CN114927595A - 一种对输入模式不敏感的波导型高响应探测器 - Google Patents

一种对输入模式不敏感的波导型高响应探测器 Download PDF

Info

Publication number
CN114927595A
CN114927595A CN202210321603.6A CN202210321603A CN114927595A CN 114927595 A CN114927595 A CN 114927595A CN 202210321603 A CN202210321603 A CN 202210321603A CN 114927595 A CN114927595 A CN 114927595A
Authority
CN
China
Prior art keywords
waveguide
layer
silicon
germanium
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210321603.6A
Other languages
English (en)
Inventor
武爱民
吴龙生
冯大增
吕东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202210321603.6A priority Critical patent/CN114927595A/zh
Publication of CN114927595A publication Critical patent/CN114927595A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/28Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication
    • G01D5/30Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种对输入模式不敏感的波导型高响应探测器,其特征在于,自下而上包括衬底硅层、氧化硅埋氧层、硅平板波导;所述硅平板波导上方并排设有第一金属电极、锗波导及第二金属电极;其中所述硅平板波导的一侧设有输入波导。本发明打破了传统波导型探测器输入模式为基模的局限,实现了对输入模式不敏感的探测器。

Description

一种对输入模式不敏感的波导型高响应探测器
技术领域
本发明属于探测器领域,特别涉及一种对输入模式不敏感的波导型高响应探测器。
背景技术
硅基光电子技术是将微电子领域低成本、批量化、高集成度的大规模集成电路制造技术与光电子芯片的大带宽、高速率和高抗干扰能力等优势结合起来的一种新兴技术。锗探测器作为硅基光电子学中的重要器件之一,主要实现的功能是将接收到的光信号转化为相应的电信号。在过去的几十年里,人们对锗探测器进行了广泛的研究。空间光入射型探测器由于存在着响应度(用来表征探测器将光转化为电的能力)和电学带宽之间的相互制约关系,逐渐不能满足现代高速通信的要求。波导型探测器不存在上述问题,并且能够实现更加紧凑的结构而更收研究者们的青睐。
目前,人们着重提高探测器的响应度、带宽、暗电流、灵敏度等方面的特性。很少考虑和研究对输入模式不敏感的波导型探测器,或者说现阶段的探测器多不支持多模输入的。这就造成探测器的应用场景局限在基模输入,很难用于实现具有高响应度、具有平顶传输特性的高速光模块接收端。
发明内容
针对现有技术的缺陷,本发明所要解决的技术问题是提供一种对输入模式不敏感的波导型高响应探测器。
本发明的一种对输入模式不敏感的波导型高响应探测器,自下而上包括衬底硅层、氧化硅埋氧层、硅平板波导;所述硅平板波导上方并排设有第一金属电极、锗波导及第二金属电极;其中所述硅平板波导的一侧设有输入波导。
所述硅平板波导和金属电极之间设有金属通孔。
所述硅平板波导表面设有氧化硅包层。
所述锗波导包括锗缓冲层和锗层。
所述输入波导为长方体或正方体。
所述输入波导的宽度大于或等于3μm。
所述输入波导的宽度为小于6μm
所述硅平板波导和输入波导形成“凸”字形。
所述第一金属电极、第二金属电极设于锗波导的两侧。
本发明的一种对输入模式不敏感的波导型高响应探测器的制备方法,包括:
(1)从下而上为衬底硅层、氧化硅埋氧层、顶层硅层的SOI衬底;
(2)刻蚀顶层硅,形成输入波导和平板波导结构;
(3)在顶层硅层上形成锗缓冲层;
(4)锗缓冲层上形成锗层;
(5)在顶层硅部分注入离子,通过热氧化形成氧化硅包层,通过经旋涂光刻胶、曝光、刻蚀形成电极或金属通孔和电极。
上述制备方法的优选方式如下:
所述步骤(3)形成锗缓冲层为采用化学气相沉积法,温度为320-450℃生长一层锗缓冲层。
所述步骤(4)中形成锗层为使用化学气相沉积方法600-850℃生长出锗层。
所述步骤(4)中形成锗层后使用化学机械抛光的方法将锗层平坦化,经过旋涂光刻胶、曝光、刻蚀降低锗层宽度。
本发明的一种对输入模式不敏感的波导型高响应探测器的应用,通过与多模阵列波导光栅的结合,能实现低损耗、高响应度、温度和加工工艺不敏感的光模块接收端。
有益效果
本发明中通过将锗波导型探测器的输入波导拓宽,使其能够容纳的模式数增加,打破了传统波导型探测器输入模式为基模的局限,实现了对输入模式不敏感的探测器。同时,对探测器在1260-1360nm波长范围内的对光的吸收特性进行了仿真,表明探测器在100nm的工作范围内都具备很高的响应度。另外,研究了多模输入波导长度对响应度的影响,结果表明输入波导长度对探测器响应度影响不大。
本发明对探测器在波分复用光模块接收端中的应用进行展望,结合多模波导阵列光栅能实现高响应度、低损耗、高速、工艺容差大的接收端。
附图说明
图1为输入不敏感探测器俯视图(a)、侧视图(b)和正视图(c);
图2为波长1310nm处波导中模式有效折射率随宽度变化;
图3(a)波长1260-1360nm范围内探测器对光的吸收;(b)多模波导区长度对探测器吸收的影响;
图4输入单模波导在垂直方向的位置对探测器吸收的影响。
图5为传统单模输入探测器-俯视图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
如图1所示,本实施提供的对输入模式不敏感的波导型高响应探测器,自下而上包括衬底硅层、氧化硅埋氧层、硅平板波导;所述硅平板波导上方并排设有第一金属电极、锗波导及第二金属电极;其中所述硅平板波导的一侧设有长方体输入波导,所述硅平板波导和输入波导形成“凸”字形,输入波导的宽度Wi为3-6μm。硅平板波导表面设有氧化硅包层。
本实施例提供了对输入模式不敏感的波导型高响应探测器的制备方法,包括:
(1)从下而上为衬底硅层、氧化硅埋氧层、顶层硅层的SOI衬底,其中衬底是700um厚的硅,中间埋氧层2um左右,顶层硅0.22um;
(2)刻蚀顶层硅,形成输入波导和平板波导结构;
(3)在顶层硅层上用化学气相沉积法,温度为320-450℃生长一层薄薄的锗缓冲层;
(4)锗缓冲层上使用化学气相沉积方法,高温600-850℃生长出高质量锗层,使用化学机械抛光的方法将锗层平坦化到想要的厚度,经过旋涂光刻胶、曝光、刻蚀降低锗层高度至几百纳米;
(5)在顶层硅部分注入离子,通过热氧化形成氧化硅包层,经旋涂光刻胶、曝光、刻蚀形成金属通孔和铝电极。
如图2所示给出了波长1310nm处波导中模式有效折射率随波导宽度变化的曲线。从图中可以看出,在波导宽度大于3um以后,波导能容纳的模式数已经到了20个(将模式有效折射率大于埋氧层材料折射率1.45的模式认为是可以被激发出来的)。
响应度可以通过计算锗波导区域对光的吸收的吸收率来得到,如图3(a)和3(b)所示,分别给出了1260-1360nm波长范围内和多模波导区域长度对探测器的吸收率的影响。从图3(a)可以看出,在100nm的波长范围内,探测器都保持着大于0.95的吸收效率,这保证了探测器的高响应度。如图3(b)所示,多模波导区域的长度对探测器的响应度基本上没有影响。
多模输出型波导阵列光栅通常被用来实现具有平顶、低损耗的波分复用器件,当用作接收端时,如果使用普通的单模输入型探测器作为接收器件时,需要将从波导阵列光栅的高阶模式的光先转换成基模,这通常需要很长的波导长度(不同模式需要的长度不一样)。或者采取空间入射型探测器作为接收器件,但是这种探测器的带宽和响应度之间存在折中,并且探测器与波导阵列光栅输出波导之间的耦合会对整个接收端的性能有很大影响。如果直接使用本发明中的输入模式不敏感型探测器,就可以解决上述问题,实现高响应度、低损耗、高速、工艺容差大的接收端。在仿真中,可以在图1(a)的多模波导前加一根宽度为450nm的单模波导(矩形)来模拟波导阵列光栅输出处的光的位置,通过这种方法,可以计算出1310波长处的光被探测器吸收的情况,结果如图4所示。可以看到,在整个多模波导的5μm宽度范围内,探测器对光有很高的吸收,这保证了探测器具有很高的响应度。
对比例1
如图5所示,波导型探测器,其中输入波导为宽度从450nm逐渐变宽至锗波导宽度4μm的锥形波导,其余于本发明均相同。
该输入波导采用单模波导结构,使用较窄的波导来将抑制波导中出现高阶模式,再通过锥形波导结构与这探测器下方的硅平板波导连接,如图5,由于单模波导不支持多模传输,因此这种波导的输入模式被局限在了基模。
当输入的光模式为高阶模时,光会在传输到这探测器中耗散掉,到达锗探测器的光就会少,因此探测器此时的响应度很低。

Claims (10)

1.一种对输入模式不敏感的波导型高响应探测器,其特征在于,自下而上包括衬底硅层、氧化硅埋氧层、硅平板波导;所述硅平板波导上方并排设有第一金属电极、锗波导及第二金属电极;其中所述硅平板波导的一侧设有输入波导。
2.根据权利要求1所述探测器,其特征在于,所述硅平板波导和金属电极之间设有金属通孔。
3.根据权利要求1所述探测器,其特征在于,所述硅平板波导表面设有氧化硅包层。
4.根据权利要求1所述探测器,其特征在于,所述输入波导为长方体或正方体。
5.根据权利要求1所述探测器,其特征在于,所述输入波导的宽度大于或等于3μm。
6.一种对输入模式不敏感的波导型高响应探测器的制备方法,包括:
(1)从下而上为衬底硅层、氧化硅埋氧层、顶层硅层的SOI衬底;
(2)刻蚀顶层硅,形成输入波导和平板波导结构;
(3)在顶层硅层上形成锗缓冲层;
(4)锗缓冲层上形成锗层;
(5)在顶层硅部分注入离子,通过热氧化形成氧化硅包层,通过经旋涂光刻胶、曝光、刻蚀形成电极或金属通孔和电极。
7.根据权利要求6所述制备方法,其特征在于,所述步骤(3)形成锗缓冲层为采用化学气相沉积法,温度为320-450℃生长一层锗缓冲层。
8.根据权利要求6所述制备方法,其特征在于,所述步骤(4)中形成锗层为使用化学气相沉积方法600-850℃生长出锗层。
9.根据权利要求6所述制备方法,其特征在于,所述步骤(4)中形成锗层后使用化学机械抛光的方法将锗层平坦化,经过旋涂光刻胶、曝光、刻蚀降低锗层宽度。
10.一种权利要求1所述一种对输入模式不敏感的波导型高响应探测器的应用。
CN202210321603.6A 2022-03-30 2022-03-30 一种对输入模式不敏感的波导型高响应探测器 Pending CN114927595A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210321603.6A CN114927595A (zh) 2022-03-30 2022-03-30 一种对输入模式不敏感的波导型高响应探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210321603.6A CN114927595A (zh) 2022-03-30 2022-03-30 一种对输入模式不敏感的波导型高响应探测器

Publications (1)

Publication Number Publication Date
CN114927595A true CN114927595A (zh) 2022-08-19

Family

ID=82805644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210321603.6A Pending CN114927595A (zh) 2022-03-30 2022-03-30 一种对输入模式不敏感的波导型高响应探测器

Country Status (1)

Country Link
CN (1) CN114927595A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329285A (en) * 1991-07-18 1994-07-12 The Boeing Company Dually polarized monopulse feed using an orthogonal polarization coupler in a multimode waveguide
CN101464540A (zh) * 2007-12-19 2009-06-24 中国科学院半导体研究所 混合集成单纤三向器
CN105637396A (zh) * 2014-04-04 2016-06-01 华为技术有限公司 具有用于监控2×1光开关断开状态的集成光电二极管的2×1mmi的设备及方法
CN111781675A (zh) * 2020-06-30 2020-10-16 天津大学 一种凸型多模光波导及多模色散调控方法
CN112285826A (zh) * 2020-11-10 2021-01-29 中国科学院上海微系统与信息技术研究所 一种硅基多模光接收器件及其制备方法
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器
CN113191115A (zh) * 2021-05-13 2021-07-30 中国人民解放军国防科技大学 基于dbs算法的可编程任意功率分配器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329285A (en) * 1991-07-18 1994-07-12 The Boeing Company Dually polarized monopulse feed using an orthogonal polarization coupler in a multimode waveguide
CN101464540A (zh) * 2007-12-19 2009-06-24 中国科学院半导体研究所 混合集成单纤三向器
CN105637396A (zh) * 2014-04-04 2016-06-01 华为技术有限公司 具有用于监控2×1光开关断开状态的集成光电二极管的2×1mmi的设备及方法
CN111781675A (zh) * 2020-06-30 2020-10-16 天津大学 一种凸型多模光波导及多模色散调控方法
CN112285826A (zh) * 2020-11-10 2021-01-29 中国科学院上海微系统与信息技术研究所 一种硅基多模光接收器件及其制备方法
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器
CN113191115A (zh) * 2021-05-13 2021-07-30 中国人民解放军国防科技大学 基于dbs算法的可编程任意功率分配器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈鑫 等: ""硅基片上刻蚀衍射光栅及其平坦化设计"", 《激光技术》, vol. 41, no. 03, pages 361 - 366 *

Similar Documents

Publication Publication Date Title
US10197731B2 (en) Optical coupler
CN102323646B (zh) 光栅耦合器及其制作方法
SG181649A1 (en) Photonic integrated circuit having a waveguide-grating coupler
CN105607185B (zh) 提高亚微米硅波导与普通单模光纤耦合效率的结构
CN109324372B (zh) 一种硅光波导端面耦合器
CN112596161B (zh) 一种多层结构的模斑转换器及其实现方法
CN114384632B (zh) 一种基于阵列波导光栅和波导型探测器的模斑转换器
WO2018130285A1 (en) Apparatus and method for coupling light
JP2013200492A (ja) アサーマル・リング光変調器
CN112630901A (zh) 硅光芯片背入射光栅耦合结构及其制作方法
CN113534337A (zh) 一种硅光子芯片光耦合结构加工方法及结构
CN111045154A (zh) 波导到光纤三维聚合物垂直耦合器
CN113376743B (zh) 一种基于长周期光栅的模斑转换器
CN113406745A (zh) 一种波导到光纤三维聚合物水平透镜耦合器
CN114927595A (zh) 一种对输入模式不敏感的波导型高响应探测器
CN214954215U (zh) 一种凸型自增强聚焦耦合光栅耦合器
CN112379489B (zh) 一种硅基wdm接收器件及其制备方法
Wang et al. Monolithic Waveguide-Integrated Group IV Multiple-Quantum-Well Photodetectors on 300 mm Si Substrates
CN115616703A (zh) 基于双层氮化硅结构的光栅耦合器及其制作方法
CN114966973A (zh) 一种InP/InGaAsP模斑转换器及其制作方法
CN103809238A (zh) 亚波长y分支波导及制备方法
Ives et al. Subtractive photonics in bulk cmos
CN113050220A (zh) 一种渐变弯曲波导器件
Wang et al. Monolithic Waveguide Group IV Multiple-Quantum-Well Photodetectors and Modulators on 300-mm Si Substrates for 2-μm Wavelength Optoelectronic Integrated Circuit
CN111624708A (zh) 一种cmos工艺兼容的纵向光学耦合系统及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination