CN114914317A - 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法 - Google Patents

一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法 Download PDF

Info

Publication number
CN114914317A
CN114914317A CN202210340860.4A CN202210340860A CN114914317A CN 114914317 A CN114914317 A CN 114914317A CN 202210340860 A CN202210340860 A CN 202210340860A CN 114914317 A CN114914317 A CN 114914317A
Authority
CN
China
Prior art keywords
molybdenum ditelluride
semimetal
room temperature
photoelectric detector
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210340860.4A
Other languages
English (en)
Inventor
阳崎
吴曙翔
李树玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202210340860.4A priority Critical patent/CN114914317A/zh
Publication of CN114914317A publication Critical patent/CN114914317A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法,光电探测器从下至上依次包括衬底、二碲化钼薄膜、氧化铝保护层和金属电极,其中衬底采用柔性云母材料。光电探测器使用了分子束外延技术分别制备Td相的二碲化钼薄膜和氧化铝保护层,再用分子束外延技术结合掩模技术制备了金属电极。此方案的优势在于制备的二碲化钼薄膜属于第二类外尔半金属,让光电探测器在室温下即可实现从可见光到太赫兹的光电探测,再结合柔性云母作为衬底,使得光电探测器具有良好的柔性,另外,对比传统的机械剥离,采用分子束外延技术制备器件为大面积集成的发展奠定了基础,有助于太赫兹光电探测器的发展。

Description

一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备 方法
技术领域
本发明涉及探测器技术领域,特别涉及一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法。
背景技术
光电探测器是一种把光辐射能量转换为便于测量的电能的器件,在军事和国民经济的各个领域都有广泛用途。光电探测器在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等方面;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。
目前对于可见光和微波已有比较深入的研究,但是对于太赫兹波段的研究较少,且太赫兹波段在无创成像、超高带宽通信、遥感和安全检查等领域都有巨大的潜力,所以对太赫兹波段的探索具有重大意义。太赫兹波是一种频率在0.1THz到10THz范围的电磁波,波长大概在0.03mm到3mm范围,介于微波与红外之间,太赫兹波段的光子能量一般远小于半导体带隙能量,且太赫兹无法激发半导体中的载流子跃迁,从而导致了传统半导体较窄波长范围的吸收光谱,所以不适用于太赫兹波段的探测。但是半金属材料由于其无间隙的能带结构使得其在从紫外到太赫兹的超宽谱范围内都极具探测潜力。
近年来,光电探测器的拓扑材料有着较多的研究,主要涉及外尔半金属(Weylsemi-metal,WSM)或狄拉克半金属(Diracsemi-metal,DSM)体系,其中WSM与石墨烯一样具有宽带响应,以及因线性色散和抑制后向散射而产生的高响应性等优点,但不同于石墨烯的带隙会随着层数的增加而变化。WSM具有在三维动量空间的无间隙线性能量色散,拥有更高的光电流效率,这有助于低能光子激发光响应度的提高,而且外尔点附近线性能量分散导致高载流子迁移率、费米子态密度的二次能量依赖以及室温下热载流子的抑制,使得II型WSM在太赫兹波段获得了光电响应的增强,当太赫兹波与倾斜的能带耦合时,由于非平衡载流子的扩散,可以产生自驱动的光电流,而Td相的二碲化钼(MoTe2)已通过理论预测和角分辨光电子能谱的光谱实验验证,属于II型WSM,II型WSM具有在太赫兹光波段响应的柔性应用潜力,但在器件的实现上还很少。因此,如果能利用II型WSM的特性开发一种综合性能优越的柔性光电探测器,则有助于在太赫兹光电探测领域的应用。
发明内容
针对现有太赫兹光电探测器实现较少的问题,本发明提供一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法。
为了实现上述目的,本发明的技术方案如下:
一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,从下至上依次包括衬底、二碲化钼薄膜、氧化铝保护层和金属电极。
优选地,所述衬底采用柔性云母材料。
优选地,所述金属电极分别设置在所述氧化铝保护层顶部的两端,且所述金属电极之间的沟道长为25μm,宽为35μm,另外,所述金属电极为金电极。
优选地,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器的制备方法包括以下步骤:
步骤1:在衬底表面采用分子束外延技术生长二碲化钼薄膜;
步骤2:在步骤1生成的二碲化钼薄膜表面采用分子束外延技术生长氧化铝保护层;
步骤3:在步骤2生成的氧化铝保护层表面通过分子束外延技术结合掩模技术制备金属电极,即得到太赫兹光电探测器。
进一步地,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器,步骤1具体包括以下步骤:
步骤1.1:将衬底放在分子束外延设备生长室中,再用真空泵将生长室抽真空;
步骤1.2:把纯度为99.95%Mo原料和纯度为99.9999%Te原料分别放在腔体中的束源炉里,其中,Mo原料通过电子束源蒸发,电压为750V,而Te原料则通过坩埚蒸发源蒸发,蒸发温度为330度;
步骤1.3:分别打开Mo原料束源炉和Te原料束源炉的挡板,待束流稳定后打开衬底挡板,在衬底上生长二碲化钼薄膜,生长速度为5分钟一个分子层,共生长6层。
进一步地,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器,步骤2具体包括以下步骤:
步骤2.1:将纯度为99.9%铝原料放入分子束外延设备的束源炉中,通过坩埚蒸发源蒸发,蒸发温度为1107度;
步骤2.2:打开束源炉的挡板,待束流稳定后打开衬底挡板,在二碲化钼薄膜上沉积生长铝材料层,再把生长好铝材料层后的样品放到分子束外延设备外的大气中自然氧化形成表面致密的氧化铝保护层。
进一步地,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器,步骤3具体包括以下步骤:
步骤3.1:将步骤2中制成氧化铝保护层后的样品盖上掩模版放入分子束外延设备的生长室中;
步骤3.2:将纯度为99.99%金原料放入分子束外延设备腔体的束源炉中,通过坩埚蒸发源蒸发,蒸发的温度为1191度;
步骤3.3:打开束源炉的挡板,待束流稳定后打开衬底挡板,在所述氧化铝保护层顶部的两端生长金属电极,生长时间为30分钟。
进一步地,生长二碲化钼薄膜时,衬底温度为255度;生长氧化铝保护层和金属电极时,衬底温度为室温。
再进一步地,生长二碲化钼薄膜、氧化铝保护层和金属电极时,分子束外延设备生长室的气压均为7.0×10-7mbar。
本发明的有益效果如下:
本发明制备了一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其中制备的二碲化钼薄膜属于第二类外尔半金属,具有在三维动量空间的无间隙线性能量色散,让光电探测器在室温下即可实现从可见光到太赫兹的光电探测,再结合柔性云母作为衬底,使得光电探测器具有良好的柔性,另外,对比传统的机械剥离,采用分子束外延技术可以制备高精度器件为大面积集成的发展奠定了基础,还有助于太赫兹光电探测器的发展。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为二碲化钼外尔半金属室温柔性太赫兹光电探测器件结构单元的侧视示意图;
图2为二碲化钼薄膜的拉曼测试结果曲线图;
图3为二碲化钼外尔半金属室温柔性太赫兹光电探测器在-3mV至3mV偏置电压下利用中红外波与太赫兹波激发的光响应曲线图;
图4为二碲化钼外尔半金属室温柔性太赫兹光电探测器在0.1伏偏压下利用中红外波与太赫兹波激发的光响应度曲线图;
图5为二碲化钼外尔半金属室温柔性太赫兹光电探测器平放在柔性基板上的照片;
图6为二碲化钼外尔半金属室温柔性太赫兹光电探测器在柔性基板上弯曲的照片;
图7为二碲化钼外尔半金属室温柔性太赫兹光电探测器在不同弯曲曲率下利用中红外波与太赫兹波的光响应度变化曲线图。
附图标记如下:
1、柔性云母衬底;2、二碲化钼薄膜;3、氧化铝保护层;4、金电极。
具体实施方式
下面对本发明实施方式中的技术方案进行清楚、完整地描述。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。下述实施例中的实验方法,如无特殊说明,均为常规说法。
实施例1:一种二碲化钼外尔半金属室温柔性太赫兹光电探测器
如图1所示,所述光电探测器从下到上依次包括柔性云母衬底1(14×14mm2)、二碲化钼薄膜2、氧化铝保护层3和金电极4,所述金电极4分别设置在氧化铝保护层3顶部的两端。
所述光电探测器的制备包括以下步骤:
(1)通过分子束外延技术生长二碲化钼薄膜2:把柔性云母衬底1放入分子束外延设备(OMICRON生产)内生长室的基片操作器上,用真空泵将生长室抽真空,调节生长室的气压为7.0×10-7mbar,再把柔性云母衬底1温度加热至255度;然后将纯度为99.95%Mo原料和纯度为99.9999%Te原料分别放在设备内的束源炉1和束源炉2里,其中,Mo原料通过电子束源蒸发产生Mo分子束流(电压为750V),而Te原料则通过坩埚蒸发源蒸发(温度为330度)产生Te分子束流;再分别打开Mo原料束源炉和Te原料束源炉的挡板,待两种分子束流稳定后,打开衬底挡板,两种束流同时在柔性云母衬底1表面相互作用,以5分钟一个分子层的生长速度生成约4nm厚的二碲化钼薄膜2,生长时间为30分钟,共生长6层。
将步骤(1)制得的二碲化钼薄膜2放在RenishawinViaReflex显微拉曼光谱仪的测试台上,测试二碲化钼薄膜2的性质。由图2的波峰可知,所生长的材料是具有Td相的二碲化钼薄膜2。
(2)通过分子束外延技术生长氧化铝保护层3:将99.9%铝原料放在分子束外延设备(OMICRON生产)的束源炉3中,通过坩埚蒸发源蒸发产生原子束流,打开铝原料束源炉的挡板,在步骤1制成的二碲化钼薄膜2上沉积生长铝材料层,蒸发温度为1107度,生长时间为80秒,生长气压为7.0×10-7mbar;再把生长好铝材料层后的样品放到分子束外延设备外的大气中自然氧化形成表面致密的氧化铝保护层3;
(3)用分子束外延技术结合掩模版技术制备金属电极:将步骤2中制成氧化铝保护层3后的样品盖上掩模版后放入分子束外延设备(OMICRON生产)的生长室中,然后将纯度为99.99%金原料放入在设备内的束源炉4里,再通过分子束外延设备的坩埚蒸发源蒸发,在氧化铝保护层3顶部两端生长金电极4,蒸发的温度为1191度,生长时间为30分钟,生长气压为7.0×10-7mbar,且两电极之间的沟道长为25μm,宽为35μm,电极生长完成后去掉掩模版,最终制备得到光电探测器。
实验例1:光响应测试
中红外波由量子级联激光器(MIRCatS/N10016,Daylight)发射,设置波长为10μm时,功率为102mW,光斑大小3mm直径圆斑;太赫兹波由太赫兹激光器(FIRL100,EdinburghInstruments)发射,设置频率为4.24THz时,功率为3mW,光斑大小3mm直径圆斑。
1.无偏压下光响应测试
分别设置偏置电压为-3mV、-2mV、-1mV、0mV、1mV、2mV和3mV,用10μm中红外波和4.24THz太赫兹波作为光辐射源,分别去测试实施例1制得的光电探测器的光响应。
2.偏压下光响应测试
设置偏置电压为0.1V,用10μm中红外波和4.24THz太赫兹波作为光辐射源,分别去测试实施例1制得的光电探测器的光响应。
具体的光响应测试方法包括以下步骤:
(1)打开量子级联激光器或太赫兹激光器,设置好波长或频率;
(2)将光电探测器的金电极4与Keithey2636B数字源表相连接,在电极两端设置不同偏置电压,测量10μm中红外波或4.24THz太赫兹波在不同偏置电压下的通路电流的变化,再用计算机记录。
3.实验结果
如图3所示,10μm中红外波和4.24THz太赫兹波在偏置电压-3mV-3mV之间,光电流呈上升趋势,在偏置电压为0V时存在一定的响应度,说明了该光电探测器实现了在中红外至太赫兹波的自供电探测。
如图4所示,中红外波辐射时间为210s-250s时,光响应度呈上升趋势,辐射时间为250s-280s时,光响应度呈下降趋势,辐射时间为250s时,光电探测器对中红外波的光响应度最高;太赫兹波辐射时间为280s-310s时,光响应度呈上升趋势,辐射时间为310s-360s时,光响应度呈下降趋势。辐射时间为310s时,光电探测器对太赫兹波的光响应度最高。
综上所述,在中红外波10μm光的辐照下,且辐射时间为250s时,光响应度最高为0.53mA/W;在频率4.24THz太赫兹光的辐照下,且辐射时间为310s时,光响应度最高为3.02mA/W。
实验例2:柔性测试
测试光电探测器的柔性具体包括以下步骤:
将实施例1制得的光电探测器粘贴在柔性基板上(图5),再用外力将柔性基板弯曲变形(图6),并用4.24THz太赫兹波作为光源测试光电探测器在0-0.114mm-1曲率之间的光响应度稳定性,光响应测试方法同实验例1。
实验结果
如图7所示,光电探测器在不同曲率下,依然保持了稳定的光响应度,说明了光电探测器具有超强的柔性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器包括衬底、二碲化钼薄膜、氧化铝保护层和金属电极。
2.根据权利要求1所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,所述衬底采用柔性云母材料。
3.根据权利要求1所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,所述金属电极分别设置在所述氧化铝保护层顶部的两端,所述金属电极之间的沟道长为25μm,宽为35μm。
4.根据权利要求1或3所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,所述金属电极为金电极。
5.根据权利要求1所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,所述二碲化钼外尔半金属室温柔性太赫兹光电探测器的制备方法包括以下步骤:
步骤1:在衬底表面采用分子束外延技术生长二碲化钼薄膜;
步骤2:在步骤1生成的二碲化钼薄膜表面采用分子束外延技术生长氧化铝保护层;
步骤3:在步骤2生成的氧化铝保护层表面通过分子束外延技术结合掩模技术制备金属电极,即得到太赫兹光电探测器。
6.根据权利要求5所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,步骤1具体包括以下步骤:
步骤1.1:将衬底放在分子束外延设备生长室中,再用真空泵将生长室抽真空;
步骤1.2:把纯度为99.95%Mo原料和纯度为99.9999%Te原料分别放在腔体中的束源炉里,其中,Mo原料通过电子束源蒸发,电压为750V,而Te原料则通过坩埚蒸发源蒸发,蒸发温度为330度;
步骤1.3:分别打开Mo原料束源炉和Te原料束源炉的挡板,待束流稳定后打开衬底挡板,在衬底上生长二碲化钼薄膜,生长速度为5分钟一个分子层,共生长6层。
7.根据权利要求5所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,步骤2具体包括以下步骤:
步骤2.1:将纯度为99.9%铝原料放入分子束外延设备的束源炉中,通过坩埚蒸发源蒸发,蒸发温度为1107度;
步骤2.2:打开束源炉的挡板,待束流稳定后打开衬底挡板,在二碲化钼薄膜上沉积生长铝材料层,再把生长好铝材料层后的样品放到分子束外延设备外的大气中自然氧化形成表面致密的氧化铝保护层。
8.根据权利要求5所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,步骤3具体包括以下步骤:
步骤3.1:将步骤2中制成氧化铝保护层的样品盖上掩模版后放入分子束外延设备的生长室中;
步骤3.2:将纯度为99.99%金原料放入分子束外延设备腔体的束源炉中,通过坩埚蒸发源蒸发,蒸发的温度为1191度;
步骤3.3:打开束源炉的挡板,待束流稳定后打开衬底挡板,在所述氧化铝保护层顶部的两端生长金属电极,生长时间为30分钟。
9.根据权利要求5-8所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,生长二碲化钼薄膜时,衬底温度为255度;生长氧化铝保护层和金属电极时,衬底温度为室温。
10.根据权利要求5-8所述的一种二碲化钼外尔半金属室温柔性太赫兹光电探测器,其特征在于,生长二碲化钼薄膜、氧化铝保护层和金属电极时,分子束外延设备生长室的气压均为7.0×10-7mbar。
CN202210340860.4A 2022-04-02 2022-04-02 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法 Pending CN114914317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210340860.4A CN114914317A (zh) 2022-04-02 2022-04-02 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210340860.4A CN114914317A (zh) 2022-04-02 2022-04-02 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法

Publications (1)

Publication Number Publication Date
CN114914317A true CN114914317A (zh) 2022-08-16

Family

ID=82762424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210340860.4A Pending CN114914317A (zh) 2022-04-02 2022-04-02 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN114914317A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498878A (zh) * 2014-12-12 2015-04-08 电子科技大学 一种制备二硫化钼薄膜的方法
CN109870234A (zh) * 2017-12-04 2019-06-11 北京大学 基于第二类外尔半金属二碲化钼的光探测器及其探测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498878A (zh) * 2014-12-12 2015-04-08 电子科技大学 一种制备二硫化钼薄膜的方法
CN109870234A (zh) * 2017-12-04 2019-06-11 北京大学 基于第二类外尔半金属二碲化钼的光探测器及其探测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J. LAI ET AL.: "Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2", ADVANCED MATERIALS》, no. 30, pages 1707152 *
Z. OGORZAŁEK: "Charge transport in MBE-grown 2H-MoTe2 bilayers with enhanced stability provided by an AlOx capping layer", 《NANOSCALE》, no. 12, pages 16535 *
乔杰: "二维材料MoTe2的晶体生长、光电及太赫兹调制性能研究", 《中国博士学位论文全文数据库 (工程科技Ⅰ辑)》, no. 08, pages 014 - 10 *
李国辉等 著: "《新型半导体光电探测器原理与性能》", 31 August 2019, 北京理工大学出版社, pages: 31 - 32 *
王洒颖 编译: "《化学元素》", 28 February 1987, 贵州人民出版社, pages: 291 - 292 *
黄惠等 编著: "《表面工程原理与技术》", 31 March 2022, 冶金工业出版社, pages: 301 *

Similar Documents

Publication Publication Date Title
Kohlhaas et al. 637 μW emitted terahertz power from photoconductive antennas based on rhodium doped InGaAs
Chen et al. Ga 2 O 3 photodetector arrays for solar-blind imaging
Hoesch et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy
Schwede et al. Photon-enhanced thermionic emission for solar concentrator systems
Dennis Photodetectors: an introduction to current technology
Benmoussa et al. Recent developments of wide-bandgap semiconductor based UV sensors
Mendoza et al. Solar-blind field-emission diamond ultraviolet detector
Abbaszadeh et al. Measurement of UV from a microplasma by a microfabricated amorphous selenium detector
BenMoussa et al. Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44–360nm: photoemission assessments
KR101446165B1 (ko) 신규한 화합물 반도체 및 그 활용
Purusothaman et al. Regulation of Charge Carrier Dynamics in ZnO Microarchitecture‐Based UV/Visible Photodetector via Photonic‐Strain Induced Effects
WO2016105481A2 (en) Light emission from electrically biased graphene
Zhuravlev et al. Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers
Prakash et al. Boron carbon nitride based metal-insulator-metal UV detectors for harsh environment applications
Mastrangelo et al. Microfabricated incandescent lamps
Strüder et al. Development of the silicon drift detector for electron microscopy applications
Ertley et al. Second generation large area microchannel plate flat panel phototubes
CN114914317A (zh) 一种二碲化钼外尔半金属室温柔性太赫兹光电探测器及制备方法
CN113049096A (zh) 室温周期对数天线集成的碲化镍太赫兹探测器及制备方法
Pacheco et al. Zero-biased and visible-blind UV photodetectors based on nitrogen-doped ultrananocrystalline diamond nanowires
Lu et al. Lateral monolayer MoS2 homojunction devices prepared by nitrogen plasma doping
Cremer et al. Recent developments in next-generation microchannel plates for particle identification applications
Kopylova et al. A bolometer based on single-walled carbon nanotubes and hybrid materials
Kjornrattanawanich et al. Temperature dependence of the EUV responsivity of silicon photodiode detectors
Saito et al. Spectral responsivity measurements of photoconductive diamond detectors in the vacuum ultraviolet region distinguishing between internal photocurrent and photoemission current

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination