CN114935594B - 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 - Google Patents

一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 Download PDF

Info

Publication number
CN114935594B
CN114935594B CN202210541229.0A CN202210541229A CN114935594B CN 114935594 B CN114935594 B CN 114935594B CN 202210541229 A CN202210541229 A CN 202210541229A CN 114935594 B CN114935594 B CN 114935594B
Authority
CN
China
Prior art keywords
core
gas sensor
catalytic material
sensitive film
shell nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210541229.0A
Other languages
English (en)
Other versions
CN114935594A (zh
Inventor
聂广明
李庆
郭庆福
郑陆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202210541229.0A priority Critical patent/CN114935594B/zh
Publication of CN114935594A publication Critical patent/CN114935594A/zh
Application granted granted Critical
Publication of CN114935594B publication Critical patent/CN114935594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及传感器技术领域,公开了一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器,所述敏感膜的制备方法为:首先制备铁纳米粒子悬浮液,然后加入导电炭黑制备Fe/C悬浮液,向Fe/C悬浮液中加入氯亚铂酸钾溶液,制备Fe@Pt/C核壳纳米粒子悬浊液;离心洗涤后干燥、研磨,得到Fe@Pt/C核壳纳米催化材料,最后制备成敏感膜。本发明制备的Fe@Pt/C核壳纳米催化材料具有良好的催化性能,以其制备的电极膜(20wt.%Fe@Pt)组装的H2S传感器对H2S进行电化学检测,检测灵敏度高,灵敏度可达3.49μA/ppm,同时检测范围大,重复性好,H2S浓度范围在5‑50ppm内有良好的线性关系,重复检测效果稳定。

Description

一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及 气体传感器
技术领域
本发明涉及传感器技术领域,具体涉及一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器。
背景技术
H2S是一种无色、易燃、有臭鸡蛋味的气体,作为一种剧毒性物质,对人体具有很大的危害性,因此监测H2S的浓度对人体健康有着重要意义。目前使用较为广泛的电化学气体敏感元件主要依赖进口,价格昂贵。
颗粒均匀的纳米级贵金属催化剂,是保证电化学气体敏感元件催化电极活性的核心物质。铂黑纳米催化剂由于其优异的催化活性和稳定性,被广泛应用于H2S、CO等气体传感器。由于铂黑属于贵金属催化剂,价格昂贵,生产成本高,故大多将其负载于炭黑上,制成铂碳催化剂。铂含量低的铂碳催化剂与纯铂黑相比,相同质量下催化活性大大降低,达不到检测标准,为达到检测标准,须提高铂碳催化剂中铂的含量,增加成本。
Pt@M(M为Fe,Co,Ni等)核壳结构纳米复合材料在燃料电池、生物传感器等领域有所应用,但在气体传感器特别是硫化氢气体传感器领域未见报道。本发明制备的基于Fe@Pt/C核壳纳米催化材料的气体传感器可用于检测硫化氢气体,且传感器性能优异,具有极高的应用价值。
发明内容
本发明的目的在于克服现有技术存在的缺点,提供一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器。
为了实现上述目的,本发明的技术方案之一是:一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:所述敏感膜的制备方法为:
1)取七水合硫酸亚铁和分散剂,溶于去离子水中,并在N2环境下机械搅拌30min,充分溶解成6mg/mL的前驱体溶液,所述七水合硫酸亚铁与分散剂的质量比为19:5;
2)取硼氢化钠溶于去离子水中制备成2.8mg/mL的硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,所述硼氢化钠与七水合硫酸亚铁的质量比为1:5,滴加结束后500r/min持续搅拌1h,反应完全后,在700r/min下加入去离子水,持续搅拌1h,除去残余的硼氢化钠,得到含有铁纳米粒子的黑色悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20min,超声分散后在N2环境下加入导电炭黑,持续搅拌1h得黑色悬浮液,所述导电炭黑与七水合硫酸亚铁的质量比为23:2;
4)称取氯亚铂酸钾并溶于去离子水中制备成6.2mg/mL的氯亚铂酸钾溶液,所述七水合硫酸亚铁中的Fe与氯亚铂酸钾中的Pt的摩尔比为33:10,将氯亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到粒度均匀的Fe@Pt/C核壳纳米催化材料;
6)将步骤5)制得的Fe@Pt/C核壳纳米催化材料与连结剂、分散剂、流平剂、消泡剂和PTFE乳液混合制得电极浆料,所述Fe@Pt/C核壳纳米催化材料、连结剂、分散剂、流平剂、消泡剂与PTFE的质量比为65:8:12:5:5:5,将电极浆料通过丝网印刷技术印刷在PTFE膜上,经干燥、洗涤、200℃的条件下烧结制成敏感膜。
进一步地;步骤1)中所述分散剂为PVP。
进一步地;步骤5)中所述Fe@Pt/C核壳纳米催化材料的粒径约为50nm。
进一步地;步骤6)所述连结剂为羟乙基纤维素,分散剂为聚乙二醇辛基苯基醚,流平剂为BYK-333,消泡剂为BYK-094。
本发明另一技术方案是:一种气体传感器,其特征在于:所述气体传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由权利要求1制备的敏感膜构成的电极。
进一步地;所述气体传感器为硫化氢传感器。
本发明的有益效果:本发明制备的Fe@Pt/C核壳纳米催化材料具有良好的催化性能,以其制备的电极膜组装的H2S传感器对H2S进行电化学检测,检测灵敏度高,灵敏度可达3.49μA/ppm,同时检测范围大,重复性好,H2S浓度范围在5-50ppm内有良好的线性关系,重复检测效果稳定,检测水平高于同用量铂的采用市场购买的Pt/C纳米催化剂制备的电极膜组装的H2S传感器。
本发明基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜制备过程简便、易操作、成本较低。
附图说明
图1为实施例1制备的Fe@Pt/C核壳纳米粒子的SEM图像;
图2为实施例1制备的Fe@Pt/C核壳纳米粒子的TEM图像;
图3为实施例1制备的Fe@Pt/C核壳纳米粒子的Mapping图像;
图4为实施例2组装的H2S传感器进行的时间-电流测试图像;
图5为实施例2组装的H2S传感器进行的H2S浓度-响应电流值测试柱状图;
图6为图5的拟合直线图;
图7为对比例1组装的H2S传感器进行的时间-电流测试图像;
图8为实施例2组装的H2S传感器进行的稳定性测试的响应电流变化柱状图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1:
一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,所述敏感膜的制备方法为:
1)称取0.139g七水合硫酸亚铁和0.0367gPVP(聚乙烯吡咯烷酮),将两者溶于30mL去离子水中,并在N2环境下500r/min机械搅拌30min,充分溶解制成前驱体溶液;
2)称取0.0284g硼氢化钠,溶于10mL去离子水中制成硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,溶液由无色变为黑色,滴加结束后500r/min持续搅拌1h,反应完全后,在500r/min下加入10mL去离子水,持续搅拌1h,除去残余的硼氢化钠,得到铁纳米粒子悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20min,超声分散后在N2环境下加入0.16g导电炭黑,500r/min下持续搅拌1h得黑色悬浮液;
4)称取0.062g氯化亚铂酸钾,溶于10mL去离子水中制成氯化亚铂酸钾溶液,将氯化亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到均匀的粒径约为50nm的Fe@Pt/C核壳纳米催化材料;Fe@Pt/C核壳纳米粒子的SEM图像如图1所示,Fe@Pt/C核壳纳米粒子的TEM图像如图2所示,Fe@Pt/C核壳纳米粒子的Mapping图像如图3所示;由图1和图2所示,制备的Fe@Pt/C核壳纳米粒子呈纳米球的形状,平均粒径50nm左右,分散均匀;由图3Mapping分析图可以看出,Fe@Pt核壳纳米粒子被成功合成;
6)称取0.1g步骤5)制备的Fe@Pt/C核壳纳米催化材料,与0.6mL羟乙基纤维素溶液(2wt.%)、0.2mL聚乙二醇辛基苯基醚溶液(10wt.%)、0.1mLPTFE乳液(10wt.%)、0.1mLBYK-333(10wt.%)、0.1mLBYK-094(10wt.%)混合制成电极浆料,将电极浆料通过丝网印刷技术印刷在PTFE膜上,60℃干燥过夜,用去离子水洗涤后,在真空干燥箱中200℃烧结制成敏感膜。
实施例2:
一种H2S传感器,所述H2S传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由实施例1制备的敏感膜构成的电极,采用现有公知方法组装H2S传感器。
对比例1:
本对比例中所用Pt/C纳米催化剂为市场购买。
一种敏感膜,制备方法为:称取0.1g Pt/C纳米催化剂(10wt.%Pt),与0.6mL羟乙基纤维素溶液(2wt.%)、0.2mL聚乙二醇辛基苯基醚溶液(10wt.%)、0.1mL PTFE乳液(10wt.%)、0.1mLBYK-333流平剂(10wt.%)、0.1mL BYK-094消泡剂(10wt.%)混合制成电极浆料,将电极浆料通过丝网印刷技术印刷在PTFE膜上,60℃干燥过夜,用去离子水洗涤后,在真空干燥箱中200℃烧结制成敏感膜。
一种H2S传感器,所述H2S传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5mol/L硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由本对比例1制备的敏感膜构成的电极,采用现有公知方法组装H2S传感器。
测试实验:
采用实施例2组装的H2S传感器进行时间-电流测试试验,使用电化学工作站(CHI660E)控制电压恒定为0.3V,测试结果如图4所示。
采用实施例2组装的H2S传感器进行H2S浓度-响应电流值测试试验,使用电化学工作站(CHI660E)控制电压恒定为0.3V,测试结果如图5、6所示。
采用实施例2组装的H2S传感器进行稳定性测试,测试时间为期一周,用于测试的H2S气体浓度为20ppm,定义第一日测得的响应电流值为100%,其后每日响应电流值相较于第一日响应电流值折算为对应的百分比,测试结果如图8所示。
采用对比例1组装的H2S传感器进行时间-电流测试试验,测试结果如图7所示。
如图4所示,实施例2组装的H2S传感器对H2S具有很好的电流信号响应,响应时间(T90%)在15s左右,恢复时间(T90%)略长,在40s左右。如图5、6所示,在测试范围内(5-50ppm)响应电流值与H2S的浓度具有良好的线性关系,线性相关系数(r)为0.99941,灵敏度达到了3.49μA/ppm。
如图7所示,对比例1组装的H2S传感器相比实施例2组装的H2S传感器的灵敏度低得多,经过计算仅为1.68μA/ppm。这是因为相同的铂用量下,Fe@Pt纳米粒子的数量要比单纯的Pt纳米粒子多得多,催化能力得到增强。而且在催化过程中,只有粒子表面薄薄的一层铂原子参与反应,内层的铂原子不参与反应。本发明通过在铁纳米粒子表面刻蚀铂原子层,在大大降低成本的同时,灵敏度也大大提高。
如图8所示,通过为期一周的重复性测试,相对于第一天,响应电流值相应变化在-2.1%~2.3%的范围内,这表明本发明实施例2组装的H2S气体传感器具有良好的稳定性。

Claims (6)

1.一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:所述敏感膜的制备方法为:
1)取七水合硫酸亚铁和分散剂,溶于去离子水中,并在N2环境下机械搅拌30 min,充分溶解成6 mg/mL的前驱体溶液,所述七水合硫酸亚铁与分散剂的质量比为19:5;
2)取硼氢化钠溶于去离子水中制备成2.8 mg/mL的硼氢化钠溶液,在N2环境下将硼氢化钠溶液逐滴加入前驱体溶液中,所述硼氢化钠与七水合硫酸亚铁的质量比为1:5,滴加结束后500 r/min持续搅拌1 h,反应完全后,在700 r/min下加入去离子水,持续搅拌1 h,除去残余的硼氢化钠,得到含有铁纳米粒子的黑色悬浮液;
3)将铁纳米粒子悬浮液进行密封超声分散20 min,超声分散后在N2环境下加入导电炭黑,持续搅拌1 h得黑色悬浮液,所述导电炭黑与七水合硫酸亚铁的质量比为23:2;
4)称取氯亚铂酸钾并溶于去离子水中制备成6.2 mg/mL的氯亚铂酸钾溶液,所述七水合硫酸亚铁中的Fe与氯亚铂酸钾中的Pt的摩尔比为33:10,将氯亚铂酸钾溶液逐滴加入到步骤3)制备的黑色悬浮液中,反应3 h,放置过夜,得到Fe@Pt/C核壳纳米粒子悬浊液;
5)分别用水、乙醇离心洗涤步骤4)制得的Fe@Pt/C核壳纳米粒子悬浊液,将得到的黑色粉末在40℃下真空干燥过夜,干燥完成后进行研磨,得到粒度均匀的Fe@Pt/C核壳纳米催化材料;
6)将步骤5)制得的Fe@Pt/C核壳纳米催化材料与连结剂、分散剂、流平剂、消泡剂和PTFE乳液混合制得电极浆料,所述Fe@Pt/C核壳纳米催化材料、连结剂、分散剂、流平剂、消泡剂与PTFE的质量比为65:8:12:5:5:5,将电极浆料通过丝网印刷技术印刷在PTFE膜上,经干燥、洗涤、200℃的条件下烧结制成敏感膜。
2.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤1)中所述分散剂为PVP。
3.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤5)中所述Fe@Pt/C核壳纳米催化材料的粒径约为50 nm。
4.根据权利要求1所述的基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜,其特征在于:步骤6)中所述连结剂为羟乙基纤维素,分散剂为聚乙二醇辛基苯基醚,流平剂为BYK-333,消泡剂为BYK-094。
5.一种气体传感器,其特征在于:所述气体传感器为三电极体系,包括工作电极、对电极和参比电极,以细铂丝为导线,5 mol/L 硫酸为电解质溶液,所述工作电极、对电极和参比电极均是由权利要求1所述的敏感膜构成的电极。
6.根据权利要求5所述的气体传感器,其特征在于:所述气体传感器为硫化氢传感器。
CN202210541229.0A 2022-05-17 2022-05-17 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器 Active CN114935594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210541229.0A CN114935594B (zh) 2022-05-17 2022-05-17 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210541229.0A CN114935594B (zh) 2022-05-17 2022-05-17 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器

Publications (2)

Publication Number Publication Date
CN114935594A CN114935594A (zh) 2022-08-23
CN114935594B true CN114935594B (zh) 2023-11-24

Family

ID=82865080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210541229.0A Active CN114935594B (zh) 2022-05-17 2022-05-17 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器

Country Status (1)

Country Link
CN (1) CN114935594B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001757A (en) * 1973-08-14 1977-01-04 Matsushita Electric Industrial Co., Ltd. Method for detecting a reducing material in a gas phase
JP2018004652A (ja) * 2017-07-28 2018-01-11 日本碍子株式会社 ガスセンサ
CN110833835A (zh) * 2019-11-19 2020-02-25 广西大学 一种碳包覆金属颗粒锚定纳米催化材料的制备方法
CN112011065A (zh) * 2020-08-26 2020-12-01 合肥工业大学 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用
CN113603149A (zh) * 2021-05-12 2021-11-05 南昌航空大学 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591454B2 (en) * 2016-06-03 2020-03-17 Korea University Research And Business Foundation Highly sensitive and selective gas sensing material to methylbenzene, methods for preparing the gas sensing material and gas sensor including the gas sensing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001757A (en) * 1973-08-14 1977-01-04 Matsushita Electric Industrial Co., Ltd. Method for detecting a reducing material in a gas phase
JP2018004652A (ja) * 2017-07-28 2018-01-11 日本碍子株式会社 ガスセンサ
CN110833835A (zh) * 2019-11-19 2020-02-25 广西大学 一种碳包覆金属颗粒锚定纳米催化材料的制备方法
CN112011065A (zh) * 2020-08-26 2020-12-01 合肥工业大学 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用
CN113603149A (zh) * 2021-05-12 2021-11-05 南昌航空大学 一种制备纳米核壳结构γ-Fe2O3@SiO2铁氧硅复合吸波材料的方法

Also Published As

Publication number Publication date
CN114935594A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Lei et al. Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite
Chang et al. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing
Bo et al. The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose
Han et al. Balancing the galvanic replacement and reduction kinetics for the general formation of bimetallic CuM (M= Ru, Rh, Pd, Os, Ir, and Pt) hollow nanostructures
Lin et al. Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential
Farsadrooh et al. Sonochemical synthesis of high-performance Pd@ CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media
Zhou et al. One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor
Shen et al. NiCo-LDH nanoflake arrays-supported Au nanoparticles on copper foam as a highly sensitive electrochemical non-enzymatic glucose sensor
Daemi et al. An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells
Song et al. Preparation of porous hollow CoOx nanocubes via chemical etching prussian blue analogue for glucose sensing
Chai et al. In-situ synthesis of ultrasmall Au nanoparticles on bimetallic metal-organic framework with enhanced electrochemical activity for estrone sensing
US11733199B2 (en) Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same
Weng et al. A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode
Zhang et al. In situ attachment of cupric oxide nanoparticles to mesoporous carbons for sensitive amperometric non-enzymatic sensing of glucose
Hameed et al. Evaluation of core-shell structured cobalt@ platinum nanoparticles-decorated graphene for nitrite sensing
CN107413367B (zh) 一种高分散的铁酸钴纳米粒子负载氧杂氮化碳及制备方法
Chang et al. Development of a novel sensor based on Bi2O3 and carbonized UIO-66-NH2 nanocomposite for efficient detection of Pb (Ⅱ) ion in water environment
Wang et al. Nonenzymatic electrochemical sensor for glucose based on nanoporous platinum-gold alloy
Ouyang et al. ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor
Salman et al. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages
CN114935594B (zh) 一种基于Fe@Pt/C核壳纳米催化材料的气体传感器敏感膜及气体传感器
Xiong et al. The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode
CN114634175B (zh) 还原氧化石墨烯纸负载六角星形Cu2O-CuO纳米晶体杂化纸电极的制备方法及其应用
Wang et al. Engineering of a self-supported carbon electrode with 2D ultrathin heterostructures of NiCo LDH/NiCoS via a MOF-template for sensitive detection of glucose and H 2 O 2
Li et al. Gold nanoparticles/carbon nanotubes composite film modified glassy carbon electrode determination of meclofenoxate hydrochloride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant