CN114924269A - 一种基于星载f-scan sar的距离向模糊度分析方法 - Google Patents

一种基于星载f-scan sar的距离向模糊度分析方法 Download PDF

Info

Publication number
CN114924269A
CN114924269A CN202210529107.XA CN202210529107A CN114924269A CN 114924269 A CN114924269 A CN 114924269A CN 202210529107 A CN202210529107 A CN 202210529107A CN 114924269 A CN114924269 A CN 114924269A
Authority
CN
China
Prior art keywords
distance
calculating
mapping
sampling point
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210529107.XA
Other languages
English (en)
Other versions
CN114924269B (zh
Inventor
王鹏波
刘雨晴
郭亚男
何涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202210529107.XA priority Critical patent/CN114924269B/zh
Publication of CN114924269A publication Critical patent/CN114924269A/zh
Application granted granted Critical
Publication of CN114924269B publication Critical patent/CN114924269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9056Scan SAR mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开一种基于星载F‑SCANSAR的距离向模糊度分析方法,通过计算F‑SCANSAR在脉冲内实现波束扫描这一新型工作方式下测绘带内各采样点接收信号的参数,并确定该工作模式下模糊区的分布位置及模糊区每个模糊点接收到的波束参数,从而得到测绘带采样点及模糊区的模糊点经波束扫描后的最终积累能量,进一步确定测绘带上每个采样点距离向模糊度,并绘制出了距离向模糊度随地距变化的曲线和测绘带上各采样点在刚好进入波束、处于波束中心位置和刚好离开波束时,其对应的模糊区在天线方向图上的位置分布图,便于系统设计者更好地分析系统的参数与性能,能够直观地反应距离向模糊度在整个场景内的变化。

Description

一种基于星载F-SCAN SAR的距离向模糊度分析方法
技术领域
本发明属于信号处理领域,具体涉及一种基于星载F-SCAN SAR的距离向模糊度分析方法。
背景技术
合成孔径雷达(Synthetic Aperture Radar,SAR)是一种主动式的对地观测系统,具备全天时、全天候的成像能力,在全球军事侦察、环境遥感、自然灾害检测等领域发挥了不可替代的作用。高分辨率宽幅成像是星载SAR领域中的一个重要研究方向,许多学者针对这一目标展开了大量研究,提出了一些新的体制、技术、模式等。如今距离向常用的实现高分辨率宽幅成像的方法是将多通道技术与数字波束形成(DBF)技术结合,但这种方法会产生较大的数据量并且无法在发射时实现高增益。F-SCAN SAR于2017年被提出,它在发射端和接收端都采用高增益的窄波束,能够很好地实现高分辨率宽幅成像,并具备许多其他的优良性能。
在星载SAR中,发射和接收一个脉冲信号之间间隔多个脉冲重复周期。在有用信号到达雷达的同时,会有与它发射时间相差整数个脉冲重复周期的其他回波信号同时被雷达接收,从而产生距离向模糊。图1为距离向模糊示意图。这时天线波束的旁瓣信号被测绘带外的区域接收并反射回雷达,与目标区域的回波信号混叠,导致图像质量下降甚至产生虚假目标。因此,距离向模糊度是星载SAR在系统设计和波位选择时的一个重要指标。
传统SAR在距离向通常是采用小孔径天线实现宽波束覆盖,而F-SCAN SAR在距离向采用的是频率扫描的方式:通过发射一个上变频啁啾信号实现窄波束从远端到近端的扫描,故在距离向模糊的分析上与传统模式有较大不同。目前针对F-SCAN SAR的研究内容相对较少,并且没有关于距离向模糊度的详细分析方法被提出。
发明内容
针对上述问题,本发明提出了一种基于星载F-SCAN SAR的距离向模糊度分析方法,通过分析F-SCAN SAR中模糊区位置的分布以及计算测绘带和模糊区上每个点接收到的信号参数及与波束中心的夹角,从而得到这些区域上每个采样点的天线方向图和波束扫描过程中积累的能量,最终确定了F-SCAN SAR的距离向模糊度。
本发明提出了一种基于星载F-SCAN SAR的距离向模糊度分析方法,具体包括以下几个步骤:
步骤一:初始化光速的值,并读入星载SAR系统的相关参数,包括卫星高度,平均地球半径,雷达中心频率,发射信号带宽,天线距离向尺寸。
初始化开普勒常数,计算卫星到地心的距离和卫星速度;读取选取的波位参数,包括脉冲重复频率,测绘带的近端地距和远端地距,并计算出测绘带近端和远端的一些距离和角度参数,包括测绘带近端对应的地心角,远端对应的地心角,测绘带的近端对应的斜距,测绘带的远端对应的斜距,测绘带的近端对应的视角与远端对应的视角。
步骤二:对测绘带进行均匀分块采样,计算每个采样点接收到的信号参数,包括频率fi、波长λi和对应的瞬时波束宽度θi_beam
步骤三:确定向雷达反射信号的模糊区范围。
(1)计算模糊区的最大斜距RangeMax和最小斜距RangeMin。
(2)计算实际最小模糊区的序号SequenceMin和最大模糊区的序号SequenceMax。
(3)设定最大模糊区序号,将待计算的模糊区序号限定在-A到A之间;将实际计算得到的最小模糊区序号SequenceMin和最大模糊区序号SequenceMax与预先设定的最大模糊区范围-A~A对比,取二者交集。
步骤四:找到测绘带上每个采样点在不同模糊区上的对应点,并计算测绘带上每个采样点的入射角θi和视角αi,以及对应模糊区每个模糊点的入射角θij和视角αij
步骤五:计算每个采样点经历波束扫描后的天线方向图的积累结果,方法为:
1)计算第i个采样点处于天线3dB波束过程中波束中心指向的起始位置和终止位置。
2)对测绘带上第i个采样点经历的波束中心指向变化角度进行T点均匀采样,T取奇数。计算瞬时波束中心指向角度。
3)计算t时刻测绘带和模糊区上每个采样点在天线方向图上的位置θi_t和θij_t
4)计算测绘带上第i个采样点积累的方向图Gi及其在第j个模糊区的对应点积累的天线方向图Gij
Figure BDA0003645477450000021
Figure BDA0003645477450000022
其中,Lr为天线距离向尺寸,λi为测绘带上第i个采样点接收到的信号波长,t表示从目标刚好进入天线3dB波束到刚好离开3dB波束的这段时间。
步骤六:计算测绘带和模糊区上每个采样点的能量。
步骤七:计算测绘带上第i个采样点的距离向模糊度。
步骤八:计算测绘带上每个采样点的地距并绘制距离向模糊度随地距的变化曲线和测绘带上各采样点在刚好进入波束、处于波束中心位置和刚好离开波束时,其对应的模糊区在天线方向图上的位置分布图。
本发明的优点在于:
(1)本发明基于星载F-SCAN SAR的距离向模糊度分析方法,分析了F-SCAN SAR在脉冲内实现波束扫描这一新型工作方式下测绘带内各点接收信号的参数,确定了该工作模式下模糊区的分布位置并找到了模糊区每个点接收到的波束参数,给出了采样点经波束扫描后计算最终积累能量的方法,得出了测绘带上每个采样点距离向模糊度,最终绘制出了距离向模糊度随地距变化的曲线和测绘带上各采样点在刚好进入波束、处于波束中心位置和刚好离开波束时,其对应的模糊区在天线方向图上的位置分布图,便于系统设计者更好地分析系统的参数与性能,能够直观地反应距离向模糊度在整个场景内的变化。
(2)本发明基于星载F-SCAN SAR的距离向模糊度分析方法,距离向模糊度的精确计算对F-SCAN SAR在进行系统设计和波位选择的过程十分重要,该发明具有较高的实用价值。
附图说明
图1是本发明的距离向模糊示意图;
图2是本发明提出的一种基于星载F-SCAN SAR的距离向模糊度分析方法的流程图;
图3是本发明的距离向几何关系示意图;
图4是本发明的F-SCAN SAR发射信号频率随斜距变化的示意图;
图5是本发明的确定模糊区位置的流程图;
图6是本发明的最大模糊区范围示意图;
图7是本发明的确定测绘带某一采样点在第j个模糊区对应点位置的示意图;
图8是本发明的对每个模糊区采样点赋予标志值的流程图;
图9是本发明测绘带上某一采样点在刚好进入波束和刚好离开波束时的示意图;
图10是本发明的仿真数据绘制所得的随地距变化的距离向模糊度的曲线;
图11是本发明的仿真数据绘制所得的不同时刻模糊区在天线方向图上的位置分布图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
本发明提出了一种基于星载F-SCAN SAR的距离向模糊度分析方法,如图2所示,具体包括以下几个步骤:
步骤一:进行常量的初始化设置并读入星载SAR系统的相关参数和选取的波位等参数。
(1)首先初始化光速c的值;然后读入星载SAR系统的相关参数,包括卫星高度H,平均地球半径Re,雷达中心频率freq_0,发射信号带宽B_chirp,天线距离向尺寸Lr;
本实施方式中具体参数为:c=3.0×108m/s,H=514km,Re=6371140m,Lr=1m,freq_0=9800MHz,B_chirp=1200MHz;
(2)初始化开普勒常数u,计算卫星到地心的距离Rh和卫星速度v_sat:
Rh=Re+H (1)
Figure BDA0003645477450000041
本实施方式中具体参数为:u=3.986×1014,Rh=6885140m,v_sat=7608.7m/s;
(3)读入选取的波位参数,包括脉冲重复频率PRF,测绘带的近端地距Rg_n和远端地距Rg_f。并根据图3展示的距离向几何关系计算出测绘带近端和远端的一些距离和角度参数,包括以下部分:
Figure BDA0003645477450000042
Figure BDA0003645477450000043
Figure BDA0003645477450000044
Figure BDA0003645477450000045
Figure BDA0003645477450000046
Figure BDA0003645477450000047
其中,
Figure BDA0003645477450000048
为测绘带近端对应的地心角,
Figure BDA0003645477450000049
为远端对应的地心角,R_n为测绘带的近端对应的斜距,R_f为测绘带的远端对应的斜距,αn为测绘带的近端对应的视角,αf为远端对应的视角。
本实施方式中的具体参数为:PRF=4800Hz,Rg_n=265km,Rg_f=290km,根据公式(3)-(8)可以计算得到
Figure BDA00036454774500000410
R_n=583.16km,R_f=595.87km,αn=0.4716,αf=0.5081。
步骤二:对测绘带进行均匀分块采样,计算每个采样点接收到的信号参数,如图4所示。
(1)设置采样点个数为N,N取奇数;
(2)计算每相邻两个采样点之间的频率差值:
Δf=B_chirp/(N-1) (9)
(3)计算每个采样点接收的信号频率fi:从测绘带的远端到近端接收的信号频率分别对应(freq_0-B_chirp/2),(freq_0-B_chirp/2)+Δf,(freq_0-B_chirp/2)+2Δf,…freq_0-Δf,freq_0,freq_0+Δf,…,(freq_0+B_chirp/2)-Δf,(freq_0+B_chirp/2),其中每两个相邻采样点接收信号的频率相差Δf;
(4)计算每个采样点接收信号的波长λi和对应的瞬时波束宽度θi_beam
λi=c/fi (10)
θi_beam=λi/Lr (11)
本实施方式N取101,测绘带的远端到近端采样点接收信号的频率分别对应9200MHz到10400MHz,每相邻两个采样点频率相差Δf=12MHz,根据不同的i值得到不同的fi,λi和θi_beam
步骤三:确定模糊区范围,如图5所示。
(1)如图6所示,计算可能向雷达反射信号的区域(即可能存在的模糊区)的最大斜距RangeMax和最小斜距RangeMin:
Figure BDA0003645477450000051
RangeMin=H (13)
本实施例中计算得到RangeMax=2610.3km,RangeMin=514km;
(2)计算实际最小模糊区的序号SequenceMin和最大模糊区的序号SequenceMax:
Figure BDA0003645477450000052
Figure BDA0003645477450000053
其中,PRF为脉冲重复频率,
Figure BDA0003645477450000054
表示取不大于x的整数,
Figure BDA0003645477450000055
表示取不小于x的整数。
(3)设定一个最大模糊区序号,将待计算的模糊区序号限定在-A到A之间;实施方式中设定,A=10。将实际计算得到的最小模糊区序号SequenceMin和最大模糊区序号SequenceMax与预先设定的最大模糊区范围-10~10对比,取二者交集进行之后的分析计算;
本实施例中计算得到SequenceMin=-3,SequenceMax=65,经过步骤(3)的比较最终取模糊区序号范围-3~10。
步骤四:找到测绘带上每个采样点在不同模糊区上的对应的模糊点,并计算其斜距、入射角、视角等参数。
(1)首先计算测绘带上每个采样点的斜距,第i个采样点的斜距为:
Ri=R_n+ΔR·(i-1) (16)
由步骤二(1)中设定的采样点个数N可得相邻两个采样点的斜距相差ΔR=(R_f-R_n)/(N-1),因此斜距序列的值从测绘带近端到远端为从R_n到R_f,步长为ΔR。本实施方式中ΔR=127.1m。
(2)如图7所示,测绘带上第i个采样点在第j个模糊区上对应的模糊点的斜距为:
Figure BDA0003645477450000056
并将计算得到的模糊点斜距Rij与模糊点可能的最大斜距RangeMax与最小斜距RangeMin比较,如图8所示,对超出模糊区可能范围的点赋标志值RangeFlagij=0,未超出范围则RangeFlagij=1。在本实施的方式中根据不同的i,j值得到不同的Ri和Rij,并且判断序号为-3的模糊区的斜距Rij全部小于RangeMin的值,因此RangeFlagi,-3=0,该模糊区被舍去。
(3)根据图3所示的几何关系计算测绘带上每个采样点的入射角θi和视角αi,以及对应模糊区每个模糊点的入射角θij和视角αij
Figure BDA0003645477450000061
Figure BDA0003645477450000062
Figure BDA0003645477450000063
Figure BDA0003645477450000064
在本实施方式中可以根据不同的i,j值计算得到对应的角度θi,αi,θij和αij
步骤五:如图9所示,计算每个采样点经历波束扫描后积累的天线方向图结果。
(1)计算第i个采样点处于天线3dB波束过程中波束中心指向的起始位置和终止位置:
αi_far=αii_beam/2 (22)
αi_near=αii_beam/2 (23)
其中,αi_far为第i个采样点刚进入天线3dB波束时波束中心的指向角度,αi_near为第i个采样点刚离开天线3dB波束时波束中心的指向角度,θi_beam为第i个采样点接收到雷达发射窄波束的3dB宽度。
(2)对测绘带上第i个采样点经历的波束中心指向变化角度进行T点均匀采样,T取奇数。计算瞬时波束中心指向角度:
Figure BDA0003645477450000065
αi_t=αi_far-(t-1)·Δα (25)
其中,Δα为相邻采样时刻波束中心指向角的差值,αi_t为第t时刻波束中心指向角度。本实施方式中T=101。
(3)计算t时刻测绘带和模糊区上每个采样点在天线方向图上的位置:
θi_t=αii_t (26)
θij_t=αiji_t (27)
其中,αi为测绘带上第i个采样点的视角,αij为测绘带上第i个采样点在第j个模糊区上对应的点的视角,θi_t为t时刻测绘带上第i个采样点与波束中心的夹角,θij_t为t时刻测绘带上第i个采样点在第j个模糊区上对应点与波束中心的瞬时夹角。
(4)计算测绘带上第i个采样点积累的方向图Gi及其在第j个模糊区的对应点积累的天线方向图Gij
Figure BDA0003645477450000071
Figure BDA0003645477450000072
其中Lr为天线距离向尺寸,λi为测绘带上第i个采样点接收到的信号波长,t表示从目标刚好进入天线3dB波束到刚好离开3dB波束的这段时间。在本实施方式中,根据不同采样点的i,j值可以计算得到其经历波束扫描过程中涉及的角度αi_t,θi_t和θij_t,并得到不同的Gi和Gij值。
步骤六:计算每个采样点的能量。测绘带上第i个采样点的能量Ei和其对应的第j个模糊区上点的能量Eij如下:
Figure BDA0003645477450000073
Figure BDA0003645477450000074
Figure BDA0003645477450000075
其中,σ0为后向散射系数,θi和Ri分别为测绘带上第i个采样点的入射角和斜距,θij和Rij分别为对应在第j个模糊区上点的入射角和斜距,RangeFlagij为步骤四(2)中得到的标志值。Eai为测绘带上第i个采样点在所有模糊区上对应点的能量总和,SequenceMin为模糊区的最小序号,SequenceMax为模糊区的最大序号。本实施方式中根据i和j的不同取值得到Ei,Eij和Eai的值。
步骤七:计算测绘带上第i个采样点的距离向模糊度RASRi
Figure BDA0003645477450000076
其中,Ei为测绘带上第i个采样点在经历窄波束扫描后积累的能量,Eai为该采样点对应所有模糊点的能量总和。在本实施方式中,根据不同的i值得到不同的RASRi
步骤八:计算测绘带上每个采样点的地距并绘制距离向模糊度随地距的变化曲线和测绘带上各采样点在刚好进入波束、处于波束中心位置和刚好离开波束时,其对应的模糊区在天线方向图上的位置分布图。
采用本发明提出一种基于星载F-SCAN SAR的距离向模糊度分析方法进行计算,得出的本实施方式的仿真数据,对仿真数据进行绘制得到距离向模糊度的曲线,如图10所示,该曲线直观反映距离向模糊度在整个场景内的变化情况,便于系统设计者及决策者通过曲线做出正确的判断;对仿真过程中模糊区在天线方向图上的位置分布图进行绘制,如图11所示,图中整个细实线表示完整的天线方向图,粗实现表示不同模糊区对应的部分天线方向图;该图反映了不同时刻模糊区在天线方向图的不同位置,体现了F-SCAN SAR的特性,并能够直观地反应距离向模糊信号在整个场景内的变化,便于对距离向模糊度的计算过程进行分析。本发明提出的距离向模糊度分析和计算方法在F-SCAN SAR进行系统设计和波位选择的过程中具有重要意义,具有较高的实用价值。

Claims (3)

1.一种基于星载F-SCAN SAR的距离向模糊度分析方法,其特征在于:步骤为:
步骤一:初始化光速的值,并读入星载SAR系统的相关参数,包括卫星高度,平均地球半径,雷达中心频率,发射信号带宽,天线距离向尺寸;初始化开普勒常数,计算卫星到地心的距离和卫星速度;读取选取的波位参数,包括脉冲重复频率,测绘带的近端地距和远端地距,并计算出测绘带近端和远端的一些距离和角度参数,包括测绘带近端对应的地心角,远端对应的地心角,测绘带的近端对应的斜距,测绘带的远端对应的斜距,测绘带的近端对应的视角与远端对应的视角;
步骤二:对测绘带进行均匀分块采样,计算每个采样点接收到的信号参数,包括波长λi和对应的瞬时波束宽度θi_beam
步骤三:确定向雷达反射信号的模糊区范围:
(1)计算模糊区的最大斜距RangeMax和最小斜距RangeMin;
(2)计算实际最小模糊区的序号SequenceMin和最大模糊区的序号SequenceMax;
(3)设定最大模糊区序号,将待计算的模糊区序号限定在-A到A之间;
(4)将实际计算得到的最小模糊区序号SequenceMin和最大模糊区序号SequenceMax与预先设定的最大模糊区范围-A~A对比,取二者交集。
步骤四:找到测绘带上每个采样点在不同模糊区上的对应点,并计算测绘带上每个采样点的入射角θi和视角αi,以及对应模糊区每个模糊点的入射角θij和视角αij
步骤五:计算每个采样点经历波束扫描后的天线方向图的积累结果,方法为:
1)计算第i个采样点处于天线3dB波束过程中波束中心指向的起始位置和终止位置:
2)对测绘带上第i个采样点经历的波束中心指向变化角度进行T点均匀采样,T取奇数;计算瞬时波束中心指向角度;
3)计算t时刻测绘带和模糊区上每个采样点在天线方向图上的位置θi_t和θij_t
4)计算测绘带上第i个采样点积累的方向图Gi及其在第j个模糊区的对应点积累的天线方向图Gij
Figure FDA0003645477440000011
Figure FDA0003645477440000012
其中,Lr为天线距离向尺寸,λi为测绘带上第i个采样点接收到的信号波长,t表示从目标刚好进入天线3dB波束到刚好离开3dB波束的这段时间;
步骤六:计算每个采样点的能量;
步骤七:计算测绘带上第i个采样点的距离向模糊度;
步骤八:计算测绘带上每个采样点的地距并绘制距离向模糊度随地距的变化曲线和测绘带上各采样点在刚好进入波束、处于波束中心位置和刚好离开波束时,其对应的模糊区在天线方向图上的位置分布图。
2.如权利要求1所述一种基于星载F-SCAN SAR的距离向模糊度分析方法,其特征在于:步骤二具体方法为:
a、设置采样点个数为N,N取奇数;
b、计算每相邻两个采样点之间的频率差值:
Δf=B_chirp/(N-1)
其中,B_chirp为发射信号带宽;
c、计算每个采样点接收的信号频率fi:从测绘带的远端到近端接收的信号频率分别对应(freq_0-B_chirp/2),(freq_0-B_chirp/2)+Δf,(freq_0-B_chirp/2)+2Δf,…freq_0-Δf,freq_0,freq_0+Δf,…,(freq_0+B_chirp/2)-Δf,(freq_0+B_chirp/2),其中每两个相邻采样点接收信号的频率相差Δf;freq_0为雷达中心频率;
d、计算每个采样点接收信号的波长λi和对应的瞬时波束宽度θi_beam
λi=c/fi
θi_beam=λi/Lr;
式中,c为光速值。
3.如权利要求1所述一种基于星载F-SCAN SAR的距离向模糊度分析方法,其特征在于:步骤四具体方法为:
A、计算测绘带上每个采样点的斜距
B、测绘带上第i个采样点在第j个模糊区上对应点的斜距Rij;并将实际得到的斜距Rij与模糊区最大斜距RangeMax与最小斜距RangeMin比较,对超出模糊区范围的点赋标志值RangeFlagij=0,未超出范围则设定RangeFlagij=1;
C、计算测绘带上每个采样点的入射角θi和视角αi,以及对应模糊区每个采样点的入射角θij和视角αij
CN202210529107.XA 2022-05-16 2022-05-16 一种基于星载f-scan sar的距离向模糊度分析方法 Active CN114924269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210529107.XA CN114924269B (zh) 2022-05-16 2022-05-16 一种基于星载f-scan sar的距离向模糊度分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210529107.XA CN114924269B (zh) 2022-05-16 2022-05-16 一种基于星载f-scan sar的距离向模糊度分析方法

Publications (2)

Publication Number Publication Date
CN114924269A true CN114924269A (zh) 2022-08-19
CN114924269B CN114924269B (zh) 2024-04-09

Family

ID=82809465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210529107.XA Active CN114924269B (zh) 2022-05-16 2022-05-16 一种基于星载f-scan sar的距离向模糊度分析方法

Country Status (1)

Country Link
CN (1) CN114924269B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500550A (zh) * 2023-06-27 2023-07-28 中国科学院空天信息创新研究院 一种星载sar距离模糊抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957449A (zh) * 2010-04-06 2011-01-26 北京航空航天大学 一种星载topsar模式下方位向模糊度的优化方法
CN102736073A (zh) * 2012-06-19 2012-10-17 北京航空航天大学 一种通用模式下星载sar距离向模糊度的计算方法
EP2762917A2 (en) * 2013-11-22 2014-08-06 Institute of Electronics, Chinese Academy of Sciences Sliding spotlight synthetic aperture radar, and method and device for implementing sliding spotlight SAR
CN107907880A (zh) * 2017-09-30 2018-04-13 西安空间无线电技术研究所 一种星载简缩极化sar模糊度分析系统、方法及存储器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957449A (zh) * 2010-04-06 2011-01-26 北京航空航天大学 一种星载topsar模式下方位向模糊度的优化方法
CN102736073A (zh) * 2012-06-19 2012-10-17 北京航空航天大学 一种通用模式下星载sar距离向模糊度的计算方法
EP2762917A2 (en) * 2013-11-22 2014-08-06 Institute of Electronics, Chinese Academy of Sciences Sliding spotlight synthetic aperture radar, and method and device for implementing sliding spotlight SAR
CN107907880A (zh) * 2017-09-30 2018-04-13 西安空间无线电技术研究所 一种星载简缩极化sar模糊度分析系统、方法及存储器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
齐维孔;禹卫东;黄平平;: "基于DBF技术的星载SAR宽测绘带实现方法", 数据采集与处理, no. 03, 15 May 2010 (2010-05-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500550A (zh) * 2023-06-27 2023-07-28 中国科学院空天信息创新研究院 一种星载sar距离模糊抑制方法
CN116500550B (zh) * 2023-06-27 2023-08-25 中国科学院空天信息创新研究院 一种星载sar距离模糊抑制方法

Also Published As

Publication number Publication date
CN114924269B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN109946665B (zh) 基于阵列雷达的获取真实目标的方法
CN101957449B (zh) 一种星载topsar模式下方位向模糊度的优化方法
CN111352107B (zh) 基于多通道数字和差的单脉冲跟踪与成像方法
JPH07244158A (ja) 合成開口レーダ画像の画質評価方法
CN111257878B (zh) 基于俯仰维频率脉内扫描高分宽幅sar的波形设计方法
JPH0980146A (ja) レーダ装置
CN114924269B (zh) 一种基于星载f-scan sar的距离向模糊度分析方法
Foessel et al. Short-range millimeter-wave radar perception in a polar environment
US20180074180A1 (en) Ultrafast target detection based on microwave metamaterials
CN113406639A (zh) 基于车载移动式雷达的fod检测方法、系统及介质
US6650274B1 (en) Radar imaging system and method
CN113030970A (zh) 基于方位频扫的二维扫描高分宽幅sar的波形设计方法
CN116719023A (zh) Gpr能量聚焦和分辨率联合约束下的介质介电常数估计方法
CN115436940A (zh) 一种稀疏滑动聚束sar成像模式实现方法及装置
US6356227B1 (en) Smearing compensation apparatus for a radar system
US5742250A (en) Enhanced beamsplitting technique for use with three-dimensional synthetic array radar
CN110554361B (zh) 一种mimo体制下发射波形参数设计的方法
US6650272B2 (en) Radar system and method
CN112748432B (zh) 机载sar交替执行条带模式与广域mti模式的方法及装置
Vattulainen et al. Amplitude distribution of low grazing angle G-band littoral sea clutter
Tanelli et al. Rainfall and snowfall observations by the airborne dual-frequency precipitation radar during the Wakasa Bay Experiment
CN116626629B (zh) 一种星载斜视sar系统模糊综合性能评估方法
Tanelli et al. Processing of high-resolution multiparametric radar data for the Airborne Dual-Frequency Precipitation Radar APR-2
CN114942441B (zh) 一种渐进扫描地形观测模式扫描参数确定方法
CN111781571B (zh) 一种采用机动波束的一维dbf雷达目标精细化探测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant