CN114935594A (zh) | 2022-08-23 |
CN114935594B true CN114935594B (zh) | 2023-11-24 |
Family
ID=82865080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210541229.0A Active CN114935594B (zh) | 2022-05-17 | 2022-05-17 | 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114935594B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4001757A (en) * | 1973-08-14 | 1977-01-04 | Matsushita Electric Industrial Co., Ltd. | Method for detecting a reducing material in a gas phase |
JP2018004652A (ja) * | 2017-07-28 | 2018-01-11 | 日本碍子株式会社 | ガスセンサ |
CN110833835A (zh) * | 2019-11-19 | 2020-02-25 | 广西大学 | 一种碳包覆金属颗粒锚定纳米催化材料的制备方法 |
CN112011065A (zh) * | 2020-08-26 | 2020-12-01 | 合肥工业大学 | 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用 |
CN113603149A (zh) * | 2021-05-12 | 2021-11-05 | 南昌航空大学 | 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10591454B2 (en) * | 2016-06-03 | 2020-03-17 | Korea University Research And Business Foundation | Highly sensitive and selective gas sensing material to methylbenzene, methods for preparing the gas sensing material and gas sensor including the gas sensing material |
-
2022
- 2022-05-17 CN CN202210541229.0A patent/CN114935594B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4001757A (en) * | 1973-08-14 | 1977-01-04 | Matsushita Electric Industrial Co., Ltd. | Method for detecting a reducing material in a gas phase |
JP2018004652A (ja) * | 2017-07-28 | 2018-01-11 | 日本碍子株式会社 | ガスセンサ |
CN110833835A (zh) * | 2019-11-19 | 2020-02-25 | 广西大学 | 一种碳包覆金属颗粒锚定纳米催化材料的制备方法 |
CN112011065A (zh) * | 2020-08-26 | 2020-12-01 | 合肥工业大学 | 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用 |
CN113603149A (zh) * | 2021-05-12 | 2021-11-05 | 南昌航空大学 | 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114935594A (zh) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lei et al. | Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite | |
Chang et al. | Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing | |
Bo et al. | The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose | |
Han et al. | Balancing the galvanic replacement and reduction kinetics for the general formation of bimetallic CuM (M= Ru, Rh, Pd, Os, Ir, and Pt) hollow nanostructures | |
Lin et al. | Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential | |
Farsadrooh et al. | Sonochemical synthesis of high-performance Pd@ CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media | |
Zhou et al. | One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor | |
Shen et al. | NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam as a highly sensitive electrochemical non-enzymatic glucose sensor | |
Daemi et al. | An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells | |
Song et al. | Preparation of porous hollow CoOx nanocubes via chemical etching prussian blue analogue for glucose sensing | |
Chai et al. | In-situ synthesis of ultrasmall Au nanoparticles on bimetallic metal-organic framework with enhanced electrochemical activity for estrone sensing | |
US11733199B2 (en) | Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same | |
Weng et al. | A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode | |
Zhang et al. | In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric non-enzymatic sensing of glucose | |
Hameed et al. | Evaluation of core-shell structured cobalt@ platinum nanoparticles-decorated graphene for nitrite sensing | |
CN107413367B (zh) | 一种高分散的铁酸钴纳米粒子负载氧杂氮化碳及制备方法 | |
Chang et al. | Development of a novel sensor based on Bi2O3 and carbonized UIO-66-NH2 nanocomposite for efficient detection of Pb (Ⅱ) ion in water environment | |
Wang et al. | Nonenzymatic electrochemical sensor for glucose based on nanoporous platinum-gold alloy | |
Ouyang et al. | ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor | |
Salman et al. | Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages | |
CN114935594B (zh) | 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 | |
Xiong et al. | The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode | |
CN114634175B (zh) | 还原氧化石墨烯纸负载六角星形Cu2O-CuO纳米晶体杂化纸电极的制备方法及其应用 | |
Wang et al. | Engineering of a self-supported carbon electrode with 2D ultrathin heterostructures of NiCo LDH/NiCoS via a MOF-template for sensitive detection of glucose and H 2 O 2 | |
Li et al. | Gold nanoparticles/carbon nanotubes composite film modified glassy carbon electrode determination of meclofenoxate hydrochloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |