CN114921805B - MoO2-Mo2C-C电催化析氢催化剂及制备方法 - Google Patents

MoO2-Mo2C-C电催化析氢催化剂及制备方法 Download PDF

Info

Publication number
CN114921805B
CN114921805B CN202210540519.3A CN202210540519A CN114921805B CN 114921805 B CN114921805 B CN 114921805B CN 202210540519 A CN202210540519 A CN 202210540519A CN 114921805 B CN114921805 B CN 114921805B
Authority
CN
China
Prior art keywords
moo
layer
hydrogen evolution
electrocatalytic hydrogen
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210540519.3A
Other languages
English (en)
Other versions
CN114921805A (zh
Inventor
唐辉
张兴龙
廖天浩
朱斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210540519.3A priority Critical patent/CN114921805B/zh
Publication of CN114921805A publication Critical patent/CN114921805A/zh
Application granted granted Critical
Publication of CN114921805B publication Critical patent/CN114921805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

一种MoO2‑Mo2C‑C电催化析氢催化剂及制备方法,属于催化剂制备技术领域。所述催化剂包括MoO2颗粒,包覆于MoO2颗粒表面的Mo2C层,以及包覆于Mo2C层表面的碳层;MoO2颗粒与Mo2C层形成异质结构,MoO2颗粒的粒径为20~500nm,Mo2C层的厚度为5~20nm;碳层为多孔结构,孔径为1~5nm,厚度为20~100nm。本发明采用等离子体增强化学气相沉积法一步制得了MoO2‑Mo2C‑C催化剂,制得的催化剂具有核壳结构和较高的比表面积,可应用于电催化析氢,具有良好的全pH电催化析氢活性,在清洁能源生产和环境保护方面具有重要的实际应用价值。

Description

MoO2-Mo2C-C电催化析氢催化剂及制备方法
技术领域
本发明属于催化剂制备技术领域,具体涉及一种核壳多孔结构MoO2-Mo2C-C电催化析氢催化剂及制备方法。
背景技术
随着世界经济的快速发展,人类社会对化石燃料的消耗不断增加,由此带来的气候变化和环境污染问题亟待解决。在各国推动能源转型的大背景下,清洁和可再生能源的利用迫在眉睫。氢能具有来源广泛、可再生、高燃烧热、零污染等诸多优势,受到了越来越多研究者的广泛关注。目前,制备氢气主要采用电解水的方法,电解水制氢方便高效,产物氢气也易于分离,具有良好的应用前景。但是,由于电解水所需电压大,能耗高,导致制氢成本高,因此开发电催化剂降低电解水的电压以便于商业化应用显得尤为重要。铂基材料由于其独特的贵金属电子结构,具有很好的电催化析氢性能,但由于其成本高昂,并不适合大规模商业化应用,因此开发低成本高活性的电催化析氢催化剂非常必要。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种MoO2-Mo2C-C电催化析氢催化剂及制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种MoO2-Mo2C-C电催化析氢催化剂,包括MoO2颗粒,包覆于MoO2颗粒表面的Mo2C层,以及包覆于Mo2C层表面的碳层;其中,所述MoO2颗粒与Mo2C层形成异质结构,所述MoO2颗粒的粒径为20~500nm,Mo2C层的厚度为5~20nm;所述碳层为多孔结构,碳层孔径为1~5nm,厚度为20~100nm。
一种MoO2-Mo2C-C电催化析氢催化剂的制备方法,包括以下步骤:
步骤1、将MoO3置于石英舟,并放入等离子体增强化学气相沉积系统;
步骤2、采用等离子体增强化学气相沉积法在MoO3表面沉积Mo2C层和碳层,得到MoO2-Mo2C-C三层结构;其中,反应气体为甲烷,等离子体放电功率为300W~800W,放电时间为5min~8min,反应压力为5Pa~50Pa,甲烷的流量为50~150mL/min;
步骤3、步骤2得到的MoO2-Mo2C-C三层结构在去离子水和乙醇中清洗,烘干,即可得到所述MoO2-Mo2C-C电催化析氢催化剂。
进一步的,所述MoO3的粒径为20~500nm。
与现有技术相比,本发明的有益效果为:
本发明提供的一种MoO2-Mo2C-C电催化析氢催化剂及制备方法,采用等离子体增强化学气相沉积法一步制得了MoO2-Mo2C-C催化剂,制得的催化剂具有核壳结构和较高的比表面积,可应用于电催化析氢,具有良好的全pH电催化析氢活性,在清洁能源生产和环境保护方面具有重要的实际应用价值。
附图说明
图1为实施例1制备得到的MoO2-Mo2C-C电催化析氢催化剂的SEM图;
图2为实施例3制备得到的MoO2-Mo2C-C电催化析氢催化剂的SEM图;
图3为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的TEM图;
图4为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的HRTEM图;
图5为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的XRD图;
图6为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的XPS全谱;
图7为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在酸性条件下的线性极化曲线;
图8为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在碱性条件下的线性极化曲线;
图9为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在碱性条件下不同扫速下的CV曲线图;
图10为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂根据不同扫速下测得的CV图拟合得到的双电层电容图。
具体实施方式
下面结合具体实施例对本发明做进一步解释和说明。
实施例1
一种MoO2-Mo2C-C电催化析氢催化剂的制备方法,包括以下步骤:
步骤1、称取1g粒径为200nm的MoO3置于石英舟,并放入等离子体增强化学气相沉积系统;
步骤2、采用等离子体增强化学气相沉积法在MoO3表面沉积Mo2C层和碳层,得到MoO2-Mo2C-C三层结构;其中,反应气体为甲烷,等离子体放电功率为300W,放电时间为8min,反应压力为5Pa,甲烷的流量为50mL/min;
步骤3、步骤2得到的MoO2-Mo2C-C三层结构在去离子水和乙醇中分别清洗3次,烘干,即可得到所述MoO2-Mo2C-C电催化析氢催化剂,制得的催化剂中Mo2C层的厚度为8nm,碳层厚度为30nm、孔径为2nm。
实施例2
一种MoO2-Mo2C-C电催化析氢催化剂的制备方法,包括以下步骤:
步骤1、称取1g粒径为300nm的MoO3置于石英舟,并放入等离子体增强化学气相沉积系统;
步骤2、采用等离子体增强化学气相沉积法在MoO3表面沉积Mo2C层和碳层,得到MoO2-Mo2C-C三层结构;其中,反应气体为甲烷,等离子体放电功率为400W,放电时间为6min,反应压力为50Pa,甲烷的流量为100mL/min;
步骤3、步骤2得到的MoO2-Mo2C-C三层结构在去离子水和乙醇中分别清洗3次,烘干,即可得到所述MoO2-Mo2C-C电催化析氢催化剂,制得的催化剂中Mo2C层的厚度为10nm,碳层厚度为40nm、孔径为3nm。
实施例3
一种MoO2-Mo2C-C电催化析氢催化剂的制备方法,包括以下步骤:
步骤1、称取1g粒径为500nm的MoO3置于石英舟,并放入等离子体增强化学气相沉积系统;
步骤2、采用等离子体增强化学气相沉积法在MoO3表面沉积Mo2C层和碳层,得到MoO2-Mo2C-C三层结构;其中,反应气体为甲烷,等离子体放电功率为800W,放电时间为5min,反应压力为25Pa,甲烷的流量为150mL/min;
步骤3、步骤2得到的MoO2-Mo2C-C三层结构在去离子水和乙醇中分别清洗3次,烘干,即可得到所述MoO2-Mo2C-C电催化析氢催化剂,制得的催化剂中Mo2C层的厚度为20nm,碳层厚度为80nm、孔径为5nm。
图1为实施例1制备得到的MoO2-Mo2C-C电催化析氢催化剂的SEM图;由图1可知,制得的MoO2-Mo2C-C电催化析氢催化剂为片层结构,片层厚度约为200nm。
图2为实施例3制备得到的MoO2-Mo2C-C电催化析氢催化剂的SEM图;由图2可知,制得的MoO2-Mo2C-C电催化析氢催化剂为片层结构,片层厚度约为500nm。
图3为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的低倍率TEM图;由图3可知,制得的MoO2-Mo2C-C电催化析氢催化剂为核壳多孔结构,Mo2C层的厚度为10nm,碳层为多孔结构,其厚度为40nm、孔径为3nm。多孔碳层结构有利于水和氢离子的扩散,增大了水和氢离子与电催化剂的接触面积,有效提高了MoO2-Mo2C-C的电催化活性。
图4为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的HRTEM图;由图4可知,制得的MoO2-Mo2C-C电催化析氢催化剂为三层核壳结构,在图中可以观察到MoO2的晶格结构和Mo2C的晶格结构,其中内层晶格间距有两处d=0.243nm和d=0.342nm,分别归属于MoO2的(-211)晶面和(011)晶面,中间层晶格间距有两处,d=0.229nm和d=0.261nm,分别归属于Mo2C的(101)晶面和(100)晶面。Mo2C层约为10nm,MoO2与Mo2C层形成MoO2-Mo2C异质结构,异质结构的形成可以有效提高MoO2-Mo2C-C的电催化活性。
图5为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的XRD图;由图5可知,实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂,有明显的MoO2和Mo2C的特征衍射峰,表明成功制得了MoO2-Mo2C-C三层核壳结构。
图6为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的XPS全谱;由图6可知,MoO2-Mo2C-C主要由C、Mo、O三种元素组成。
图7为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在酸性条件下的线性极化曲线;由图7可知,实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的过电位(电流密度为10mA/cm2的电位)为170mV。
图8为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在碱性条件下的线性极化曲线;由图8可知,实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的过电位(电流密度为10mA/cm2的电位)为130mV。
图9为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在碱性条件下不同扫速下的CV曲线;由图9可知,实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂CV曲线包围面积较大,表明有着较大的电化学活性表面积。
图10为实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂在碱性条件下根据不同扫速曲线下的CV曲线图拟合得到的双电层电容图;由图10可知,实施例2制备得到的MoO2-Mo2C-C电催化析氢催化剂的双电层电容Cdl=50.7mF/cm2,电化学活性表面积为ECSA=Cdl/(40uF/cm-4)=1.27×103cm2

Claims (3)

1.一种MoO2-Mo2C-C电催化析氢催化剂,其特征在于,包括MoO2颗粒,包覆于MoO2颗粒表面的Mo2C层,以及包覆于Mo2C层表面的碳层;其中,所述MoO2颗粒与Mo2C层形成异质结构,所述MoO2颗粒的粒径为20~500nm,Mo2C层的厚度为5~20nm;所述碳层为多孔结构,碳层孔径为1~5nm,厚度为20~100nm。
2.一种如权利要求1所述MoO2-Mo2C-C电催化析氢催化剂的制备方法,其特征在于,包括以下步骤:
步骤1、将MoO3置于石英舟,并放入等离子体增强化学气相沉积系统;
步骤2、采用等离子体增强化学气相沉积法在MoO3表面沉积Mo2C层和碳层,得到MoO2-Mo2C-C三层结构;其中,反应气体为甲烷,等离子体放电功率为300W~800W,放电时间为5min~8min,反应压力为5Pa~50Pa,甲烷的流量为50~150mL/min;
步骤3、步骤2得到的MoO2-Mo2C-C三层结构在去离子水和乙醇中清洗,烘干,即可得到所述MoO2-Mo2C-C电催化析氢催化剂。
3.根据权利要求2所述的MoO2-Mo2C-C电催化析氢催化剂的制备方法,其特征在于,所述MoO3的粒径为20~500nm。
CN202210540519.3A 2022-05-17 2022-05-17 MoO2-Mo2C-C电催化析氢催化剂及制备方法 Active CN114921805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210540519.3A CN114921805B (zh) 2022-05-17 2022-05-17 MoO2-Mo2C-C电催化析氢催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210540519.3A CN114921805B (zh) 2022-05-17 2022-05-17 MoO2-Mo2C-C电催化析氢催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN114921805A CN114921805A (zh) 2022-08-19
CN114921805B true CN114921805B (zh) 2023-09-12

Family

ID=82809152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210540519.3A Active CN114921805B (zh) 2022-05-17 2022-05-17 MoO2-Mo2C-C电催化析氢催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN114921805B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076569A (zh) * 2014-07-15 2014-10-01 常州深蓝涂层技术有限公司 一种电致变色器件及其制备方法
CN108163829A (zh) * 2017-11-20 2018-06-15 肇庆市华师大光电产业研究院 一种玻璃碳/多壁碳纳米管复合电极及其制备方法和应用
CN110575839A (zh) * 2019-09-05 2019-12-17 北京纳米能源与系统研究所 M2c/碳纳米片复合材料及其制备方法和应用
CN113134374A (zh) * 2021-04-23 2021-07-20 湖南工学院 MoO2-Mo2C析氢催化材料及其制备方法和应用
CN113716608A (zh) * 2021-08-12 2021-11-30 华南理工大学 一种二氧化钼-碳化钼复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076569A (zh) * 2014-07-15 2014-10-01 常州深蓝涂层技术有限公司 一种电致变色器件及其制备方法
CN108163829A (zh) * 2017-11-20 2018-06-15 肇庆市华师大光电产业研究院 一种玻璃碳/多壁碳纳米管复合电极及其制备方法和应用
CN110575839A (zh) * 2019-09-05 2019-12-17 北京纳米能源与系统研究所 M2c/碳纳米片复合材料及其制备方法和应用
CN113134374A (zh) * 2021-04-23 2021-07-20 湖南工学院 MoO2-Mo2C析氢催化材料及其制备方法和应用
CN113716608A (zh) * 2021-08-12 2021-11-30 华南理工大学 一种二氧化钼-碳化钼复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CO气基还原MoO_3制备MoC;宋成民;张国华;周国治;;中国有色金属学报(04);204-209 *

Also Published As

Publication number Publication date
CN114921805A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Zhou et al. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction
Sha et al. In situ grown 3D hierarchical MnCo2O4. 5@ Ni (OH) 2 nanosheet arrays on Ni foam for efficient electrocatalytic urea oxidation
Gong et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting
Shiva Kumar et al. Phosphorus-doped carbon nanoparticles supported palladium electrocatalyst for the hydrogen evolution reaction (HER) in PEM water electrolysis
Zhang et al. Ultra-low Pt-loaded catalyst based on nickel mesh for boosting alkaline water electrolysis
Gouda et al. Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: Effect of double-layer electrodes and gas diffusion layer
Gu et al. Well-dispersed Pt nanodots interfaced with Ni (OH) 2 on anodized nickel foam for efficient hydrogen evolution reaction
Sun et al. Electrocatalytic hydrogen evolution properties of anionic NiS2‐Ni (OH) 2 nanosheets produced on the surface of nickel foam
Du et al. Synthesis of bifunctional NiFe layered double hydroxides (LDH)/Mo-doped g-C3N4 electrocatalyst for efficient methanol oxidation and seawater splitting
Huang et al. Molybdenum carbide nanosheets decorated with Ni (OH) 2 nanoparticles toward efficient hydrogen evolution reaction in alkaline media
Hrbek et al. Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis
Zhao et al. Built-in electric field in bifunctional electrocatalyst (Ni3S2@ Ni9S8) for high-efficiency OER and overall water splitting performance
Li et al. Controllable preparation of N-doped Ni3S2 nanocubes@ N-doped graphene-like carbon layers for highly active electrocatalytic overall water splitting
Xu et al. Electrosynthesis of dendritic palladium supported on Ti/TiO2NTs/Ni/CeO2 as high-performing and stable anode electrocatalyst for methanol electrooxidation
CN114921805B (zh) MoO2-Mo2C-C电催化析氢催化剂及制备方法
Hong et al. Construction of core–shell Co-NC@ W2N Schottky heterojunctions for high-efficiency hydrogen evolution reaction
Guo et al. Highly dispersed Rh prepared by the in-situ etching-growth strategy for energy-saving hydrogen evolution
Huang et al. Porous single-crystal Ni5P4 nanosheets arrays coated with PANI layer for high efficiency hydrogen evolution at high current density in acid electrolyte
Lv et al. N/C doped nano-size IrO2 catalyst of high activity and stability in proton exchange membrane water electrolysis
Xu et al. Platinum activated IrO2/SnO2 nanocatalysts and their electrode structures for high performance proton exchange membrane water electrolysis
Gao et al. Boronization of ZIF-67 on nickel foam to prepare self-supporting NiCo-bimetallic borides electrocatalyst for efficient oxygen evolution reaction
CN113416980B (zh) 一种高效全解水电催化剂MoO2-CeOx/NF及其制备方法
Yang et al. Structural evolution of Ru/Te interaction for hydrogen generation engineered by proof of concept via carbon doping
Li et al. Catalytic performance of hybrid Pt@ ZnO NRs on carbon fibers for methanol electro-oxidation
Gu et al. Eggshell-membrane-templated synthesis of C, S Doped Mesoporous NiO for methanol oxidation in alkaline solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant