CN114931588B - 银纳米粒卡那霉素抗菌水凝胶的制备方法 - Google Patents

银纳米粒卡那霉素抗菌水凝胶的制备方法 Download PDF

Info

Publication number
CN114931588B
CN114931588B CN202210560258.1A CN202210560258A CN114931588B CN 114931588 B CN114931588 B CN 114931588B CN 202210560258 A CN202210560258 A CN 202210560258A CN 114931588 B CN114931588 B CN 114931588B
Authority
CN
China
Prior art keywords
solution
ada
dcsk
kana
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210560258.1A
Other languages
English (en)
Other versions
CN114931588A (zh
Inventor
李新春
高伟雯
杨帆
莫春红
罗凯文
刘伟
孙盈莹
莫倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Medical University
Original Assignee
Guangxi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Medical University filed Critical Guangxi Medical University
Priority to CN202210560258.1A priority Critical patent/CN114931588B/zh
Publication of CN114931588A publication Critical patent/CN114931588A/zh
Application granted granted Critical
Publication of CN114931588B publication Critical patent/CN114931588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/38Silver; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/7036Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin having at least one amino group directly attached to the carbocyclic ring, e.g. streptomycin, gentamycin, amikacin, validamycin, fortimicins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了银纳米粒卡那霉素抗菌水凝胶的制备方法,包括:步骤一、将ADA加入水中溶解后,加入AgNO3水溶液,接着回流,之后除去未反应的AgNO3,得ADA‑AgNPs溶液;步骤二、配置一定浓度的ADA‑AgNPs水溶液,以该溶液作为溶剂配制ADA溶液;步骤三、配置一定浓度的Kana水溶液,以该溶液作为溶剂配制CMCS溶液;步骤四、将步骤二中制备的ADA溶液和步骤三中制备的CMCS溶液按一定比例混合均匀,得银纳米粒卡那霉素抗菌水凝胶。本发明制备方法简便、成本低廉,对大肠杆菌和金黄色葡萄球菌具有良好的抗菌活性;特别地,AgNPs和Kana可以协同发挥抗菌作用。

Description

银纳米粒卡那霉素抗菌水凝胶的制备方法
技术领域
本发明涉及材料化学领域。更具体地说,本发明涉及银纳米粒卡那霉素抗菌水凝胶的制备方法。
背景技术
卡那霉素(kanamycin,Kana)是一种经典的氨基糖苷类抗生素,具有抗菌谱广等优点。由于其耳毒性和肾毒性等毒副作用,限制了该药物的临床应用;另外,由于抗生素滥用导致细菌耐药现象日趋严重。因此急需开发一种具有良好生物相容性以及释药性能的卡那霉素抗菌剂。
发明内容
本发明的目的是提供银纳米粒卡那霉素抗菌水凝胶的制备方法,利用功能化海藻酸钠双醛实现了AgNPs的原位制备,并且ADA的醛基可与Kana的氨基以及CMCS的氨基发生Schiff碱反应,在形成水凝胶的同时有效包封氨基糖苷类抗菌药Kana,得到具有良好生物相容性及释药性能的海藻酸钠-羧甲基壳聚糖/银纳米粒/卡那霉素抗菌水凝胶。
为了实现本发明的这些目的和其它优点,提供了银纳米粒卡那霉素抗菌水凝胶的制备方法,包括:
步骤一、将ADA加入水中溶解后,加入AgNO3水溶液,接着回流,之后除去未反应的AgNO3,得ADA-AgNPs溶液;
步骤二、配置一定浓度的ADA-AgNPs水溶液,以该溶液作为溶剂配制ADA溶液;
步骤三、配置一定浓度的Kana水溶液,以该溶液作为溶剂配制CMCS溶液;
步骤四、将步骤二中制备的ADA溶液和步骤三中制备的CMCS溶液按一定比例混合均匀,得银纳米粒卡那霉素抗菌水凝胶。
优选的是,所述的银纳米粒卡那霉素抗菌水凝胶的制备方法中,ADA的制备方法为:
取6.0g海藻酸钠置于烧杯中,加入396mL水,超声30min后磁力搅拌过夜,得到海藻酸钠溶液;
取7.7g NaIO4溶解在120mL水中,得NaIO4溶液;
将NaIO4溶液缓慢滴加至海藻酸钠溶液中,避光环境下搅拌24h,之后加入6mL乙二醇持续搅拌2h终止反应,滴加无水乙醇析出粗产物,将粗产物用透析袋在去离子水中透析,冷冻干燥得到ADA粉末。
优选的是,所述的银纳米粒卡那霉素抗菌水凝胶的制备方法中,所述步骤二中以体积比为50%的ADA-AgNPs水溶液作为溶剂配制ADA溶液。
优选的是,所述的银纳米粒卡那霉素抗菌水凝胶的制备方法中,所述步骤三中以质量体积比为0.5%的Kana水溶液作为溶剂配制CMCS溶液。
优选的是,所述的银纳米粒卡那霉素抗菌水凝胶的制备方法中,ADA溶液中ADA的质量体积比为15%。
优选的是,所述的银纳米粒卡那霉素抗菌水凝胶的制备方法中,CMCS溶液中CMCS的质量体积比为4%。
本发明至少包括以下有益效果:
本发明以生物相容性好、来源广泛、成本低廉的海藻酸钠为起始原料,氧化得到海藻酸钠双醛(ADA),其作用有两点:(1)还原Ag+生成AgNPs并作为其稳定剂;(2)作为成胶反应的偶联剂,ADA中的醛基同时可以与抗菌药Kana的氨基以及CMCS的氨基发生Schiff碱反应,形成水凝胶(DCSK),同时实现Kana的有效包封。
本发明利用功能化海藻酸钠双醛(ADA)作为环境友好型还原剂和稳定剂,制备银纳米粒(AgNPs),得到ADA-AgNPs复合物;加入Kana和羧甲基壳聚糖(CMCS)后,Kana的氨基和CMCS的氨基可以与ADA的醛基发生Schiff碱反应,产生共价偶联,形成具有良好生物相容性以及释药性能的海藻酸钠-羧甲基壳聚糖/银纳米粒/卡那霉素抗菌水凝胶(DCSK)。首次将AgNPs和氨基糖苷类抗生素Kana相结合,得到具有协同作用的抗菌剂。
本发明制备方法简便、成本低廉,对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)具有良好的抗菌活性;特别地,AgNPs和Kana可以协同发挥抗菌作用。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是不同浓度卡那霉素衍生化反应后紫外-可见吸收光谱图;插图为对应的标准曲线图;
图2是ADA、ADA-AgNPs、CMCS和DCSK水凝胶红外谱图;
图3是DCSK水凝胶表面形貌图;
图4是不同浓度ADA制备的DCSK水凝胶的凝胶时间;
图5A和图5B分别是不同浓度CMCS和ADA制备的水凝胶的溶胀曲线;
图6是不同浓度ADA制备的水凝胶的体外降解行为;
图7是DCSK-1(0.2%w/v Kana)、DCSK-2(0.5%w/v Kana)、DCSK-3(1%w/v Kana)水凝胶的累积释药曲线;
图8是不同DCSK对RBCs的溶血作用;用PBS和H2O处理的RBCs分别用作阴性和阳性对照;
图9是不同DCSK提取物对NRK细胞的体外细胞毒性;
图10A和图10B分别是与不同浓度Kana的DCSK水凝胶孵育后大肠杆菌和金黄色葡萄球菌的生长曲线图;图10C和D分别是与DCSK-0、DCSK-1、DCSK-2、DCSK-3水凝胶孵育后大肠杆菌以及与DCSK-0、DCSK-1、DCSK-4、DCSK-5水凝胶孵育后金黄色葡萄球菌的生长曲线图;
图11是与DCSK-0、DCSK-1、DCSK-2、DCSK-3水凝胶孵育的大肠杆菌和DCSK-0、DCSK-1、DCSK-4、DCSK-5水凝胶孵育的金黄色葡萄球菌抑菌圈实物图;
图12是与DCSK-0、DCSK-1、DCSK-2、DCSK-3水凝胶孵育的大肠杆菌和DCSK-0、DCSK-1、DCSK-4、DCSK-5水凝胶孵育的金黄色葡萄球菌抑菌圈柱形图。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
(1)取6.0g海藻酸钠(SA)置于烧杯中,加水有396mL,超声30min后磁力搅拌过夜,得到淡黄色透明液体。取7.7g NaIO4溶解在120mL水中,然后将NaIO4溶液缓慢滴加至SA溶液中,避光环境下搅拌24h,加入6mL乙二醇持续搅拌2h终止反应,滴加无水乙醇析出粗产物。将粗产物用透析袋(MWCO,3500)在去离子水中透析10次,透析外液加入1%AgNO3溶液,不出现沉淀即证明透析彻底。将透析液冷冻干燥得到ADA粉末。
(2)将125mg ADA冻干粉加入到25mL水中超声溶解,溶液转移至100mL三颈瓶,加入2.5mL浓度为0.04mol/L的AgNO3水溶液,100℃回流1.5h,得到淡黄色ADA-AgNPs溶液,用透析袋(MWCO,3500)透析10次除去未反应的AgNO3,将制备好的ADA-AgNPs溶液用棕色玻璃瓶储存,置于4℃冰箱备用。
(3)方法如下:
①配制一定浓度,如50%(v/v)的ADA-AgNPs水溶液,以该溶液作为溶剂分别配制不同浓度(w/v)的ADA溶液,如ADA-1(12.5%w/v)、ADA-2(15%w/v)、ADA-3(17.5%w/v)溶液;
②配制一定浓度,如0.5%(w/v)的Kana水溶液,以该溶液作为溶剂分别配制不同浓度(w/v)的CMCS溶液,如CMCS-1(3%w/v)、CMCS-2(4%w/v)、CMCS-3(5%w/v)溶液;
③将溶液①和②按一定比例,如3:7(v/v)均匀混合,静置成胶,得到海藻酸钠-羧甲基壳聚糖/银纳米粒/卡那霉素抗菌水凝胶(DCSK)。
SA是一种主要来源于褐藻和细菌的亲水性天然多糖,其分子由β-D-甘露糖醛酸和α-L-古洛糖醛酸按(1→4)糖苷键连接而成,具有相邻的羟基结构。NaIO4能氧化SA的C2-C3键,将分子链上的吡喃糖环打开,降低分子链的刚性,同时生成两个具有反应活性的醛基,制得SA的氧化产物ADA。ADA的双醛基团具有还原性,同时能提高SA的溶解性。但并非所有的糖醛酸分子都被氧化,ADA是SA部分氧化所得到的产物。需要说明的是,NaIO4见光容易分解,为了避免NaIO4氧化过程中副产物的形成,反应需在避光条件下进行。
多糖作为稳定剂和还原剂,可用于绿色合成AgNPs,该方法比其他化学合成方法更适合于生物医学应用。通常,化学合成AgNPs所使用的还原剂如硼氢化钠、N,N-二甲基甲酰胺、肼和表面活性剂等具有毒性,且常常需要额外的化学试剂作为稳定剂以防止纳米颗粒聚集。本实验以水溶性ADA作为稳定剂和还原剂、AgNO3为单质银的前驱物质,在无需依赖其他还原剂的条件下,AgNO3中的Ag+可以在ADA表面原位还原形成AgNPs。ADA分子链上的活性基团如-OH和-COO螯合Ag+,导致Ag+局部富集,这不仅有利于AgNPs的形成,而且可以在一定程度上提高AgNPs的稳定性。
CMCS作为壳聚糖的水溶性衍生物之一,克服了壳聚糖溶解性差的缺点。与母体聚合物壳聚糖相比,CMCS具有优异的生物相容性、生物降解性、抗菌活性和保湿能力,是水凝胶和伤口愈合应用的理想材料。Kana是氨基糖苷类抗生素,其结构中含有4个伯胺基,可与ADA发生Schiff碱交联反应。本研究以ADA作为交联剂,在室温条件下将CMCS、ADA-AgNPs、Kana水溶液混合制备DCSK复合水凝胶,无需添加任何其他交联剂。水凝胶的形成归因于CMCS和Kana的氨基与ADA的醛基发生Schiff碱反应。Kana和AgNPs以形成可逆亚胺键的方式与水凝胶基质完全或部分反应包埋在水凝胶基质中,这取决于体系中-CHO/-NH2的比例。与通过物理结合方式包埋药物的抗菌水凝胶相比,本研究所制备的水凝胶避免了药物的突然释放,使药物释放与凝胶降解同步。众所周知,细菌的生长会产生质子并导致局部酸化,由于Schiff碱酸不稳定,增加的酸度将切断多糖之间的Schiff碱连接,释放AgNPs和Kana联合杀死细菌。
实施例1
(1)取6.0g海藻酸钠(SA)置于烧杯中,加水有396mL,超声30min后磁力搅拌过夜,得到淡黄色透明液体。取7.7g NaIO4溶解在120mL水中,然后将NaIO4溶液缓慢滴加至SA溶液中,避光环境下搅拌24h,加入6mL乙二醇持续搅拌2h终止反应,滴加无水乙醇析出粗产物。将粗产物用透析袋(MWCO,3500)在去离子水中透析10次,透析外液加入1%AgNO3溶液,不出现沉淀即证明透析彻底。将透析液冷冻干燥得到ADA粉末。
(2)将125mg ADA冻干粉加入到25mL水中超声溶解,溶液转移至100mL三颈瓶,加入2.5mL浓度为0.04mol/L的AgNO3水溶液,100℃回流1.5h,得到淡黄色ADA-AgNPs溶液,用透析袋(MWCO,3500)透析10次除去未反应的AgNO3,将制备好的ADA-AgNPs溶液用棕色玻璃瓶储存,置于4℃冰箱备用。
(3)方法如下:
①配制50%(v/v)的ADA-AgNPs水溶液,以该溶液作为溶剂分别配制15%w/v的ADA溶液;
②配制0.5%(w/v)的Kana水溶液,以该溶液作为溶剂分别配制4%w/v的CMCS溶液;
③将溶液①和②按一定比例,如3:7(v/v)均匀混合,静置成胶,得到海藻酸钠-羧甲基壳聚糖/银纳米粒/卡那霉素抗菌水凝胶(DCSK)。
DCSK水凝胶的表征
(1)FTIR分析
(2)微观形貌观察
取一次性注射器模具制备的DCSK,冷冻干燥后切成薄片,将待测样品用导电胶黏到样品台上,喷金后放入FESEM样品室,在加速电压为3kV的条件下,观察DCSK的表面形态。
(3)凝胶时间分析
采用小瓶倾斜法测定凝胶时间,在1.5mL玻璃小瓶中将CMCS-2与ADA-1、ADA-2、ADA-3混合制备不同含量ADA的DCSK。溶液一经接触就开始计时,轻轻摇晃小瓶使溶液混合均匀,直到溶液不再流动并固化成型停止计时,即为凝胶时间。平行测定三次,取平均值。
(4)体外溶胀行为分析
将1mL含有不同浓度CMCS和ADA的DCSK加入到含有20mL浓度为10mM PBS(pH=7.4)塑料离心管中,在37℃、70rpm恒温摇床进行溶胀测试。在1、2、4、8、16、24h时间点取出水凝胶,用滤纸轻轻吸干表面的水分,称重。实验结束后,取出水凝胶进行冷冻干燥,称重得到干态凝胶质量。按照公式计算溶胀率(Swelling Ratio,SR):
SR=(ms-md)/md
其中,ms为溶胀后水凝胶的重量(mg),md为冻干后的水凝胶的重量(mg)。每组样品平行测定三次,绘制水凝胶的溶胀曲线图。
(5)体外降解行为分析
采用失重法考察DCSK的体外降解性能。首先准确称量各组水凝胶样品在10mM PBS溶液37℃溶胀24h的质量,记为m0,然后将水凝胶置于20mL PBS溶液,在37℃、70rpm恒温摇床进行溶胀测试。在2、4、8、12、24、36、48h时间点取出,用滤纸擦去水凝胶表面水分,称量此时质量记为mi。按照以下公式计算水凝胶随时间降解后的剩余质量(WeightRemaining%):
Weight Remaining%=mi/m0×100%
其中,mi为水凝胶在特定时间点的质量(mg),m0为水凝胶溶胀24h后的质量(mg),每组样品平行测定三次,绘制水凝胶的降解曲线图。
(6)体外释药研究
Kana标准曲线的绘制:
卡那霉素衍生化反应:
原理:Kana本身没有紫外吸收,无法通过紫外分光光度法直接测量浓度。Kana结构中含有伯胺基,在碱性条件下能与邻苯二甲醛和巯基试剂反应形成异吲哚,在332nm处有最大紫外吸收特征峰,通过形成的异吲哚对Kana进行定量。
衍生试剂的配制:在112mL硼酸钠(0.04M,pH=10)中加入500mg邻苯二甲醛,12.5mL甲醇和600μL 2-巯基乙醇,避光反应24h(注:该衍生化试剂保质期3天)。
利用pH=7.4的PBS作为溶剂配制系列浓度Kana储备液:7.5、15、30、45、60、75μg/mL;
空白溶液组分:将1mL pH=7.4的PBS、1mL异丙醇和1mL邻苯二甲醛衍生试剂混合,室温反应30min;
待测样品组分:1mL上述不同浓度Kana溶液、1mL异丙醇和1mL邻苯二甲醛试剂混合后室温反应30min,其中Kana的终浓度依次为2.5、5、10、15、20、25μg/mL,每组平行3次实验。然后在332nm处测量Kana衍生化反应后的吸光度,绘制标准曲线。如图1所示,其回归方程为:
y=0.0368x-0.0214(r=0.999)
由于CMCS结构也含有氨基,为了扣除CMCS对Kana释药测试结果的干扰,本实验采用上述相同的实验操作得到CMCS的回归方式为:
y=0.102x-0.2079(r=0.998)
体外药物释放实验:
1mL含不同浓度Kana复合水凝胶,置于20mL浓度为10mM PBS(pH=7.4),在37℃、70rpm条件下考察药物的释放性能,在1、2、4、6、9、12、24、48和72h时间点取1mL上清液,分别补充1mL PBS,根据Kana标准曲线计算每个时间点释放的Kana量。按照下面的公式计算累积释药量:
第1个时间点,药物的释放总量W1可以记为:
W1=c1×20
第2个时间点的药物释放总量W2为:
W2=c2×20+c1×1
第3个时间点的的药物释放总量W3为:
W3=c3×20+c2×1+c1×1
以此类推,累积释放(Cumulative Release)百分比可以通过如下公式计算:
Cumulative Release(%)=(Wt/W)
其中,c1、c2、c3分别为第1、2、3个时间点释放药物浓度,Wt为t时刻的药物释放总量(mg),W为负载的药物总量(mg)。
血液相容性实验
对健康雄性昆明小鼠进行眼球取血,血液经3000rpm离心10min,红细胞(RedBlood Cells,RBC)加1×PBS重悬、离心,重复操作5次,直至上清液不出现红色。然后用1×PBS将RBC稀释成10%(v/v)悬浮液,备用。
阳性对照组:800μL H2O+200μL 10%(v/v)RBC;
阴性对照组:800μL PBS+200μL 10%(v/v)RBC;
水凝胶组:20μL DCSK+800μL PBS+200μL 10%(v/v)RBC;
红细胞37℃孵育1h后,4℃条件下3000rpm离心10min,取100μL上清液到96孔板用酶标仪检测540nm处的光学密度(Optical Density,OD)值。将PBS组上清液视为溶血率0%,将H2O组上清视为溶血率100%,按照如下公式计算溶血率(Hemolysis):
其中,ODDCSK表示DCSK组的光学密度值,ODPBS表示阴性对照组的光学密度,表示阳性对照组的光学密度值。
表1溶血率与溶血级别的关系
细胞毒性实验
取指数生长期的正常大鼠肾细胞(Rat Kidney Cells,NRK)评价DCSK的细胞毒性。用胰酶消化处理后,调整细胞浓度在1×104~1×105个/mL左右,接种于96孔培养板上,每孔100μL,并在含有青霉素(100unit/mL),硫酸链霉素(100μg/mL)和10%热灭活胎牛血清(Fetal Bovine Serum,FBS)的DMEM(Dulbecco's Modified Eagle Medium)中37℃、5%CO2细胞培养箱中培养24h。待细胞在96孔培养板底部生长成单层后,吸出旧培养液,再用PBS缓冲液清洗2次。将200μL含不同浓度AgNPs的DCSK浸入2mL不含FBS的DMEM中24h,收集浸提液并在与细胞孵育前添加10%FBS。DCSK组加入100μL不同浓度浸提液(含10%胎牛血清的DMEM培养液)、空白组仅加入100μL含10%胎牛血清的DMEM培养液,每组平行五次。37℃下继续培养,培养24h取出培养板,弃去各孔上清液,避光条件下,每孔加入20μL浓度为5mg/mL的MTT溶液和80μL含8%胎牛血清的DMEM培养液,37℃下孵育4h后吸去孔内培养液,每孔加入150μL二甲基亚砜(Dimethyl Sulfoxide,DMSO)终止反应,37℃恒温摇床低速振荡孵育10min,最后用酶标仪测定其在490nm处的OD值。最后取5个平行样的平均值按照如下公式计算细胞的存活率(Cell viability):
Cell viability(%)=(ODDCSK/OD阴性对照)×100%
表2细胞相对生长率与细胞毒性级别的关系
体外抗菌活性研究
细菌培养
(1)培养基配置
LB(Luria-Bertain)液体培养基配置:称量3.5g蛋白胨、3.5g氯化钠、1.75g酵母粉到500mL锥形瓶,搅拌使之完全溶解,用浓度为5M的NaOH调pH至7.0,补加去离子水至350mL,用牛皮纸和棉绳对锥形瓶进行封口,对培养基进行高压灭菌20min(120℃,0.1Mpa)。
LB固体培养基配置:在LB液体培养基中加1.5%琼脂,对所得液体进行高压灭菌20min(120℃,0.1Mpa),灭菌结束后将培养基放在超净工作台里面照射紫外光30min,待温度下降至60℃左右倒平板。
(2)细菌的接种
将冻存的菌株复苏后,用灭菌的接种环蘸取菌液,采用平板三区划线法将细菌接种在LB培养基上,得到的平皿放入恒温培养箱37℃培养16h。
(3)细菌的冻存
将活化的细菌挑取单菌落于5mL LB液体培养基中,37℃、220rpm过夜培养16h,取500μL菌液于2mL冻存管,加入500μL的50%灭菌的甘油,混匀后,用封口膜封口保存于-20℃冰箱,每株菌至少保存3份。
(4)菌液的制备
过夜培养的菌株生长成单菌落时,用接种环挑取单菌落于5mL LB液体培养基中,在37℃、220rpm恒温摇床培养16h后,加入LB液体培养基校准至OD600约为0.1。将1×108CFU/mL(OD600≈0.1)细菌悬液稀释100倍,使其含菌量约l×106CFU/mL,备用。
细菌的生长曲线
(1)用LB培养基将菌液稀释,使其OD值接近0.02;
(2)将200μL不同DCSK水凝胶加入到5mL无菌离心管,加入2mL菌液;
(3)离心管置于37℃、220rpm恒温摇床震荡培养,依次在0、2、4、6、8、12、14、16h取出100μL;
(4)以无菌的LB液体培养基作空白对照,在600nm波长下,用光程1cm的比色皿通过比色法测定上述细菌在不同生长时间的OD值。
(5)以OD600为纵坐标,培养时间t为横坐标,绘制菌液的生长曲线图。
抑菌圈实验
用移液枪准确移取100μL浓度为l×105CFU/mL的菌液于固体培养基上,用涂布棒进行均匀涂板,盖好培养皿,放置5min,待表面水分充分吸收。取200μL不同的水凝胶样品用紫外灯对其灭菌处理后,将其置于培养皿表面,得到的培养皿置于37℃恒温培养箱内培养18h,观察抑菌圈的生长情况。对平皿进行拍照,判断各组水凝胶的抗菌性能,实验重复三次,取平均值。
DCSK水凝胶的表征
(1)FTIR分析
FTIR谱图用于分析ADA、ADA-AgNPs、CMCS与DCSK水凝胶,如图2所示,与DCSK结构相比,明显看出ADA、ADA-AgNPs在1730cm-1处醛基特征峰消失。Schiff碱反应形成的亚胺键通常在1590-1690cm-1处有一个很强的峰,所制备的DCSK中亚胺键由于受到COO-不对称伸缩振动影响被掩盖,但1730cm-1处醛基特征峰消失,证实了Schiff碱的形成。
(2)微观形貌观察
通过SEM观察冷冻干燥的DCSK水凝胶的微观结构。如图3所示,DCSK水凝胶具有多孔结构,孔径大小大约200μm,这种结构特征可促进营养物质的渗透性,以支持细胞生长以及药物扩散。值得注意的是,具有多孔结构的水凝胶有利于接纳微生物并促进其与封装在水凝胶中的药物反应。
(3)凝胶时间分析
采用小瓶倒置法分析凝胶时间,本实验研究了CMCS-2(4%w/v)与ADA-1(12.5%w/v)、ADA-2(15%w/v)、ADA-3(17.5%w/v)形成DCSK水凝胶的凝胶时间。从图4可以看到,ADA浓度越高,凝胶时间越短。这是由于ADA的浓度增加,多糖衍生物醛基的浓度增加。当发生Schiff碱反应时,更多的反应位点使交联反应更加有效,形成凝胶的时间缩短。该结果表明,化学交联效率与醛基和氨基的相对含量密切相关。总之,DCSK水凝胶的凝胶时间可以通过改变组分的浓度进行灵活的调节,使其在实际应用中具有优势。由于凝胶时间过长,水凝胶前驱体溶液很容易在体内流失,不利于凝胶的形成;凝胶时间太短,则水凝胶形成太快,不利于与其他药物混合治疗。因此,合适的凝胶时间是水凝胶在生理条件下实现简单配方和方便给药的关键。本实验的水凝胶凝胶时间在101~455s之间,从而保证了水凝胶前驱体不流失的同时实现了与其他药物均匀的混合。
(4)体外溶胀分析
溶胀性质对于水凝胶在体外药物释放和物质交换具有重要意义。本实验研究了ADA-2(15%w/v)与CMCS-1(3%w/v)、CMCS-2(4%w/v)、CMCS-3(5%w/v)形成的DCSK水凝胶在24h内的溶胀性为,如图5A所示,在16h内,DCSK的溶胀率随着时间增加,在16h几乎达到最大,三条曲线最大溶胀率从低到高依次为3400%、3800%、4700%。DCSK在16h后基本达到平衡,这可能是由于水凝胶的多孔网络在一定时间后会完全被水饱和,无法进一步吸收水。随着CMCS含量的增加,DCSK的溶胀率越低,这可能是因为DCSK拥有的氨基含量越多,产生的交联位点数量越多,交联密度就越高,不利于水分进入网状结构的胶体内部。
除氨基含量外,交联位点的数量和密度也与醛基含量有关。如图5B所示,在16h内,DCSK的溶胀率随着时间增加,在16h几乎达到最大,水凝胶在16h后基本达到平衡,三条曲线最大溶胀率从低到高依次为3800%、4400%、4600%。随着ADA浓度增加,DCSK的溶胀率降低。这是由于ADA-3的醛基含量高于ADA-2和ADA-1,DCSK体系中醛基含量的增加会产生更多的交联位点,从而抑制吸水能力。
(5)体外降解分析
图6反映了CMCS-2(4%w/v)与ADA-1(12.5%w/v)、ADA-2(15%w/v)、ADA-3(17.5%w/v)形成的DCSK水凝胶的体外降解行为,可以看到DCSK随着时间推移而发生降解。降解过程有两个不同的阶段,在最初的12h内,所有DCSK的重量都显著减轻,这归因于DCSK在生理相关条件下的快速水解,这一阶段包括占主导的物理溶解过程和罕见的三维聚合物网络结构裂解的化学过程。从第12h到第48h,DCSK的重量减轻很少,这归因于DCSK骨架的化学降解。因此,DCSK在体外可以通过两种机制降解:快速水解和分子骨架的化学降解。同时,醛基含量对DCSK的降解性能有重要的影响,随着醛基含量从ADA-1增加到ADA-3,DCSK的降解率降低。这种现象归因于水凝胶交联密度与降解速率之间的关系,高的交联密度可以阻止水凝胶的降解。随着醛基含量的增加,DCSK具有更多的交联位点,导致降解速率降低。在第48h,三条曲线随时间降解后的剩余质量百分比从低到高依次为59%、63%、65%。
综合不同制备参数下DCSK水凝胶的凝胶时间、溶胀率、降解率结果可知,DCSK中ADA含量高,DCSK的凝胶时间短,溶胀率低,降解慢;CMCS含量高则溶胀率低。溶胀率高的DCSK有利于吸收伤口渗出液、维持伤口干燥的环境,但降解快,稳定性差,考虑到DCSK作为一种外用制剂,本实验选择CMCS-2与ADA-2混合作为优化的制备条件。
(6)体外释药研究
以Kana为模型药物,在37℃的PBS(0.01M,pH=7.4)中研究了DCSK-1(0.2%w/vKana)、DCSK-2(0.5%w/v Kana)和DCSK-3(1%w/v Kana)的体外药物释放行为。如图7所示,在最初16h内,DCSK-1、DCSK-2、DCSK-3的Kana快速释放,该结果可以合理地归因于水溶性Kana在水凝胶表面附近的快速扩散以及水凝胶的降解。24h后DCSK-1、DCSK-2、DCSK-3的Kana的释药速率明显下降,这可能是由于Kana与ADA形成亚胺键使Kana不易释放出来。前12h内DCSK-1、DCSK-2、DCSK-3的Kana累积释药率基本一致,无统计学差异。24h后,载药浓度低的水凝胶Kana释药率高。在72h时间点,DCSK-1、DCSK-2、DCSK-3的Kana累积释药率分别为36%、33%、27%。
生物相容性评价
AgNPs的细胞毒性在生物材料中起着决定性的作用。本实验通过DCSK-0(0%v/vAgNPs)、DCSK-1(5%v/v AgNPs)、DCSK-2(15%v/v AgNPs)、DCSK-3(25%v/v AgNPs)的溶血率和细胞毒性实验评价含不同浓度AgNPs的DCSK水凝胶的生物相容性。
对于生物医学应用,抗菌剂与血液接触是不可避免的。生物材料与红细胞接触后,若有毒性,则会破坏红细胞膜导致红细胞破裂发生溶血。因此,评估DCSK的的体外溶血以使其血液相容性至关重要。如图8所示,PBS组作为0%溶血,H2O组作为100%溶血,各DCSK组溶血率均小于4%,生物医学材料规定的溶血率不应超过5%,结果表明上述含有不同浓度AgNPs的DCSK水凝胶具有良好的血液相容性,适用于生物医学应用。
细胞毒性是评价药物毒性的重要指标,本实验采用间接接触的方法评估不同DCSK对NRK细胞的毒性作用。MTT法通过测定活细胞将MTT还原为水不溶性的蓝紫色结晶甲臜评估线粒体活性。结果如图9所示,上述含有不同浓度AgNPs的DCSK水凝胶组细胞活力均保持90%以上,表明其具有良好的生物相容性。
体外抗菌活性研究
细菌生长曲线
细菌生长曲线的测定可以提供抗菌动力学方面的定量数据和信息。测定细菌的生长曲线,初步评估DCSK水凝胶对E.coli和S.aureus生长繁殖的影响以及比较单独使用含一种抗菌药的水凝胶与联合抗菌药的复合水凝胶抗菌效果的差异。Kana是一种氨基糖苷类抗生素,通过与30S核糖体亚基不可逆地结合,抑制细菌蛋白质合成并破坏细菌细胞膜的完整性实现抗菌的目的。根据美国临床和实验室标准协会的记载,S.aureus对Kana的敏感性比E.coli强,因此我们评价了含不同浓度Kana(a:0%w/v,b:0.05%w/v,c:0.1%w/v,d:0.2%w/v,e:0.25%w/v)的DCSK水凝胶与E.coli(A)和S.aureus(B)作用的生长曲线。结果如图10A、10B所示,随着Kana浓度的增加,DCSK水凝胶对E.coli和S.aureus的抗菌活性逐渐增强。与E.coli相比,含相同浓度Kana的DCSK水凝胶对S.aureus的抗菌作用更强。
为了更好地发挥Kana和AgNPs联合抗菌的效果,结合上述含不同浓度Kana的DCSK水凝胶对E.coli和S.aureus抗菌活性差异,本实验设计了AgNPs联合不同浓度Kana的DCSK水凝胶,分别研究其对E.coli和S.aureus的联合抗菌效果。具体如下:首先研究DCSK-0(0%v/v AgNPs,0%w/v Kana),DCSK-1(20%v/v AgNPs,0%w/v Kana),DCSK-2(0%v/v AgNPs,0.2%w/v Kana),DCSK-3(20%v/v AgNPs,0.2%w/v Kana)水凝胶对E.coli生长曲线的影响。结果如图10C所示,DCSK-1和DCSK-2对E.coli生长的抑制不显著,DCSK-3作用的E.coli的生长完全被抑制,表明包埋AgNPs与Kana的复合水凝胶具有联合的抗菌效果。
同样,我们还评价了DCSK-0(0%v/v AgNPs,0%w/v Kana),DCSK-1(20%v/vAgNPs,0%w/v Kana),DCSK-4(0%v/v AgNPs,0.05%w/v Kana),DCSK-5(20%v/v AgNPs,0.05%w/v Kana)水凝胶对S.aureus的抗菌作用。从图10D可以看出,DCSK-1、DCSK-4水凝胶作用的S.aureus生长较快。相比于DCSK-1和DCSK-4,DCSK-5水凝胶作用的S.aureus几乎不生长,这是因为DCSK-5水凝胶释放的AgNPs和Kana对S.aureus产生联合抗菌的效果。
抑菌圈实验
抑菌圈法是评价材料抗菌性能的重要方法之一。抑菌圈是指抗菌材料可以消灭细菌的区域,它的直径代表材料的杀菌能力的强弱。抑菌圈直径越大,材料的抗菌效果越显著,抗菌性能越好。
为了揭示载药水凝胶的抑菌区域,将DCSK-0,DCSK-1,DCSK-2,DCSK-3水凝胶置于涂布有E.coli的LB琼脂平板表面,37℃孵育24h后,观察各水凝胶组的抑菌区域,用直尺测量抑菌圈直径并拍照。如图11所示,DCSK-0水凝胶周围没有出现抑制圈,说明裸凝胶对E.coli没有抗菌作用。DCSK-1水凝胶作用的E.coli可见微弱的抑菌圈,其直径为0.3mm。DCSK-2水凝胶作用的E.coli产生的抑菌圈清晰可见,抑菌圈直径为4.4mm。相比于DCSK-1和DCSK-2,DCSK-3水凝胶周围的抑菌圈更明显,其直径为5.3mm,说明载AgNPs和Kana的水凝胶对E.coli具有增强抗菌的效果。
同样,将DCSK-0,DCSK-1,DCSK-4,DCSK-5水凝胶置于涂布有S.aureus的LB琼脂平板表面。37℃孵育24h后,观察各水凝胶组的抑菌区域,用直尺测量抑菌圈直径并拍照。如图12所示,DCSK-0水凝胶周围没有出现抑制圈,DCSK-1水凝胶对S.aureus产生的抑菌圈直径为0.3mm,DCSK-4水凝胶对S.aureus产生的抑菌圈直径为4.5mm;相比于DCSK-1和DCSK-4,DCSK-5水凝胶作用的S.aureus抑菌圈更明显,其抑菌圈直径为4.9mm,结果表明DCSK-5水凝胶对S.aureus具有增强的抗菌活性。
综合抑菌圈和细菌生长曲线的结果,与单独AgNPs、Kana作用相比,AgNPs与Kana联合的复合水凝胶能够增强两者对E.coli和S.aureus的抗菌性能。E.coli和S.aureus分别作为革兰氏阴性(G-)和革兰氏阳性(G+)细菌的经典模型,由于革兰氏阴性菌和革兰氏阳性菌细胞壁组成和结构的差异,导致了我们制备的DCSK水凝胶对所考察的两种细菌的抗菌效果的差异。
小结
在本研究中,DCSK水凝胶是通过Schiff碱交联反应制备得到的。DCSK的胶凝时间可以通过改变多糖浓度和CMCS/ADA比例进行调节。体外释药实验表明,DCSK在3天内显示出持续的Kana药物释放方式。基于血液相容性和细胞毒性实验分析,DCSK在体外显示出良好的生物相容性。体外抗菌活性研究则表明,DCSK对E.coli和S.aurens具有联合的抗菌活性,因此本研究制备的DCSK是一种潜在的、有前景的治疗细菌感染的抗菌剂,为探索将DCSK用于抗耐药细菌研究提供了新的思路。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例和实施例。

Claims (5)

1.银纳米粒卡那霉素抗菌水凝胶的制备方法,其特征在于,包括:
步骤一、将ADA加入水中溶解后,加入AgNO3水溶液,接着回流,之后除去未反应的AgNO3,得ADA-AgNPs溶液;
步骤二、配置一定浓度的ADA-AgNPs水溶液,以该溶液作为溶剂配制ADA溶液;
步骤三、配置一定浓度的Kana水溶液,以该溶液作为溶剂配制CMCS溶液;
步骤四、将步骤二中制备的ADA溶液和步骤三中制备的CMCS溶液按一定比例混合均匀,得银纳米粒卡那霉素抗菌水凝胶;
其中,ADA的制备方法为:
取6.0 g 海藻酸钠置于烧杯中,加入396 mL水,超声30 min后磁力搅拌过夜,得到海藻酸钠溶液;
取7.7 g NaIO4溶解在120 mL水中,得NaIO4溶液;
将NaIO4溶液缓慢滴加至海藻酸钠溶液中,避光环境下搅拌24 h,之后加入6 mL乙二醇持续搅拌2 h终止反应,滴加无水乙醇析出粗产物,将粗产物用透析袋在去离子水中透析,冷冻干燥得到ADA粉末。
2.如权利要求1所述的银纳米粒卡那霉素抗菌水凝胶的制备方法,其特征在于,所述步骤二中以体积比为50%的ADA-AgNPs水溶液作为溶剂配制ADA溶液。
3.如权利要求1所述的银纳米粒卡那霉素抗菌水凝胶的制备方法,其特征在于,所述步骤三中以质量体积比为0.5%的Kana水溶液作为溶剂配制CMCS溶液。
4.如权利要求1所述的银纳米粒卡那霉素抗菌水凝胶的制备方法,其特征在于,ADA溶液中ADA的质量体积比为15%。
5.如权利要求1所述的银纳米粒卡那霉素抗菌水凝胶的制备方法,其特征在于,CMCS溶液中CMCS的质量体积比为4%。
CN202210560258.1A 2022-05-23 2022-05-23 银纳米粒卡那霉素抗菌水凝胶的制备方法 Active CN114931588B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210560258.1A CN114931588B (zh) 2022-05-23 2022-05-23 银纳米粒卡那霉素抗菌水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210560258.1A CN114931588B (zh) 2022-05-23 2022-05-23 银纳米粒卡那霉素抗菌水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN114931588A CN114931588A (zh) 2022-08-23
CN114931588B true CN114931588B (zh) 2024-03-01

Family

ID=82864090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210560258.1A Active CN114931588B (zh) 2022-05-23 2022-05-23 银纳米粒卡那霉素抗菌水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114931588B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463145A (zh) * 2009-01-12 2009-06-24 武汉理工大学 羧甲基壳聚糖/氧化海藻酸钠自交联抗菌水凝胶材料
WO2009111170A1 (en) * 2008-02-29 2009-09-11 Bausch & Lomb Incorporated Pharmaceutical formulations comprising polyanionic materials and source of hydrogen peroxide
CN105998062A (zh) * 2016-04-14 2016-10-12 上海大学 一种含纳米银与卡那霉素的抗菌组合
WO2019232135A1 (en) * 2018-05-31 2019-12-05 Hcs Innovation Llc Natural polymer-based tissue adhesive with healing-promoting properties
CN113499473A (zh) * 2021-06-21 2021-10-15 四川大学 一种多功能抗菌敷料、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212420A1 (en) * 2006-03-10 2007-09-13 Bausch & Lomb Incorporated Pharmaceutical formulations comprising polyanionic materials and zinc-based preservatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111170A1 (en) * 2008-02-29 2009-09-11 Bausch & Lomb Incorporated Pharmaceutical formulations comprising polyanionic materials and source of hydrogen peroxide
CN101463145A (zh) * 2009-01-12 2009-06-24 武汉理工大学 羧甲基壳聚糖/氧化海藻酸钠自交联抗菌水凝胶材料
CN105998062A (zh) * 2016-04-14 2016-10-12 上海大学 一种含纳米银与卡那霉素的抗菌组合
WO2019232135A1 (en) * 2018-05-31 2019-12-05 Hcs Innovation Llc Natural polymer-based tissue adhesive with healing-promoting properties
CN113499473A (zh) * 2021-06-21 2021-10-15 四川大学 一种多功能抗菌敷料、制备方法及应用

Also Published As

Publication number Publication date
CN114931588A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN107778497B (zh) 一种按需释放的复合共价水凝胶及其制备方法和应用
Mi et al. In vitro evaluation of a chitosan membrane cross-linked with genipin
Balakrishnan et al. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds
Aramwit et al. The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment
CN111150880A (zh) 一种抗菌复合水凝胶及其制备方法
CN109432496B (zh) 一种可原位注射成型的巯基化多糖基水凝胶及其药物载体的制备方法和应用
JPH09506126A (ja) ポリ−β−1→4−N−アセチルグルコサミン
CN110152055B (zh) 海藻酸胺化衍生物/细菌纤维素纳米晶复合凝胶构筑的功能性药物缓释医用敷料
CN114524950B (zh) 一种疏水药物载体水凝胶及其制备方法和应用
CN108484797B (zh) 烷氧醚树枝化壳聚糖、其水凝胶材料及其制备方法
CN107252501A (zh) 一种负载血根碱/明胶微球的复合水凝胶支架及其制备方法和应用
CN112375250A (zh) 一种纳米银修饰壳聚糖-聚乙烯醇抗菌复合海绵及其制法
CN114392388A (zh) 一种水凝胶组合物及其应用
Ferrer et al. Antibacterial biomimetic hybrid films
CN113813396B (zh) 一种卡那霉素接枝的纤维素基抗菌材料及其制备方法
CN114931588B (zh) 银纳米粒卡那霉素抗菌水凝胶的制备方法
CN112386584B (zh) 一种细菌响应性兽用恩诺沙星复合纳米系统及其制备方法
KR20220037562A (ko) 키토산 및 나노 셀룰로오스를 포함하는 가식성 복합 항균비드 및 이의 제조방법
Song et al. Oxidized cyclodextrin inclusion tea tree oil to prepare long‐lasting antibacterial collagen scaffold for enhanced wound healing
CN107915850A (zh) 含硒壳聚糖水凝胶及其制备、降解方法和应用
Razak et al. Biotechnological production of fungal biopolymers chitin and chitosan: their potential biomedical and industrial applications
CN112807443B (zh) 一种多重协同的抗菌纳米前药
US10781293B2 (en) Process for preparing biocompatible and biodegradable porous three-dimensional polymer matrices and uses thereof
Hao et al. Preparation and antibacterial properties of curcumin-loaded cyclodextrin-grafted chitosan hydrogel
Ren et al. Preparation of caffeic acid grafted chitosan self-assembled micelles to enhance oral bioavailability and antibacterial activity of quercetin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant