CN114907997B - Construction and application of diosgenin synthetic strain - Google Patents

Construction and application of diosgenin synthetic strain Download PDF

Info

Publication number
CN114907997B
CN114907997B CN202110176223.3A CN202110176223A CN114907997B CN 114907997 B CN114907997 B CN 114907997B CN 202110176223 A CN202110176223 A CN 202110176223A CN 114907997 B CN114907997 B CN 114907997B
Authority
CN
China
Prior art keywords
sequence
tadh1
gene
ppgk1
tcyc1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110176223.3A
Other languages
Chinese (zh)
Other versions
CN114907997A (en
Inventor
张学礼
许丽萍
樊飞宇
戴住波
陈晶
刘萍萍
李清艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202110176223.3A priority Critical patent/CN114907997B/en
Publication of CN114907997A publication Critical patent/CN114907997A/en
Application granted granted Critical
Publication of CN114907997B publication Critical patent/CN114907997B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/20Preparation of steroids containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a construction and application of a diosgenin synthesis strain. The invention provides recombinant bacteria, which are obtained by modifying the following 1) in chassis saccharomycetes containing genes related to dioscin synthesis paths: 1) Enabling the saccharomyces cerevisiae chassis to express a steroid 22-position hydroxylase gene and improving the expression of a SvvCPR gene in the genome of the saccharomyces cerevisiae chassis; experiments prove that the invention perfects the heterologous synthesis path of the dioscin and obviously improves the heterologous production of the dioscin by comparing the activities of key enzymes from different sources. In addition, the strain is transformed by metabolic engineering method to obtain the yam saponin artificial cell factory. The final yield of the diosgenin in the 5L tank reaches 1.3g/L, is the highest yield reported at present, and provides a good reference case for the heterologous synthesis of other steroid hormone medicines.

Description

Construction and application of diosgenin synthetic strain
Technical Field
The invention belongs to the technical field of biology, and relates to construction and application of a diosgenin synthesis strain.
Background
Steroid compounds are widely distributed in nature and are important components of cell membranes, such as cholesterol common in animals, campesterol, sitosterol and stigmasterol in plants, and ergosterol in lower eukaryotes such as Saccharomyces cerevisiae, and play a vital role in survival of animals and plants. In addition, these steroid compounds can be used for further synthesizing other steroid hormones such as progesterone, vitamin D3, etc. in the living body. Steroid hormones, also known as steroid hormones, are endogenous drugs in humans and have an irreplaceable effect on maintaining human health. Steroid drugs are interesting molecules, and due to the diversity of the structures, the steroid drugs endow the steroid drugs with various pharmacological activities, are mainly applied to the aspects of medical care, have very strong pharmacological actions of resisting infection, allergy, virus and shock, and can improve protein metabolism, recover and strengthen physical strength, induce urination and reduce blood pressure. The sales of steroid hormone drugs in 2011 were statistically higher than $280 billion, accounting for about 6% of the total sales of medicines worldwide; the sales of steroid hormone drugs in 2016 are over $1000 billion, becoming the second largest class of drugs next to antibiotics.
Diosgenin (Diospgenin) is also called Diosgenin, and its structure is shown in figure 1. Since the discovery of diosgenin (diosgenera) contained in the rhizome of dioscorea as a source of steroid hormone drugs in 1940, plant and pharmaceutical specialists have paid great attention to plant research in this genus. The diosgenin has great similarity with steroid hormone medicines in structure, is a basic raw material of the steroid hormone medicines, has the effects of antiallergic, antiviral, antishock and the like, and is called as medicinal gold. The water-soluble steroid saponin and the derivatives thereof have various pharmacological activities such as gastric mucosa protection, anti-inflammatory, anticancer and the like. Along with the continuous expansion of the market demand of steroid hormone, the biosynthesis of precursor dioscin is widely focused, and the current synthesis process of dioscin is mainly a traditional acidolysis method. The yam saponin is finally obtained through a plurality of steps such as crushing, acidolysis, rinsing, extraction, crystallization and the like. The method is influenced by the uncertainty of the planting state of the source plant, namely the yellow ginger, the long period (more than 2 years), serious pollution of the extraction process and other factors, the supply and price of the dioscin have large fluctuation, an efficient, clean and stable steroid compound production mode is urgently expected, and the method can greatly promote the production of the dioscin in China and promote the development of the steroid hormone industry in China if the mode of production from plant extraction to biosynthesis can be changed.
Disclosure of Invention
It is an object of the present invention to provide a recombinant bacterium.
The recombinant bacterium provided by the invention is obtained by modifying the following 1) in chassis yeast containing genes related to the dioscin synthesis path:
1) Allowing said Saccharomyces cerevisiae chassis to express a steroid hydroxylase gene at position 22;
or allowing the Saccharomyces cerevisiae chassis to express a steroid 22-position hydroxylase gene and increasing the expression of a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvvCPR gene in the genome of the Saccharomyces cerevisiae chassis;
the yam saponin synthesis pathway related genes are 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1, alpha-aminooxalate reductase gene Lys2, mevalonate kinase gene ERG12, isopentenyl pyrophosphate isomerase IDI1, mevalonate pyrophosphate decarboxylase ERG19, (from Lu Jie genus) 3-hydroxy-3-methylglutaryl coenzyme A reductase HMGR, 3-hydroxy-3-methylglutaryl coenzyme A ERG13, mevalonate phosphate kinase ERG8, acetyl coenzyme A acyl transferase ERG10, squalene synthase AtSQS from Arabidopsis thaliana, farnesyl pyrophosphate synthase SmFPS from Salvia miltiorrhiza, squalene epoxidase ERG1, resveratrol 26-position hydroxylase VcCYP94N from resveratrol, nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvvCPR, peltate yam-derived sterol 16, 22 dihydroxyoxidase 90G, potato sterol 7-position reductase SvvCPR 5 and/or D-cholesterol DY 24-D-W.
In the recombinant bacterium, the steroid 22-position hydroxylase is derived from rhizoma et radix Veratri, arabidopsis thaliana, tomato or Dioscorea zingiberensis.
In the recombinant bacterium, the steroid 22-position hydroxylase is any one of the following 1) to 3):
1) A protein encoded by nucleotides 482 to 1937 of a sequence 19 in a sequence table;
2) A protein derived from the same function as 1) obtained by carrying out substitution and/or deletion and/or addition of one or more amino acid residues on the 1);
3) A protein having 95% or more identity with 1) and having the same function as 1).
Among the recombinant bacteria, the recombinant bacteria obtained by modifying the 1) and the following 2) in chassis yeast containing genes related to the dioscin synthesis path are adopted:
2) And improving expression of a sterol 26-position hydroxylase VcCYP94N gene (resveratrol-derived enzyme) gene, a sterol 16, 22 dihydroxyoxidase gene DGCYP90G peltate yam rhizome source and a steroid 22-position hydroxylase in the genome of the saccharomyces cerevisiae chassis.
In the recombinant strain, the gene for improving the sterol 26 hydroxylase VcCYP94N gene (enzyme from rhizoma et radix Veratri) in the genome of the chassis saccharomyces cerevisiae, the gene for improving the sterol 16, 22 dihydroxyoxidase gene DGCYP90G dioscorea zingiberensis source, and the expression of the steroid 22 hydroxylase are obtained by integrating the gene for improving the sterol 26 reductase VcCYP94N gene, the gene for improving the sterol 16, 22 dihydroxyoxidase gene DGCYP90G and the expression cassette for the steroid 22 dihydroxyoxidase into the genome of the saccharomyces cerevisiae containing the tHMG1 and Lys2 genes;
The VcCYP94N gene comprises a TEF1 promoter, a VcCYP94N gene derived from resveratrol and a CYC1 terminator;
the DGCYP90G expression cassette comprises a TDH3 promoter, a DGCYP90G gene derived from Dioscorea zingiberensis and a TPI1 terminator;
the steroid 22-bit hydroxylase gene expression cassette comprises a PGK1 promoter, a VcCYP90B27 gene derived from resveratrol and an ADH1 terminator.
Among the recombinant bacteria, the recombinant bacteria are obtained by modifying the 1), 2) and 3) in chassis yeast containing genes related to the dioscin synthesis path:
3) The DGCYP90G gene is expressed in a high copy mode in the saccharomyces cerevisiae chassis in the form of a plasmid, and specifically pRS426-URA3-pTEF1-DGCYP90G-tCYC1 plasmid is introduced.
In the recombinant strain, the chassis saccharomyces cerevisiae is obtained by modifying at least one of the following modes A) to D):
a) Improving expression of tHMG1, mevalonate kinase ERG12, isopentenyl pyrophosphate isomerase IDI1, mevalonate decarboxylase ERG19, 3-hydroxy-3-methylglutaryl-CoA reductase HMGR, 3-hydroxy-3-methylglutaryl-CoA ERG13, mevalonate kinase ERG8, and acetyl-CoA acyltransferase ERG10 in the genome of Saccharomyces cerevisiae containing the 3-hydroxy-3-methylglutaryl-CoA reductase 1 gene tHMG1 and the alpha-aminooxalate reductase gene Lys 2;
B) Improving the expression of squalene synthase AtSQS, farnesyl pyrophosphate synthase SmFPS and squalene epoxidase ERG1 in the saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and alpha-amino oxalate reductase gene Lys2 gene;
c) Allowing the saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coa reductase 1 gene tmg 1 and alpha-aminooxalate reductase gene Lys2 to express sterol 26 hydroxylase VcCYP94N, nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase svcpr, sterol 16, 22 dihydroxyoxidase DGCYP90G, sterol 7 reductase StDWF5 and/or sterol 24 reductase gdhcr24;
d) Knocking out the alcohol acetylase ATF2 gene in the saccharomyces cerevisiae genome containing tHMG1 and Lys2 genes.
In the recombinant bacterium, in the B, the expression of VcCYP94N, svvCPR, DGCYP G, stDWF5 and/or GgDHCR24 by the saccharomyces cerevisiae genome containing the tHMG1 and Lys2 genes is obtained by integrating the VcCYP94N, svvCPR, DGCYP90G, stDWF5 and/or GgDHCR24 expression cassette into the saccharomyces cerevisiae genome containing the tHMG1 and Lys2 genes;
the VcCYP94N expression cassette comprises a PGK1 promoter, a VcCYP94N gene derived from resveratrol and an ADH1 terminator;
The SvvCPR expression cassette comprises a TDH3 promoter, a grape-derived SvvCPR gene and a TPI1 terminator;
the DGCYP90G expression cassette comprises a TEF1 promoter, a DGCYP90G gene derived from Dioscorea zingiberensis and a CYC1 terminator;
the StDWF5 expression cassette comprises a PGK1 promoter, a potato-derived StDWF5 gene and an ADH1 terminator;
the GgDHCR24 expression cassette comprises a TEF1 promoter, a chicken-derived GgDHCR24 gene and a CYC1 terminator.
It is a further object of the invention to provide a method.
The method for preparing the first target recombinant bacterium is prepared according to the reconstruction method in the recombinant bacterium.
Recombinant bacteria obtained by the above method are also within the scope of the present invention.
The application of the recombinant bacteria or the recombinant bacteria obtained by the method in the production of dioscin or the improvement of the yield of the dioscin is also the protection scope of the invention;
the invention also provides a method for producing the dioscin, which comprises the following steps: fermenting and culturing the recombinant strain to obtain dioscin.
Experiments prove that the invention perfects the heterologous synthesis path of the dioscin and obviously improves the heterologous production of the dioscin by comparing the activities of key enzymes from different sources. In addition, the strain is transformed by metabolic engineering method to obtain the yam saponin artificial cell factory. The final yield of the diosgenin in the 5L tank reaches 1.3g/L, is the highest yield reported at present, and provides a good reference case for the heterologous synthesis of other steroid hormone medicines.
Drawings
FIG. 1 shows the structural formula of diosgenin.
FIG. 2 is a GC-MS analysis of the fermentation product of strain LP-074.
FIG. 3 shows the yield of diosgenin from LP-085 series strains.
FIG. 4 shows the yield of diosgenin.
FIG. 5 is a diagram of LP-BC fed-batch fermentation.
Detailed Description
The experimental methods used in the following examples are conventional methods unless otherwise specified.
Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified.
The Saccharomyces cerevisiae BY-T1 strain (described in China patent 201210453416. X) containing tHMG1 (3-hydroxy-3-methylglutaryl-CoA reductase 1 derived from part of Saccharomyces cerevisiae) and Lys2 (α -aminooxalate reductase) in the following examples was obtained from Tianjin industrial biotechnology research, and higher yields of squalene could be synthesized.
Example 1, opening the path for synthesizing dioscin from Saccharomyces cerevisiae
1. Construction of strain BY-T5 to increase MVA pathway flux
1. Construction of Saccharomyces cerevisiae endogenous Leu2 Gene gRNA plasmid
First, PCR amplification was performed using primers 43803-up and 43803-Leu2gRNA-Down1 (see Table 1) with plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (# 43803 available from Addgene, containing cas9 binding domain) as template.
The amplification system is TAKARAHS DNA polymerase 5 XBuffer 10. Mu.l, dntp mix 4. Mu.l, primers (see Table 1) 1. Mu.l each, template 0.5. Mu.l, primerSTAR HS polymerase (2.5U/. Mu.l) 0.5. Mu.l, distilled water was added to a total volume of 50. Mu.l.
Amplification conditions were 98℃for 2 min (1 cycle) of pre-denaturation; denaturation at 98℃for 10 seconds, annealing at 56℃for 15 seconds, extension at 72℃for 5 minutes (30 cycles); extension at 72℃for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the amplified PCR product, wherein a Dpn1 treatment system is as follows: 10. Mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. Mu.L of Dpn1 (Thermo Co., 400,000cohesive end units/ml), 100. Mu.L of PCR amplification product, digestion treatment for 4 hours, and then gel recovery treatment of the treated product were carried out for use.
The digested product obtained after the gel recovery was transferred into Trans1-T1 competent cells for 30 minutes in an ice bath and immediately placed on ice for 2 minutes by heat shock at 42℃for 30 seconds. Adding 800 μl LB culture medium, incubating at 250rpm at 37deg.C for 1 hr, applying bacterial liquid on LB plate containing ampicillin, directly selecting two monoclonal plasmids for sequencing verification after overnight culture, and sequencing to obtain the final productDesignated pLeu2gRNA.
Table 1 shows construction of Leu2, NDT80, ATF2, gal80 locus gRNA plasmid primers
The bolded gRNA sequences of N20 corresponding to the respective genes are shown in the above table. .
2. Construction of homologous recombination fragments
Yeast endogenous genes tHMG1 (3-hydroxy-3-methylglutaryl CoA reductase 1 derived from part of Saccharomyces cerevisiae), ERG12 (mevalonate kinase of Saccharomyces cerevisiae), IDI1 (isopentenyl pyrophosphate isomerase of Saccharomyces cerevisiae), ERG19 (mevalonate decarboxylase pyrophosphate of Saccharomyces cerevisiae), ERG13 (3-hydroxy-3-methylglutaryl CoA of Saccharomyces cerevisiae), ERG8 (mevalonate kinase of Saccharomyces cerevisiae), ERG10 (acetyl CoA acyltransferase of Saccharomyces cerevisiae) were amplified from the genome of the strain Saccharomyces cerevisiae BY4742 (saccharomyces cerevisiae BY4742, described in Carrie baker brachmann et al.,1998, yeast,14:115-132, publicly available from Tianjin Industrial biotechnology research) BY the upstream primer with SexA I cleavage site and the downstream primer with Asc I cleavage site (amplification primers are shown in Table 2).
The amplification system is TAKARAHS DNA polymerase 5 XBuffer 10. Mu.l, dntp mix 4. Mu.l, 1. Mu.l each of primers (see Table 2), template 0.5. Mu.l, primerSTAR HS polymerase (2.5U/. Mu.l) 0.5. Mu.l, distilled water was added to a total volume of 50. Mu.l.
Amplification conditions were 98℃for 2 min (1 cycle) of pre-denaturation; denaturation at 98℃for 10 seconds, annealing at 56℃for 15 seconds, extension at 72℃for 2 minutes (30 cycles); extension at 72℃for 8 min (1 cycle). And (5) recycling the glue for standby.
Table 2 shows primers for MVA pathway gene amplification of Saccharomyces cerevisiae
Primer name Sequence (5 '-3')
SexAI-tHMG1-F ACCTGGTAAAACAATGGCTGCAGACCAATTG
AscI-tHMG1-R GGCGCGCCTTAGGATTTAATGCAGGTGACGGA
SexAI-ERG12-F ACCTGGTAAAACAATGTCATTACCGTTCTTAACTTCTG
AscI-ERG12-R GGCGCGCCTTAGGATTTATGAAGTCCATGGTAAATTCGTGTTT
SexAI-IDI1-F ACCTGGTAAAACAATGACTGCCGACAACAATAGTA
AscI-IDI1-R GGCGCGCCTTAGGATTTATAGCATTCTATGAATTTGCCTGTCAT
SexAI-ERG19-F ACCTGGTAAAACAATGACCGTTTACACAGCATC
AscI-ERG19-R GGCGCGCCTTAGGATTTATTCCTTTGGTAGACCAGTCTTTGC
SexAI-ERG13-F ACCTGGTAAAACAATGAAACTCTCAACTAAACTTTGTTGG
AscI-ERG13-R GGCGCGCCTTATTTTTTAACATCGTAAGATCTTCTAAATTTGT
SexAI-ERG8-F ACCTGGTAAAACAATGTCAGAGTTGAGAGCCTT
AscI-ERG8-R GGCGCGCCTTATTTATCAAGATAAGTTTCCGGATCTTTTTCT
SexAI-ERG10-F ACCTGGTAAAACAATGTCTCAGAACGTTTACATTGTAT
AscI-ERG10-R TGCTTCCTCTATTGTCATTGAAAAGATATGAGGCGCGCC
The sequence of the foreign gene HMGR-N (3-hydroxy-3-methylglutaryl-CoA reductase from the genus Lu Jie) was optimized for Saccharomyces cerevisiae codon preference and synthesized by Kirschner. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained total gene synthesis product and the 7 PCR amplified fragments were subjected to double digestion with SexA I and Asc I from Thermo company, and simultaneously, the plasmid was digested with SexA I and Asc I, and the digested products of the plasmids M2, M9, M16, M5, M7, M8, M4 and M3 (described in China patent No. 201210453416. X) were recovered for use.
The plasmids M2-tHMG1, M9-ERG12, M16-IDI1, M5-ERG19, M7-HMGR-N, M-ERG 13, M4-ERG8 and M3-ERG10 were obtained by ligation. The connection system is as follows: 50ng each of the fragment and the backbone, 5. Mu.L of 2X Quick ligation Buffer (NEB Co.), 0.5. Mu.L of Quick ligase (NEB Co., 400,000cohesive end units/ml), and distilled water were added to 10. Mu.L, and the mixture was reacted at room temperature for 10 minutes to obtain a ligation product, which was then transferred into Trans1-T1 competent cells and subjected to an ice bath for 30 minutes, and heat shock at 42℃for 30 seconds, and immediately placed on ice for 2 minutes. After adding 800. Mu.l of LB medium and incubating at 250rpm and 37 ℃ for 1 hour, the bacterial liquid is coated on an LB plate containing ampicillin, and after overnight culture, 5 positive single colonies are screened by PCR, and correct monoclonal sequencing is verified to obtain plasmids M2-tHMG1, M9-ERG12, M16-IDI1, M5-ERG19, M7-HMGR-N, M-ERG 13, M4-ERG8 and M3-ERG10.
PCR amplification was performed using the constructed plasmid M2-tHMG1 as a template using the primers Leu2-50-pPGK1-F and S-7G-1-M-tADH1-pPDC1-R (see Table 3) (method same as step 1), to obtain a fragment of Leu2-50-pPGK1-tHMG1-tADH1-pPDC1-50 (SEQ ID NO: 1) comprising the PGK1 promoter (SEQ ID NO: 51-801), and Saccharomyces cerevisiae endogenous truncated tHMG1 (SEQ ID NO: 802-2386) and ADH1 terminator (SEQ ID NO: 2387-2545).
PCR amplification was performed using the constructed plasmid M9-ERG12 as a template and the primers S-7G-1-M-tADH1-pPDC1-F and 3G-1-M-tADH2-pENO2-R (see Table 3) (method same as step 1), to obtain a fragment of tADH1-50-pPDC1-ERG12-tADH2-pENO2-50 (SEQ ID NO 2) comprising the PDC1 promoter (SEQ ID NO 51-851), saccharomyces cerevisiae endogenous ERG12 gene (SEQ ID NO 852-2184), and ADH2 terminator (SEQ ID NO 2185-2585).
PCR amplification was performed using the constructed plasmid M16-IDI1 as a template and the primers 3G-2-M-tADH2-pENO2-F and 3G-2-M-tPDC1-pPYK1-R (see Table 3) (method same as step 1), to obtain a tADH2-50-pENO2-IDI1-tPDC1-pPYK1-50 fragment (SEQ ID NO 3) comprising the ENO2 promoter (SEQ ID NO 3 at positions 51-1051), and the Saccharomyces cerevisiae endogenous IDI1 gene (SEQ ID NO 3 at positions 1052-1949) and the PDC1 terminator (SEQ ID NO 3 at positions 1950-2350).
PCR amplification was performed using the constructed plasmid M5-ERG19 as a template and the primers 3G-3-M-tPDC1-pPYK1-F and S-8G-1-M-tPGI1-pTEF2-R (see Table 3) (method same as step 1), to obtain a fragment of tPDC1-50-pPYK1-ERG19-tPGI1-pTEF2-50 (sequence 4) comprising the PYK1 promoter (positions 51-1051 of sequence 4) and the Saccharomyces cerevisiae endogenous ERG19 gene (positions 1052-2243 of sequence 4) and the PGI1 terminator (positions 2244-2643 of sequence 4).
PCR amplification was performed using the constructed plasmid M7-HMGR-N as a template and the primers S-8G-1-M-tPGI1-pTEF2-F and S-8G-1-M-tENO2-pFBA1-R (see Table 3) (method same as step 1), to obtain a fragment of tPGI1-50-pTEF2-HMGR-N-tENO2-pFBA1-50 (SEQ ID NO: 5) comprising the TEF2 promoter (SEQ ID NO: 51-613), and the HMGR-N gene (SEQ ID NO: 614-1916) and the ENO2 terminator (SEQ ID NO: 1917-2317).
PCR amplification was performed using the constructed plasmid M8-ERG13 as a template and the primers S-8G-1-M-tENO2-pFBA1-F and S-4G-4-M-tTDH2-pTDH3-R (see Table 3) (method same as step 1), to obtain a fragment of tENO2-50-pFBA1-ERG13-tTDH2-pTDH3-50 (SEQ ID NO: 6) comprising the FBA1 promoter (SEQ ID NO: 51-873) and the Saccharomyces cerevisiae endogenous ERG13 gene (SEQ ID NO: 874-2299) and the TDH2 terminator (SEQ ID NO: 2300-2701) of SEQ ID NO: 6.
PCR amplification was performed using the constructed plasmid M4-ERG8 as a template and the primers S-4G-3-M-tTDH2-pTDH3-F and 3G-3-M-tTPI1-pTEF1-R (see Table 3) (method same as step 1), to obtain a tTDH2-50-pTDH3-ERG8-tTPI1-pTEF1-50 fragment (SEQ ID NO: 7) comprising the TDH3 promoter (SEQ ID NO: 51-851) of SEQ ID NO: 7) and the Saccharomyces cerevisiae endogenous ERG8 gene (SEQ ID NO: 852-2208) of TPI1Terminator (positions 2209-2609 of sequence 7).
PCR amplification was performed using the constructed plasmid M3-ERG10 as a template and the primers 3G-2-M-tTPI1-pTEF1-F and Leu2-50-tCYC1-R (see Table 3) (method same as step 1), to obtain a tTPI1-50-pTEF1-ERG10-tCYC1-Leu2-50 fragment (SEQ ID NO: 8) comprising the TEF1 promoter (SEQ ID NO: 51-454) of SEQ ID NO: 8), the Saccharomyces cerevisiae endogenous ERG10 gene (SEQ ID NO: 455-1652) and the CYC1 terminator (SEQ ID NO: 1653-1960).
Table 3 shows primers for amplifying Leu site homologous recombination fragments
3. Transformation of Cas9 plasmid
Starting from BY-T1 strain (described in China patent 201210453416. X), SD-Ura-His-Leu-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura, 0.01% Trp (each percentage number indicates g/100 mL). 1mL (OD about 0.6-1.0) was dispensed into 1.5mL EP tubes, centrifuged at 4℃and 10000g for 1min, the supernatant was discarded, the pellet was washed with sterile water (4 ℃), centrifuged under the same conditions, and the supernatant was discarded. The cells were added with 1mL of a treatment solution (10mM LiAc;10mM DTT;0.6M sorbitol; 10mM Tris-HCl (pH 7.5), and DTT was added to the treatment solution at the time of use), and the cells were left at 25℃for 20 minutes. The supernatant was centrifuged and discarded, and 1mL of 1M sorbitol (0.22 μm aqueous membrane-based sterilization) was added to the cells and resuspended, and the supernatant was centrifuged and discarded (twice with 1M sorbitol) to a final volume of about 80. Mu.L. Cas9 plasmid p414-TEF1p-Cas9-CYC1t (# 43802) was added to 1. Mu.L, mixed well and transferred to an electrorotating cup, 2.7kv was shocked for 5.6ms, 1mL 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening media plates (formulation: 0.8% yeast selection media SD-Ura-His-Leu-Trp,2% glucose, 0.005% His.,0.01% Leu.,0.01% Ura, 1.5% agar; each percentage number indicates g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr.
Optionally, one strain named as BY-T1 (Cas 9) is recombinant strain obtained BY transferring plasmid p414-TEF1p-Cas9-CYC1T into Saccharomyces cerevisiae BY-T1.
4. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T1 (Cas 9) was cultured overnight in screening media. The composition of the screening medium was as follows: SD-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage number indicates g/100 mL). Preparation of Saccharomyces cerevisiae competent cells (method same as step 3) to the prepared BY-T1 (Cas 9) competent cells were added 2. Mu.L each of the pLeu2gRNA plasmid and eight homologous recombination fragments, mixed well and transferred to an electrorotating cup, 2.7kv was shocked for 5.6ms, 1mL of 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening media plates (formulation: 0.8% yeast selection media SD-Ura-His-Leu-Trp,2% glucose, 0.005% His.,0.01% Leu.,1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. PCR identified the correct positive clone, designated strain BY-T5 (Cas 9).
The strain BY-T5 is a recombinant strain obtained BY replacing the Leu2 Gene (Gene ID:850342,updated on 14-Jan-2021) in BY-T1 (Cas 9) genome with pPGK1-tHMG1-tADH1-pPDC1-ERG12-tADH2-pENO2-IDI1-tPDC1-pPYK1-ERG19-tPGI1-pTE F2-HMGR-N-tENO2-pFBA1-ERG13-tTDH2-pTDH3-ERG8-tTPI1-pTEF1-ERG10-tCYC1 (nucleotide sequence consisting of sequence 1 51-2545, sequence 2 51-2585, sequence 3 51-2350, sequence 4 51-2643, sequence 5-2317, sequence 6-2701, sequence 7-51-2609 and sequence 8-1960).
5. gRNA plasmid elimination
BYT5 was streaked on screening media plates. The composition of the screening medium was as follows: 5-FOA-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose 0.005%5-FOA,0.005% His, 0.01% Leu, 0.01% Ura.1.5% agar (each percentage represents g/100 mL). After the single clone on the plate was grown, the plate was reverse-screened on SD-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage represents g/100 mL) and SD-Trp-URA (formula: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.005% His, 0.01% Leu, 1.5% agar; each percentage represents g/100 mL), and the strain incapable of growing on the SD-Trp-URA plate was selected for use.
2. Construction of strain BY-T30 to increase lanosterol yield
1. Construction of Saccharomyces cerevisiae endogenous NDT80 gene gRNA plasmid
First, PCR amplification was performed using primers 43803-up and 43803-NDT80gRNA-Down1 (see Table 1) with plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (# 43803 available from Addgene, containing cas9 binding domain) as template.
The amplification system is TAKARAHS DNA polymerase 5 XBuffer 10. Mu.l, dntp mix 4. Mu.l, primers (see Table 1) 1. Mu.l each, template 0.5. Mu.l, primerSTAR HS polymerase (2.5U/. Mu.l) 0.5. Mu.l, distilled water was added to a total volume of 50. Mu.l.
Amplification conditions were 98℃for 2 min (1 cycle) of pre-denaturation; denaturation at 98℃for 10 seconds, annealing at 56℃for 15 seconds, extension at 72℃for 5 minutes (30 cycles); extension at 72℃for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the amplified PCR product, wherein a Dpn1 treatment system is as follows: 10. Mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. Mu.L of Dpn1 (Thermo Co., 400,000cohesive end units/ml), 100. Mu.L of PCR amplification product, digestion treatment for 4 hours, and then gel recovery treatment of the treated product were carried out for use.
The digested product obtained after the gel recovery was transferred into Trans1-T1 competent cells for 30 minutes in an ice bath and immediately placed on ice for 2 minutes by heat shock at 42℃for 30 seconds. Adding 800 μl LB culture medium, incubating at 250rpm at 37deg.C for 1 hr, applying bacterial liquid on LB plate containing ampicillin, directly selecting two monoclonal plasmids for sequencing verification after overnight culture, and sequencing results show that it is correctIs designated as pNDT80gRNA.
2. Construction of homologous recombination fragments
The yeast endogenous gene ERG1 (squalene epoxidase of saccharomyces cerevisiae) was amplified from the genome of saccharomyces cerevisiae BY4742 strain with an upstream primer with a SexA I cleavage site and a downstream primer with an Asc I cleavage site (shown in table 4).
The amplification system is TAKARAHS DNA polymerase 5 XBuffer 10. Mu.l, dntp mix 4. Mu.l, primers (see Table 4) 1. Mu.l each, template 0.5. Mu.l, primerSTAR HS polymerase (2.5U/. Mu.l) 0.5. Mu.l, distilled water was added to a total volume of 50. Mu.l.
Amplification conditions were 98℃for 2 min (1 cycle) of pre-denaturation; denaturation at 98℃for 10 seconds, annealing at 56℃for 15 seconds, extension at 72℃for 2 minutes (30 cycles); extension at 72℃for 8 min (1 cycle). And (5) recycling the glue for standby.
Table 4 shows primers for amplification of Saccharomyces cerevisiae ERG1 gene
Primer name Sequence (5 '-3')
SexAI-ERG1-F ACCTGGTAAAACAATGTCTGCTGTTAACGTTGCA
AscI-ERG1-R GGCGCGCCTTAACCAATCAACTCACCAAACAAAAATG
Exogenous gene AtSQS (squalene synthase from Arabidopsis thaliana) and SmFPS (farnesyl pyrophosphate synthase from Salvia miltiorrhiza) sequences were optimized according to the codon bias of Saccharomyces cerevisiae and synthesized by Kirschner company. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained total gene synthesis product and the PCR amplified fragment are subjected to double digestion by using SexA I and Asc I of Thermo company, and enzyme digestion plasmids M2, M3 and M4 (described in Chinese patent 201210453416. X) are subjected to enzyme digestion, and the enzyme digestion product glue is recovered for standby.
The plasmids M2-AtSQS, M3-SmFPS and M4-ERG1 were obtained by ligation. The connection system is as follows: 50ng each of the fragment and the backbone, 5. Mu.L of 2X Quick ligation Buffer (NEB Co.), 0.5. Mu.L of Quick ligase (NEB Co., 400,000cohesive end units/ml), and distilled water were added to 10. Mu.L, and the mixture was reacted at room temperature for 10 minutes to obtain a ligation product, which was then transferred into Trans1-T1 competent cells and subjected to an ice bath for 30 minutes, and heat shock at 42℃for 30 seconds, and immediately placed on ice for 2 minutes. After adding 800. Mu.l of LB medium, incubating at 250rpm and 37 ℃ for 1 hour, the bacterial liquid is coated on an LB plate containing ampicillin, and after overnight culture, 5 positive single colonies are screened by PCR, and correct monoclonal sequencing is verified to obtain plasmids M2-AtSQS, M3-SmFPS and M4-ERG1.
PCR amplification was performed using the constructed plasmid M2-AtSQS as a template and the primers NDT80-50-pPGK1-F and 3G-2M-pTDH3-tADH1-R (see Table 5) (method same as step 1), to obtain an NDT80-50-pPGK1-AtSQS-tADH1-pTDH3-50 fragment (SEQ ID NO: 9) comprising the PGK1 promoter (SEQ ID NO: 51-801 of SEQ ID NO: 9), arabidopsis-derived AtSQS (SEQ ID NO: 802-2035 of SEQ ID NO: 9) and ADH1 terminator (SEQ ID NO: 2036-2194 of SEQ ID NO: 9).
PCR amplification was performed using the constructed plasmid M4-ERG1 as a template and the primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (method same as step 1), to obtain a tADH1-50-pTDH3-ERG1-tTPI1-pTEF1-50 fragment (SEQ ID NO: 10) comprising the TDH3 promoter (SEQ ID NO: 51-851) and the Saccharomyces cerevisiae-derived ERG1 gene (SEQ ID NO: 852-2343) and the TPI1 terminator (SEQ ID NO: 2344-2746) of SEQ ID NO: 10. And (5) performing glue recovery treatment on the target fragment obtained by amplification for standby.
PCR amplification was performed using the constructed plasmid M3-SmFPS as a template and the primers 3G-2M-tTPI1-pTEF1-F and NDT80-50-tCYC1-R (see Table 5) (method same as step 1), to obtain a tTPI1-50-pTEF1-SmFPS-tCYC1-NDT80-50 fragment (sequence 11) comprising the TEF1 promoter (positions 51-481 of sequence 11), the Saviae Miltiorrhizae radix-derived SmFPS gene (positions 482-1532 of sequence 11) and the CYC1 terminator (positions 1533-1840 of sequence 11).
Table 5 shows primers for amplifying NDT80, ATF2 and Gal80 sites homologous recombination fragments
3. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T5 was cultured overnight in the screening medium. The composition of the screening medium was as follows: SD-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage number indicates g/100 mL). Preparation of Saccharomyces cerevisiae competent cells (method same step 3) to the prepared BY-T5 competent cells were added pNDT80gRNA plasmid and three homologous recombination fragments (sequence 9 to sequence 11) each 2. Mu.L, transferred to an electric beaker after mixing well, electric shocked for 5.6ms at 2.7kv, 1mL of 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening medium plates (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.005% His.,0.01% Leu.,1.5% agar; each percentage represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. The PCR identified the correct positive clone, designated strain BY-T30.
The strain BY-T30 is a recombinant strain obtained BY replacing the NDT80 Gene (Gene ID:856524,updated on 6-Oct-2020) in BY-T5 genome with pPGK1-AtSQS-tADH1-pTDH3-ERG1-tTPI1-pTEF1-SmFPS-tCYC1 (nucleotide sequence consisting of sequence 9 th to 2194, sequence 10 th to 51 th to 2746, and sequence 11 th to 51 th to 1840).
4. gRNA plasmid elimination
BYT30 is a three-compartment line on the screening media plate. The composition of the screening medium was as follows: 5-FOA-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose 0.005%5-FOA,0.005% His, 0.01% Leu, 0.01% Ura.1.5% agar (each percentage represents g/100 mL). After the single clone on the plate was grown, the plate was reverse-screened on SD-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage represents g/100 mL) and SD-Trp-URA (formula: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.005% His, 0.01% Leu, 1.5% agar; each percentage represents g/100 mL), and the strain incapable of growing on the SD-Trp-URA plate was selected for use.
3. Construction of Saccharomyces cerevisiae Chassis Strain LP-034
The alcohol acetylase (ATF 2) gene of Saccharomyces cerevisiae can carry out acetylating reaction on the C3 position of steroid compound to form ester precipitate substance, so that the subsequent reaction can not be carried out. So to avoid experimental impact of acetylation of the steroid C3-hydroxyl group, saccharomyces cerevisiae chassis strain LP-034 was constructed by the approach of Crispr-Cas9 by knockdown operation at the ATF2 site:
1. Construction of Saccharomyces cerevisiae endogenous ATF2 Gene gRNA plasmid
First, PCR amplification was performed using primers 43803-up and 43803-ATF2gRNA-Down1 (see Table 1) with plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (# 43803) purchased from Addgene, containing cas9 binding domain) as template.
The amplification system is TAKARAHS DNA polymerase 5 XBuffer 10. Mu.l, dntp mix 4. Mu.l, primers (see Table 1) 1. Mu.l each, template 0.5. Mu.l, primerSTAR HS polymerase (2.5U/. Mu.l) 0.5. Mu.l, distilled water was added to a total volume of 50. Mu.l.
Amplification conditions were 98℃for 2 min (1 cycle) of pre-denaturation; denaturation at 98℃for 10 seconds, annealing at 56℃for 15 seconds, extension at 72℃for 5 minutes (30 cycles); extension at 72℃for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the amplified PCR product, wherein a Dpn1 treatment system is as follows: 10. Mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. Mu.L of Dpn1 (Thermo Co., 400,000cohesive end units/ml), 100. Mu.L of PCR amplification product, digestion treatment for 4 hours, and then gel recovery treatment of the treated product were carried out for use.
The digested product obtained after the gel recovery was transferred into Trans1-T1 competent cells for 30 minutes in an ice bath and immediately placed on ice for 2 minutes by heat shock at 42℃for 30 seconds. Adding 800 μl LB culture medium, incubating at 250rpm at 37deg.C for 1 hr, applying bacterial liquid on LB plate containing ampicillin, randomly selecting two monoclonal plasmids for sequencing verification after overnight culture, and sequencing results show that it is correct Is a plasmid of (2)Designated pATF2gRNA.
The pATF2gRNA plasmid contains the gRNA sequence of N20 corresponding to the ATF2 gene.
2. Construction of homologous recombination fragments
Exogenous genes VcCYP94N (26-hydroxylase of yam-derived sterols), DGCYP90G (16, 22 dihydroxyoxidase of peltate yam-derived sterols) and SvvCPR (nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase of grape-derived) are genes related to yam saponin synthesis, and sequences are optimized according to the codon preference of saccharomyces cerevisiae and synthesized by Jinsrey company. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end.
And (3) carrying out double enzyme digestion on the obtained total gene synthesis product by using SexA I and Asc I of Thermo company, and simultaneously carrying out enzyme digestion on plasmids M2, M3 and M4 by using SexA I and Asc I, and recovering enzyme digestion product glue for later use.
50ng of the digested plasmids M2, M3 and M4 were added to the ligation system together with 50ng of each of the obtained VcCYP94N, DGCYP90G, svvCPR gene segments: mu.L of 2X Quick ligation Buffer (NEB Co.), 0.5. Mu.L of Quick livese (NEB Co., 400,000cohesive end units/ml), distilled water was added to 10. Mu.L, and the mixture was reacted at room temperature for 10 minutes to give a ligation product, which was then transferred into Trans1-T1 competent cells and subjected to ice bath for 30 minutes, and heat shock at 42℃for 30 seconds, immediately placed on ice for 2 minutes. After adding 800. Mu.l of LB medium, incubating at 250rpm and 37 ℃ for 1 hour, the bacterial liquid is coated on an LB plate containing ampicillin, and after overnight culture, 5 positive single colonies are screened by PCR, and correct monoclonal sequencing is verified to obtain plasmids M2-VcCYP94N, M3-DGCYP90G and M4-SvCPR.
PCR amplification was performed using the constructed plasmid M2-VcCYP94N as a template and the primers ATF2-50-pPGK1-F and 3G-2M-pTDH3-tADH1-R (see Table 5) (method same as step 1), to obtain an ATF2-50-pPGK1-VcCYP94N-ADH1t-pTDH3-50 fragment (sequence 12) comprising the PGK1 promoter (positions 51-801 of sequence 12), the mountain-veratrum-derived VcCYP94N gene (positions 802-2257 of sequence 12) and the ADH1 terminator (positions 2258-2416 of sequence 12).
PCR amplification was performed using the constructed plasmid M3-DGCYP90G as a template and using primers 3G-2M-tTPI1-pTEF1-F and ATF2-50-tCYC1-R (see Table 5) (method same as step 1), to obtain a pTEF1-DGCYP90G-tCYC1 fragment (sequence 13) comprising the TEF1 promoter (positions 51-481 of sequence 13), the DGCYP90G gene derived from Dioscorea zingiberensis (positions 482-1949 of sequence 13) and the CYC1 terminator (positions 1950-2257 of sequence 13).
PCR amplification was performed using the constructed plasmid M4-SvCPR as a template and the primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (method same as step 1), to obtain a pTDH 3-SvCPR-tTPI 1 fragment (sequence 14) comprising the TDH3 promoter (positions 51-851 of sequence 14), the grape-derived SvCPR gene (positions 852-2964 of sequence 14) and the TPI1 terminator (positions 2965-3367 of sequence 14). And (5) performing glue recovery treatment on the target fragment obtained by amplification for standby.
3. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T30 was cultured overnight in screening medium. The composition of the screening medium was as follows: SD-Trp (Beijing pantunox (functional genome) technology Co., ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage number indicates g/100 mL). Preparation of Saccharomyces cerevisiae competent cells (method same as step 3) pATF2gRNA plasmid (comprising Cas9 binding region) and three homologous recombination fragments (sequences 12 to 14) were added 2. Mu.L each, mixed well and transferred to an electrocuvette, 2.7kv shocked for 5.6ms, 1mL 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening medium plates (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.005% His.,0.01% Leu.,1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. The PCR identified the correct positive clone, designated strain LP-034.
The strain LP-034 is recombinant strain obtained by replacing ATF2 Gene (Gene ID:853088,updated on 21-Mar-2020) in BYT30 genome with pPGK1-VcCYP94N-tADH1-pTDH3-SvvCPR-tTPI1-TEF1-DGCYP90G-tCYC1 fragment (the nucleotide sequence consists of 51 th to 2416 th nucleotides of sequence 12, 51 th to 2964 th nucleotides of sequence 14 and 51 th to 2257 th nucleotides of sequence 13 in sequence).
2. Construction of Saccharomyces cerevisiae Chassis Strain LP-074
1. Introducing cholesterol synthesis gene to open up dioscin synthesis path
Exogenous genes StDWF5 (potato derived sterol 7-site reductase) and GgDHCR24 (chicken derived sterol 24-site reductase) are enzymes required by cholesterol precursors in a dioscin synthesis path, and sequences are optimized according to the codon preference of saccharomyces cerevisiae and synthesized by Jinsrey company. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. And (3) carrying out double enzyme digestion on the obtained total gene synthesis product by using SexA I and Asc I of Thermo company, and simultaneously, carrying out enzyme digestion on plasmids M2 and M3 by using SexA I and Asc I, and recovering enzyme digestion product glue for later use. Plasmid M2-StDWF5, M3-GgDHCR24 (step 1 of the same procedure) was obtained.
PCR amplification was performed using the constructed plasmid M2-StDWF5 as a template and the primers 1M-pEASY-pPGK1-F and 1M-tADH1-pTEF1-R (see Table 6) (step 1 of the same procedure), to obtain a pPGK1-StDWF5-tADH1t fragment (SEQ ID NO: 15) comprising the PGK1 promoter (SEQ ID NO: 63-813 of SEQ ID NO: 15), the potato-derived StDWF5 gene (SEQ ID NO: 814-2119 of SEQ ID NO: 15) and the ADH1 terminator (SEQ ID NO: 2120-2278 of SEQ ID NO: 15).
PCR amplification was performed using the constructed plasmid M3-GgDHCR24 as a template and the primers 2M-tADH1-pTEF1-F and 2M-tCYC1-pEASY-R (see Table 6) (step 1 of the same procedure), to obtain a pTEF1-GgDHCR24-tCYC1 fragment (sequence 16) comprising the TEF1 promoter (positions 51-481 of sequence 16), the chicken-derived GgDHCR24 gene (positions 482-2033 of sequence 16) and the CYC1 terminator (positions 2034-2341 of sequence 16).
Saccharomyces cerevisiae LP-034 competent cells were prepared (method same as step 3), pPGK1-StDWF5-tADH1 fragment, pTEF 1-GDHCR 24-tCYC1 and the laboratory-available homology arm marker fragments TRP-His3-up, TRP-Down (described in China patent ZL201210453416. X), each 2. Mu.L, were mixed and transferred to an electric beaker, and 2.7kv was shocked for 5.7ms, 1mL of 1M sorbitol was added, and resuscitated at 30℃for 1h, and applied to a solid screening medium (formulation: yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.01% Leu.,0.01% Ura.,1.5% agar; each percentage represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. The PCR identified the correct positive clone, designated strain LP-074.
By sequencing, strain LP-074 was a recombinant strain obtained by replacing the TRP1 Gene of Saccharomyces cerevisiae LP-034 (Gene ID:851570,updated on 10-Oct-2020) with His-pPGK1-StDWF5-tADH1-TEF1-GgDHCR24-tCYC1 (the nucleotide sequence consists of His sequence (Gene ID:854377,updated on 6-Oct-2020), nucleotide sequence 15 at positions 63-2278 and nucleotide sequence 16 at positions 51-2341), i.e., a recombinant strain obtained by integrating the StDWF5 and GDHCR24 Gene fragments at the TRP1 site of LP-034.
Table 6 shows StDWF5, ggDHCR24 gene integration amplification primers
2. Identification of Saccharomyces cerevisiae LP-074 Strain product
Shaking and fermenting: activating Saccharomyces cerevisiae LP-074 strain in corresponding solid selection medium (formula: solid yeast screening medium SD-Ura-His-Leu-Trp,2% glucose, 1.5% agar; each percentage represents g/100 mL); inoculating into corresponding liquid selection culture medium (formula: liquid yeast screening culture medium SD-Ura-His-Leu-Trp,2% glucose; each percentage represents g/100 mL) to prepare seed solution (30 ℃,250rpm,16 h); the initial OD 0.1 inoculum size was inoculated into 3 flasks each containing the corresponding liquid selection medium (formula: yeast screening medium SD-Ura-His-Leu-Trp,2% glucose; each percentage represents g/100 mL) and shake-cultured at 30℃for 5 days at 250rpm to obtain a fermentation broth.
The extraction method of the product comprises the following steps: taking 5mL of fermentation liquor, centrifuging for 2min in a 15mL centrifuge tube at 11000r/min, removing the culture medium, washing for 2 times with sterile water, adding 1mL of 3M HCL, boiling for 10min, washing for 1 time with sterile water, re-suspending and precipitating with 1mL of 1.5M NaOH-methanol solution, and incubating at 60 ℃ for 6h. 1ml of n-hexane was added thereto and the mixture was vortexed for 10 minutes. The upper layer is taken to pass through a 0.22 mu m organic nylon filter membrane for standby detection.
And (3) gas chromatography detection: using an agilent technology 5975C gas chromatograph, equipped with a chromatographic column: HP-5ms (30 m. Times.0.25 mm. Times.0.5 μm). The temperature of the sample inlet is 300 ℃, the sample inlet volume is 1 mu L, no flow division is performed, and the solvent is delayed for 5min; chromatographic conditions: the temperature was maintained at 240℃for 5min, heated to 300℃at 10℃per minute, and maintained at 300℃for 25min for a total of 36min.
Gas chromatography-mass spectrometry (GC-MS) detection: gas mass spectrometry tandem mass spectrometry (GC-MS) agilent technology 5975C gas chromatograph with tri-axial insertion xl MSD detector equipped with chromatographic column: HP-5ms (30 m. Times.0.25 mm. Times.0.5 μm). GC-MS measurement conditions: the temperature of the sample inlet is 300 ℃, the sample inlet volume is 1 mu L, no flow division is performed, and the solvent is delayed for 5min; chromatographic conditions: 240 ℃ for 5min,10 ℃/min heating to 300 ℃ and 300 ℃ for 25min, 36min total. MS conditions: SIM:69,139,282 and 414.
Diosgenin standard was purchased from a Ding Gongsi for qualitative and quantitative analysis.
The products were detected using an Agilent technology 5975C gas chromatograph.
The yield of diosgenin is shown in figure 2, and can be used for producing diosgenin and trace amount of diosgenin.
Example 2 identification of a Critical enzyme for heterologous Synthesis of diosgenin by Saccharomyces cerevisiae and screening of the Activity of the different-Source sterols 22-hydroxylases
1. Identification of key enzyme for heterologously synthesizing dioscin by saccharomyces cerevisiae
Construction of Saccharomyces cerevisiae chassis strain LP-085-DG by Crispr-Cas9 method:
1. construction of Saccharomyces cerevisiae endogenous Gal80 gene gRNA plasmid
First, PCR amplification was performed using primers 43803-up and 43803-Gal80gRNA-Down1 (see Table 1) with the plasmid p426-SNR52p-gRNA.CAN.Y-SUP4t as a template (the method was the same as that of step 1 of example 1), and the plasmid was named pGal80gRNA.
pGal80gRNA plasmid contains the gRNA sequence of N20 corresponding to the Gal80 gene.
2. Construction of homologous recombination fragments
Exogenous genes svvCPR (nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase from grape source), DGCYP059 (steroid 22-position hydroxylase gene from peltate yam), and sequences were optimized according to Saccharomyces cerevisiae codon preference and synthesized by Jinsrey company. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. And (3) carrying out double enzyme digestion on the obtained total gene synthesis product by using SexA I and Asc I of Thermo company, and simultaneously, carrying out enzyme digestion on plasmids M2 and M3 by using SexA I and Asc I, and recovering enzyme digestion product glue for later use. Plasmid M2-SvvCPR, M3-DGCYP059 (the method is the same as in step 2 of example 1).
PCR amplification was performed using the constructed plasmid M2-SvCPR as a template and the primers Gal80-50-pPGK1-F and 1M-tADH1-pTEF1-R (see Table 5) (procedure 1) as in example 1I) to obtain a fragment of pPGK 1-SvCPR-ADH 1t (SEQ ID NO: 17) comprising the PGK1 promoter (SEQ ID NO: 51-801) and the grape-derived SvCPR gene (SEQ ID NO: 802-2914) 2914 and ADH1 terminator (SEQ ID NO: 17).
PCR amplification was performed using the constructed plasmid M3-DGCYP059 as a template and the primers 2M-tADH1-pTEF1-F and Gal80-50-tCYC1-R (see Table 5) (the method is the same as in example 1, step 1), to obtain a pTEF1-DGCYP059-tCYC1 fragment (sequence 18) comprising the TEF1 promoter (positions 51-481 of sequence 18), the DGCYP059 gene derived from Dioscorea zingiberensis (positions 482-1934 of sequence 18) and the CYC1 terminator (positions 1935-2242 of sequence 18).
Saccharomyces cerevisiae LP-074 strain competent (method same as example 1, step 3) was prepared, pGal80gRNA plasmid and two homologous recombination fragments (pPGK 1-SvvCPR-ADH1t fragment and pTEF1-DGCYP059-tCYC1 fragment) were added 2. Mu.L each, and after mixing well, transferred to an electric cup, 2.7kv was shocked for 5.6ms, 1mL of 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening medium plates (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.01% Leu.,1.5% agar; each percentage represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr.
The PCR identified the correct positive clone, designated strain LP-085-DG.
LP-085-DG is recombinant bacteria obtained by replacing the Gal80 Gene (Gene ID:854954,updated on 14-Jan-2021) in the genome of the LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-DGCYP059-tCYC1 (the nucleotide sequence consists of nucleotides 51-3073 of sequence 17 and nucleotides 51-2242 of sequence 18).
3. Saccharomyces cerevisiae LP-085-DG fermentation product detection
The recombinant strain LP-085-DG dioscin yield was examined according to 2 of example 1, and the result was shown in FIG. 3, wherein the LP-085-DG strain dioscin yield was 3.75mg/l fermentation broth supernatant; therefore, exogenously introduced steroid 22-position hydroxylase improves the synthesis path of dioscin and improves the capacity of synthesizing dioscin by Saccharomyces cerevisiae.
2. Screening of steroid 22-position hydroxylase Activity from different sources
To screen for the appropriate steroid 22-hydroxylase, steroid 22-hydroxylases of different origins were introduced by the method of Crispr-Cas9 to construct Saccharomyces cerevisiae chassis strains LP-085-Vc, LP-085-At and LP-085-Sl:
1. construction of Saccharomyces cerevisiae endogenous Gal80 gene gRNA plasmid
The pGal80gRNA plasmid was obtained in the same manner as in step 1 above.
2. Construction of homologous recombination fragments
Exogenous gene VcCYP90B27, atDWF4 and SlCYP90B3 sequences are optimized according to the codon preference of saccharomyces cerevisiae and synthesized by Jinsrey company. During the synthesis of the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. And (3) carrying out double enzyme digestion on the obtained total gene synthesis product by using SexA I and Asc I of Thermo company, and simultaneously recovering enzyme digestion product glue of SexA I and Asc I enzyme digestion plasmid M3 for later use. Plasmids M3-VcCYP90B27, M3-AtDWF4 and M3-SlCYP90B3 were obtained (the method is the same as in example 1, step 2). PCR amplification was performed using the constructed plasmids M3-VcCYP90B 27M 3-AtDWF4, M3-SlCYP90B3 as templates and primers 2M-tADH1-pTEF1-F and Gal80-50-tCYC1t-R (see tables 5 and 6) (the method was the same as in example 1, step 1), to obtain pTEF1-VcCYP90B27-tCYC1 fragment (sequence 19) comprising the TEF1 promoter (positions 51-481 of sequence 19), the mountain-veratrum-derived VcCYP90B27 gene (positions 482-1937 of sequence 19) and the CYC1 terminator (positions 1938-2245 of sequence 19), the pTEF1-AtDWF4-tCYC1 fragment (sequence 20) comprising the TEF1 promoter (positions 51-481 of sequence 20), the Arabidopsis-derived AtDWF4 gene (positions 482-2024 of sequence 20) and the CYC1 terminator (positions 2335-2332 of sequence 20), respectively. pTEF1-Sl-CYP90B3-tCYC1 fragment (SEQ ID NO: 21), which comprises the TEF1 promoter (SEQ ID NO: 51-481), the SlCYP90B3 gene derived from resveratrol (SEQ ID NO: 482-1955) and the CYC1 terminator (SEQ ID NO: 1956-2263) of the sequence 21.
Saccharomyces cerevisiae LP-074 strain competent (method same as example 1, step 3) was prepared, pGal80gRNA plasmid and two homologous recombination fragments each 2. Mu.L were added, transferred to an electric beaker after mixing well, electric shocked for 5.6ms at 2.7kv, 1mL of 1M sorbitol was added, resuscitated at 30℃for 1h, and plated on screening medium plates (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.01% Leu.,1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. The PCR identified the correct positive clones, designated as strains LP-085-Vc (corresponding 2 homologous fragments are pPGK1-SvvCPR-ADH1t and pTEF1-VcCYP90B27-tCYC 1), LP-085-At (corresponding 2 homologous fragments are pPGK1-SvvCPR-ADH1t and pTEF1-AtDWF4-tCYC 1) and LP-085-Sl (corresponding 2 homologous fragments are pPGK1-SvvCPR-ADH1t and pTEF1-Sl-CYP90B3-tCYC 1).
The LP-085-Vc is recombinant bacteria obtained by replacing Gal80 Gene (Gene ID:854954,updated on 14-Jan-2021) in the genome of LP-074 bacteria with pPGK1-SvvCPR-tADH1-pTEF1-VcCYP90B27-tCYC1 (the nucleotide sequence consists of nucleotides 51-3073 of sequence 17 and nucleotides 51-2245 of sequence 19).
LP085-At is recombinant bacteria obtained by replacing the Gal80 Gene (Gene ID:854954,updated on 14-Jan-2021) in the genome of the LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-AtDWF4-tCYC1 (the nucleotide sequence consists of nucleotides 51-3073 of sequence 17 and nucleotides 51-2332 of sequence 20).
The LP-085-Sl is recombinant bacteria obtained by replacing the Gal80 Gene (Gene ID:854954,updated on 14-Jan-2021) in the genome of the LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-SlCYP90B3-tCYC1 (the nucleotide sequence consists of nucleotides 51 to 3073 of the sequence 17 and nucleotides 51 to 2263 of the sequence 21).
3. Saccharomyces cerevisiae LP-085-Vc, LP-085-At and LP-085-Sl fermentation product detection
According to the recombinant strain detected in example 2 II, the yield of dioscin was as shown in FIG. 3, and it can be seen that the recombinant strain introduced with VcCYP90B27 had the highest yield of dioscin.
Example 3 construction of high-yield Dioscorea dioscin Strain LP-104
The yield of dioscin is increased by increasing the copy number of the dioscin synthesis module due to the accumulation of the precursor cholesterol.
Construction of plasmid M2-VcCYP90B27, M3-VcCYP94N, M4-DGCYP90G (the method is the same as in example 1, step 2).
PCR amplification was performed using the constructed plasmid M2-VcCYP90B27 as a template and the primers 1M-pEASY-pPGK1-F and 3G-2M-tADH1-pTDH3-R (see Table 5, 6) (method as in example 1, step 1), to obtain a pPGK1-VcCYP90B27-ADH1t fragment (sequence 22) comprising the PGK1 promoter (positions 1-750 of sequence 22), the mountain-veratrum-derived VcCYP90B27 gene (positions 751-2206 of sequence 22) and the ADH1 terminator (positions 2207-2365 of sequence 22).
PCR amplification was performed using the constructed plasmid M3-VcCYP94N as a template and using primers 3G-2M-tTPI1-pTEF1-F and 2M-TCYC1-pEASY-R (see Table 2, 3) (the method was the same as in example 1, step 1), to obtain a pTEF1-VcCYP94N-tCYC1 fragment (sequence 23) comprising the TEF1 promoter (positions 51-481 of sequence 23), the mountain-veratrum-derived VcCYP94N gene (positions 482-2027 of sequence 23) and the CYC1 terminator (positions 2028-2335 of sequence 23). PCR amplification was performed using the constructed plasmid M4-DGCYP90G as a template and the primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (method as in example 1, step 1) to obtain a pTDH3-DGCYP90G-tCYC1 fragment (sequence 24) comprising the TDH3 promoter (positions 51-851 of sequence 24), the Dioscorea zingiberensis-derived DGCYP90G gene (positions 852-2319 of sequence 24) and the TPI1 terminator (positions 2320-2722 of sequence 24). Saccharomyces cerevisiae LP-085 competent was prepared, adding 2. Mu.L each of the pPGK1-VcCYP90B27-ADH1t fragment, pTDH3-DGCYO90G-tTPI1 fragment, pTEF1-VcCYP94N-tCYC1 fragment and the laboratory existing homology arm marker fragment rDNA-Leu2-up (SEQ ID NO: 25; homology arm fragment comprising 400bp homology region upstream of rDNA site, leu2 marker Gene (Gene ID:850342,updated on 14-Jan-2021), and PGK promoter 400bp homology region), rDNA-Leu2-down (SEQ ID NO: 26; homology arm fragment comprising ADH1 terminator 200bp homology region, and 300bp homology region downstream of rDNA site), transferring to an electric-transfer cup after mixing, 2.7kv 5.7ms, adding 1M sorbitol, 30℃for 1h, and spreading on a solid screening medium (: selection medium-Ura-His-Leu-2% agarose: 100% agarose, 100% agarose: 100% agar. The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. The PCR identified the correct positive clone, designated strain LP-104.
The strain LP-104 is recombinant strain obtained by replacing rDNA (Chinese patent 201210453416. X) in the LP-085-Vc genome with Leu2-pPGK1-VcCYP90B27-tADH1-pTDH3-DGCYP90G-tTPI1-TEF1-VcCYP94N-tCYC1 (nucleotide sequence consisting of 687-1746 th nucleotide of sequence 22, 1-2365 th nucleotide of sequence 22, 51-2335 th nucleotide of sequence 23 and 51-2722 th nucleotide of sequence 27), and realizing the integration of VcCYP90B27, DGCYP90G and VcCYP94N gene fragments at rDNA sites of Saccharomyces cerevisiae LP-085.
EXAMPLE 4 overexpression of DGCYP90G Using high-copy plasmid, strain LP-BC was obtained
Construction of high-copy plasmid pRS426-URA3-pTEF1-DGCYP90G-tCYC1 by utilizing efficient homologous recombination ability of Saccharomyces cerevisiae
1. Obtaining homologous recombination fragments
First, PCR amplification (method 1) was performed using pRS425 plasmid as a template and primers 425-F and 425-50-tCYC1-R (see Table 7) to obtain fragment 425 (sequence 27), and the gel was recovered for use.
The Saccharomyces cerevisiae BY4742 strain genome is used as a template, primers 425-50-URA3-R and pTEF1-50-URA3-F (see table 7) are used for PCR amplification (1 with the same method), fragments 425-50-URA3-pTEF1-50 (sequence 28) are obtained, and the gel is recovered for later use.
The M3-DGCYP90G plasmid is used as a template, and primers pTEF1-up-F and tCYC1-down-R (see table 7) are used for PCR amplification (1 with the same method) to obtain a fragment pTEF1-DGCYP90G-tCYC1 (sequence 29), and the fragment pTEF 1-DGCYC 90G-tCYC1 is recovered for standby.
2. In vivo homologous recombination in Saccharomyces cerevisiae
Saccharomyces cerevisiae LP-104 strain competence was prepared (method same as example 1 step 3), added with 2. Mu.L of each of the above three fragments, transferred to an electric rotating cup after mixing uniformly, electric shocked for 5.6ms at 2.7kv, added with 1mL of 1M sorbitol, resuscitated at 30℃for 1h, and plated on a screening medium plate (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp,2% glucose, 0.01% Leu.,1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30deg.C for more than 36 hr. 5 single clones were randomly selected and verified with primers 425-50-URA3-R and tCYC1-down-R, the correct size being 3274bp. Designated LP-BC.
Recombinant strain LP-BC is obtained by introducing high copy plasmid pRS426-URA3-pTEF1-DGCYP90G-tCYC1 into Saccharomyces cerevisiae LP-104.
Table 7 shows the primers for high copy plasmid construction
3. Saccharomyces cerevisiae LP-034, LP-074 and LP-085-Vc, LP-104, LP-BC (genotypes see Table 8) fermentation product detection
The method is the same as in step 2 of example 1, and the diosgenin yield is shown in FIG. 4.
The data show that the yield of dioscin from strain LP-074 is extremely low, while the yield of dioscin from strain LP-085, which expresses VcCYP90B27 from resveratrol on the basis of strain LP-074, is significantly increased. Further integrating a yam saponin synthesis module at the rDNA multicopy site, screening a strain LP-104 capable of producing 24.6mg/L yam saponin, further integrating high-copy plasmid, and improving the yam saponin yield to 32.3mg/L by over-expressing DGCYP 90G.
4. Fed-batch fermentation
Specific methods and procedures reference [ Paddon C J, westfall P J, pitera D J, et al high-Level Semi-Synthetic Production of the Potent Antimalarial Artemisinin [ J ]. Nature,2013,496 (7446):528-32 ], or Westfall P J, pitera D J, lenihan J R, et al product of Amorphadiene in Yeast, and Its Conversion to Dihydroartemisinic Acid, precursor to the Antimalarial Agent Artemisinin [ J ]. Proc Natl Acad Sci USA,2012,109 (3): E111-8 ] ], the final yield of diosgenin from LP-BC strain in a 5 liter fermentor was 1.3g/L, and the final OD600 was 401 (see FIG. 5).
The discovery result shows that VcCYP90B27 from rhizoma et radix Veratri has great help in the heterologous production of dioscin by Saccharomyces cerevisiae. In addition, the yield of the yam saponin of the LP-BC strain is the highest yield reported, and lays a solid foundation for biosynthesis of steroid hormone by a one-step method.
Table 8 shows genotypes of strains according to the invention
/>
SEQUENCE LISTING
<110> institute of Tianjin Industrial biotechnology, national academy of sciences
<120> construction and application of diosgenin synthetic strain
<160> 29
<170> PatentIn version 3.5
<210> 1
<211> 2592
<212> DNA
<213> Artificial sequence
<400> 1
gccaggtgac cacgttggtc aagaaatcac agccgaagcc attaaggttc acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggctgcag accaattggt gaaaactgaa gtcaccaaga 840
agtcttttac tgctcctgta caaaaggctt ctacaccagt tttaaccaat aaaacagtca 900
tttctggatc gaaagtcaaa agtttatcat ctgcgcaatc gagctcatca ggaccttcat 960
catctagtga ggaagatgat tcccgcgata ttgaaagctt ggataagaaa atacgtcctt 1020
tagaagaatt agaagcatta ttaagtagtg gaaatacaaa acaattgaag aacaaagagg 1080
tcgctgcctt ggttattcac ggtaagttac ctttgtacgc tttggagaaa aaattaggtg 1140
atactacgag agcggttgcg gtacgtagga aggctctttc aattttggca gaagctcctg 1200
tattagcatc tgatcgttta ccatataaaa attatgacta cgaccgcgta tttggcgctt 1260
gttgtgaaaa tgttataggt tacatgcctt tgcccgttgg tgttataggc cccttggtta 1320
tcgatggtac atcttatcat ataccaatgg caactacaga gggttgtttg gtagcttctg 1380
ccatgcgtgg ctgtaaggca atcaatgctg gcggtggtgc aacaactgtt ttaactaagg 1440
atggtatgac aagaggccca gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta 1500
agatatggtt agactcagaa gagggacaaa acgcaattaa aaaagctttt aactctacat 1560
caagatttgc acgtctgcaa catattcaaa cttgtctagc aggagattta ctcttcatga 1620
gatttagaac aactactggt gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat 1680
actcattaaa gcaaatggta gaagagtatg gctgggaaga tatggaggtt gtctccgttt 1740
ctggtaacta ctgtaccgac aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta 1800
agagtgtcgt cgcagaagct actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg 1860
atgtttccgc attggttgag ttgaacattg ctaagaattt ggttggatct gcaatggctg 1920
ggtctgttgg tggatttaac gcacatgcag ctaatttagt gacagctgtt ttcttggcat 1980
taggacaaga tcctgcacaa aatgttgaaa gttccaactg tataacattg atgaaagaag 2040
tggacggtga tttgagaatt tccgtatcca tgccatccat cgaagtaggt accatcggtg 2100
gtggtactgt tctagaacca caaggtgcca tgttggactt attaggtgta agaggcccgc 2160
atgctaccgc tcctggtacc aacgcacgtc aattagcaag aatagttgcc tgtgccgtct 2220
tggcaggtga attatcctta tgtgctgccc tagcagccgg ccatttggtt caaagtcata 2280
tgacccacaa caggaaacct gctgaaccaa caaaacctaa caatttggac gccactgata 2340
taaatcgttt gaaagatggg tccgtcacct gcattaaatc ctaaagttat aaaaaaaata 2400
agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt attcttgagt 2460
aactctttcc tgtaggtcag gttgctttct caggtatagc atgaggtcgc tcttattgac 2520
cacacctcta ccggcatgcc gacatgcgac tgggtgagca tatgttccgc tgatgtgatg 2580
tgcaagataa ac 2592
<210> 2
<211> 2632
<212> DNA
<213> Artificial sequence
<400> 2
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga catgcgactg 60
ggtgagcata tgttccgctg atgtgatgtg caagataaac aagcaaggca gaaactaact 120
tcttcttcat gtaataaaca caccccgcgt ttatttacct atctctaaac ttcaacacct 180
tatatcataa ctaatatttc ttgagataag cacactgcac ccataccttc cttaaaaacg 240
tagcttccag tttttggtgg ttccggcttc cttcccgatt ccgcccgcta aacgcatatt 300
tttgttgcct ggtggcattt gcaaaatgca taacctatgc atttaaaaga ttatgtatgc 360
tcttctgact tttcgtgtga tgaggctcgt ggaaaaaatg aataatttat gaatttgaga 420
acaattttgt gttgttacgg tattttacta tggaataatc aatcaattga ggattttatg 480
caaatatcgt ttgaatattt ttccgaccct ttgagtactt ttcttcataa ttgcataata 540
ttgtccgctg cccctttttc tgttagacgg tgtcttgatc tacttgctat cgttcaacac 600
caccttattt tctaactatt ttttttttag ctcatttgaa tcagcttatg gtgatggcac 660
atttttgcat aaacctagct gtcctcgttg aacataggaa aaaaaaatat ataaacaagg 720
ctctttcact ctccttgcaa tcagatttgg gtttgttccc tttattttca tatttcttgt 780
catattcctt tctcaattat tattttctac tcataacctc acgcaaaata acacagtcaa 840
atcaatcaaa atgtcattac cgttcttaac ttctgcaccg ggaaaggtta ttatttttgg 900
tgaacactct gctgtgtaca acaagcctgc cgtcgctgct agtgtgtctg cgttgagaac 960
ctacctgcta ataagcgagt catctgcacc agatactatt gaattggact tcccggacat 1020
tagctttaat cataagtggt ccatcaatga tttcaatgcc atcaccgagg atcaagtaaa 1080
ctcccaaaaa ttggccaagg ctcaacaagc caccgatggc ttgtctcagg aactcgttag 1140
tcttttggat ccgttgttag ctcaactatc cgaatccttc cactaccatg cagcgttttg 1200
tttcctgtat atgtttgttt gcctatgccc ccatgccaag aatattaagt tttctttaaa 1260
gtctacttta cccatcggtg ctgggttggg ctcaagcgcc tctatttctg tatcactggc 1320
cttagctatg gcctacttgg gggggttaat aggatctaat gacttggaaa agctgtcaga 1380
aaacgataag catatagtga atcaatgggc cttcataggt gaaaagtgta ttcacggtac 1440
cccttcagga atagataacg ctgtggccac ttatggtaat gccctgctat ttgaaaaaga 1500
ctcacataat ggaacaataa acacaaacaa ttttaagttc ttagatgatt tcccagccat 1560
tccaatgatc ctaacctata ctagaattcc aaggtctaca aaagatcttg ttgctcgcgt 1620
tcgtgtgttg gtcaccgaga aatttcctga agttatgaag ccaattctag atgccatggg 1680
tgaatgtgcc ctacaaggct tagagatcat gactaagtta agtaaatgta aaggcaccga 1740
tgacgaggct gtagaaacta ataatgaact gtatgaacaa ctattggaat tgataagaat 1800
aaatcatgga ctgcttgtct caatcggtgt ttctcatcct ggattagaac ttattaaaaa 1860
tctgagcgat gatttgagaa ttggctccac aaaacttacc ggtgctggtg gcggcggttg 1920
ctctttgact ttgttacgaa gagacattac tcaagagcaa attgacagct tcaaaaagaa 1980
attgcaagat gattttagtt acgagacatt tgaaacagac ttgggtggga ctggctgctg 2040
tttgttaagc gcaaaaaatt tgaataaaga tcttaaaatc aaatccctag tattccaatt 2100
atttgaaaat aaaactacca caaagcaaca aattgacgat ctattattgc caggaaacac 2160
gaatttacca tggacttcat aagcggatct cttatgtctt tacgatttat agttttcatt 2220
atcaagtatg cctatattag tatatagcat ctttagatga cagtgttcga agtttcacga 2280
ataaaagata atattctact ttttgctccc accgcgtttg ctagcacgag tgaacaccat 2340
ccctcgcctg tgagttgtac ccattcctct aaactgtaga catggtagct tcagcagtgt 2400
tcgttatgta cggcatcctc caacaaacag tcggttatag tttgtcctgc tcctctgaat 2460
cgtctccctc gatatttctc attttccttc gcatgccagc attgaaatga tcgaagttca 2520
atgatgaaac ggtaattctt ctgtcattta ctcatctcat ctcatcaagt tatataattc 2580
taaatcctac tcttgccgtt gccatccaaa atgagctaga aggtggatta ac 2632
<210> 3
<211> 2367
<212> DNA
<213> Artificial sequence
<400> 3
taattcttct gtcatttact catctcatct catcaagtta tataattcta aatcctactc 60
ttgccgttgc catccaaaat gagctagaag gtggattaac aaatataatg acaaatcgtt 120
gcttgtctga cttgattcca ctacagttac aaatatttga cattgtatat aagttttgca 180
agttcatcaa atctatgaga gcaaaattat gtcaactgga ccccgtacta tatgagaaac 240
acaaaagcgg gatgatgaaa acactaaacg aaggctatcg tacaaacaat ggcggtcagg 300
aagatgttgg ttaccaagaa gatgccgccc tggaattaat tcagaagctg attgaataca 360
ttagcaacgc gtccagcatt tttcggaagt gtctcataaa ctttactcaa gagttaagta 420
ctgaaaaatt cgacttttat gatagttcaa gtgtcgacgc tgcgggtata gaaagggttc 480
tttactctat agtacctcct cgctcagcat ctgcttcttc ccaaagatga acgcggcgtt 540
atgtcactaa cgacgtgcac caacttgcgg aaagtggaat cccgttccaa aactggcatc 600
cactaattga tacatctaca caccgcacgc cttttttctg aagcccactt tcgtggactt 660
tgccatatgc aaaattcatg aagtgtgata ccaagtcagc atacacctca ctagggtagt 720
ttctttggtt gtattgatca tttggttcat cgtggttcat taattttttt tctccattgc 780
tttctggctt tgatcttact atcatttgga tttttgtcga aggttgtaga attgtatgtg 840
acaagtggca ccaagcatat ataaaaaaaa aaagcattat cttcctacca gagttgattg 900
ttaaaaacgt atttatagca aacgcaattg taattaattc ttattttgta tcttttcttc 960
ccttgtctca atcttttatt tttattttat ttttcttttc ttagtttctt tcataacacc 1020
aagcaactaa tactataaca tacaataata atgactgccg acaacaatag tatgccccat 1080
ggtgcagtat ctagttacgc caaattagtg caaaaccaaa cacctgaaga cattttggaa 1140
gagtttcctg aaattattcc attacaacaa agacctaata cccgatctag tgagacgtca 1200
aatgacgaaa gcggagaaac atgtttttct ggtcatgatg aggagcaaat taagttaatg 1260
aatgaaaatt gtattgtttt ggattgggac gataatgcta ttggtgccgg taccaagaaa 1320
gtttgtcatt taatggaaaa tattgaaaag ggtttactac atcgtgcatt ctccgtcttt 1380
attttcaatg aacaaggtga attactttta caacaaagag ccactgaaaa aataactttc 1440
cctgatcttt ggactaacac atgctgctct catccactat gtattgatga cgaattaggt 1500
ttgaagggta agctagacga taagattaag ggcgctatta ctgcggcggt gagaaaacta 1560
gatcatgaat taggtattcc agaagatgaa actaagacaa ggggtaagtt tcacttttta 1620
aacagaatcc attacatggc accaagcaat gaaccatggg gtgaacatga aattgattac 1680
atcctatttt ataagatcaa cgctaaagaa aacttgactg tcaacccaaa cgtcaatgaa 1740
gttagagact tcaaatgggt ttcaccaaat gatttgaaaa ctatgtttgc tgacccaagt 1800
tacaagttta cgccttggtt taagattatt tgcgagaatt acttattcaa ctggtgggag 1860
caattagatg acctttctga agtggaaaat gacaggcaaa ttcatagaat gctataagcg 1920
atttaatctc taattattag ttaaagtttt ataagcattt ttatgtaacg aaaaataaat 1980
tggttcatat tattactgca ctgtcactta ccatggaaag accagacaag aagttgccga 2040
cagtctgttg aattggcctg gttaggctta agtctgggtc cgcttcttta caaatttgga 2100
gaatttctct taaacgatat gtatattctt ttcgttggaa aagatgtctt ccaaaaaaaa 2160
aaccgatgaa ttagtggaac caaggaaaaa aaaagaggta tccttgatta aggaacactg 2220
tttaaacagt gtggtttcca aaaccctgaa actgcattag tgtaatagaa gactagacac 2280
ctcgatacaa ataatggtta ctcaattcaa aactgccaat gctactattt tggagattaa 2340
tctcagtaca aaacaatatt aaaaaga 2367
<210> 4
<211> 2691
<212> DNA
<213> Artificial sequence
<400> 4
gaagactaga cacctcgata caaataatgg ttactcaatt caaaactgcc aatgctacta 60
ttttggagat taatctcagt acaaaacaat attaaaaaga ggtgaattat ttttcccccc 120
ttattttttt tttgttaaaa ttgatccaaa tgtaaataaa caatcacaag gaaaaaaaaa 180
aaaaaaaaaa aaatagccgc catgaccccg gatcgtcggt tgtgatacgg tcagggtagc 240
gccctggtca aacttcagaa ctaaaaaaat aataaggaag aaaaaaatag ctaatttttc 300
cggcagaaag attttcgcta cccgaaagtt tttccggcaa gctaaatgga aaaaggaaag 360
attattgaaa gagaaagaaa gaaaaaaaaa aaatgtacac ccagacatcg ggcttccaca 420
atttcggctc tattgttttc catctctcgc aacggcggga ttcctctatg gcgtgtgatg 480
tctgtatctg ttacttaatc cagaaactgg cacttgaccc aactctgcca cgtgggtcgt 540
tttgccatcg acagattggg agattttcat agtagaattc agcatgatag ctacgtaaat 600
gtgttccgca ccgtcacaaa gtgttttcta ctgttctttc ttctttcgtt cattcagttg 660
agttgagtga gtgctttgtt caatggatct tagctaaaat gcatattttt tctcttggta 720
aatgaatgct tgtgatgtct tccaagtgat ttcctttcct tcccatatga tgctaggtac 780
ctttagtgtc ttcctaaaaa aaaaaaaagg ctcgccatca aaacgatatt cgttggcttt 840
tttttctgaa ttataaatac tctttggtaa cttttcattt ccaagaacct cttttttcca 900
gttatatcat ggtccccttt caaagttatt ctctactctt tttcatattc attctttttc 960
atcctttggt tttttattct taacttgttt attattctct cttgtttcta tttacaagac 1020
accaatcaaa acaaataaaa catcatcaca atgaccgttt acacagcatc cgttaccgca 1080
cccgtcaaca tcgcaaccct taagtattgg gggaaaaggg acacgaagtt gaatctgccc 1140
accaattcgt ccatatcagt gactttatcg caagatgacc tcagaacgtt gacctctgcg 1200
gctactgcac ctgagtttga acgcgacact ttgtggttaa atggagaacc acacagcatc 1260
gacaatgaaa gaactcaaaa ttgtctgcgc gacctacgcc aattaagaaa ggaaatggaa 1320
tcgaaggacg cctcattgcc cacattatct caatggaaac tccacattgt ctccgaaaat 1380
aactttccta cagcagctgg tttagcttcc tccgctgctg gctttgctgc attggtctct 1440
gcaattgcta agttatacca attaccacag tcaacttcag aaatatctag aatagcaaga 1500
aaggggtctg gttcagcttg tagatcgttg tttggcggat acgtggcctg ggaaatggga 1560
aaagctgaag atggtcatga ttccatggca gtacaaatcg cagacagctc tgactggcct 1620
cagatgaaag cttgtgtcct agttgtcagc gatattaaaa aggatgtgag ttccactcag 1680
ggtatgcaat tgaccgtggc aacctccgaa ctatttaaag aaagaattga acatgtcgta 1740
ccaaagagat ttgaagtcat gcgtaaagcc attgttgaaa aagatttcgc cacctttgca 1800
aaggaaacaa tgatggattc caactctttc catgccacat gtttggactc tttccctcca 1860
atattctaca tgaatgacac ttccaagcgt atcatcagtt ggtgccacac cattaatcag 1920
ttttacggag aaacaatcgt tgcatacacg tttgatgcag gtccaaatgc tgtgttgtac 1980
tacttagctg aaaatgagtc gaaactcttt gcatttatct ataaattgtt tggctctgtt 2040
cctggatggg acaagaaatt tactactgag cagcttgagg ctttcaacca tcaatttgaa 2100
tcatctaact ttactgcacg tgaattggat cttgagttgc aaaaggatgt tgccagagtg 2160
attttaactc aagtcggttc aggcccacaa gaaacaaacg aatctttgat tgacgcaaag 2220
actggtctac caaaggaata aacaaatcgc tcttaaatat atacctaaag aacattaaag 2280
ctatattata agcaaagata cgtaaatttt gcttatatta ttatacacat atcatatttc 2340
tatattttta agatttggtt atataatgta cgtaatgcaa aggaaataaa ttttatacat 2400
tattgaacag cgtccaagta actacattat gtgcactaat agtttagcgt cgtgaagact 2460
ttattgtgtc gcgaaaagta aaaattttaa aaattagagc accttgaact tgcgaaaaag 2520
gttctcatca actgtttaaa aggaggatat caggtcctat ttctgacaaa caatatacaa 2580
atttagtttc aaagatgaat cagtgcgcga aggacataac tcatgaagcc tccagtatac 2640
catggggccg tatacttaca tatagtagat gtcaagcgta ggcgcttccc c 2691
<210> 5
<211> 2364
<212> DNA
<213> Artificial sequence
<400> 5
aagatgaatc agtgcgcgaa ggacataact catgaagcct ccagtatacc atggggccgt 60
atacttacat atagtagatg tcaagcgtag gcgcttcccc tgccggctgt gagggcgcca 120
taaccaaggt atctatagac cgccaatcag caaactacct ccgtacattc atgttgcacc 180
cacacattta tacacccaga ccgcgacaaa ttacccataa ggttgtttgt gacggcgtcg 240
tacaagagaa cgtgggaact ttttaggctc accaaaaaag aaagaaaaaa tacgagttgc 300
tgacagaagc ctcaagaaaa aaaaaattct tcttcgacta tgctggaggc agagatgatc 360
gagccggtag ttaactatat atagctaaat tggttccatc accttctttt ctggtgtcgc 420
tccttctagt gctatttctg gcttttccta tttttttttt tccatttttc tttctctctt 480
tctaatatat aaattctctt gcattttcta tttttctctc tatctattct acttgtttat 540
tcccttcaag gttttttttt aaggagtact tgtttttaga atatacggtc aacgaactat 600
aattaactaa acatgacagg caagacgggt cacatcgatg gtttgaactc gcgcattgaa 660
aagatgcgag atctcgaccc cgcacaacgg ctggtgcgcg ttgccgaggc ggcgggcctc 720
gagcccgagg cgatcagcgc gctggcgggt aacggcgccc tgcccctctc gctggccaac 780
gggatgatcg agaacgtcat cggcaaattc gaactgccgc tgggcgtggc cacgaatttc 840
actgtgaacg gccgcgacta tctgatcccg atggcggtcg aagagccctc ggtggtggcg 900
gccgcgtcct atatggcgcg tatcgcgcgc gagaatggcg gattcaccgc gcatggcacc 960
gcgcccttga tgcgcgccca gatccaggtg gtcgggttgg gtgatcccga gggcgcccgg 1020
cagcgtctcc tcgcccacaa ggccgcgttc atggaggcgg cggacgctgt cgatccggtg 1080
cttgtcgggc tgggtggcgg ctgccgcgat atcgaggttc acgtgttccg ggatacgccg 1140
gtgggcgcga tggtcgtcct gcacctgatc gtcgatgtgc gcgacgcgat gggggccaat 1200
acggtcaaca cgatggccga acggctggcc cccgaggtcg agcggattgc cggtggcacc 1260
gtgcggctgc gcatcctgtc gaacctcgcc gacctgcgat tggtccgggc gcgggtggaa 1320
ctggccccgg aaacactgac aacgcagggc tatgacggcg ccgacgtggc gcggggcatg 1380
gtcgaggcct gcgcgcttgc catcgtcgac ccctatcgcg cggcgaccca taacaagggg 1440
atcatgaacg gcatcgaccc ggtcgtcgtc gccaccggca atgactggcg cgcgatcgag 1500
gcgggtgccc atgcctatgc cgcccgcacg ggtcattata cctcgctgac ccgctgggaa 1560
ctggcgaatg acgggcggct tgtgggcacg atcgaactgc ccctggcgct tggccttgtc 1620
ggcggcgcga ccaagacgca cccgaccgca cgggcggcgc tggccctgat gcaggtagag 1680
actgcaaccg aactggccca ggtcaccgcc gccgtgggtc tggcgcagaa catggccgcc 1740
atccgcgcgc tggcgaccga aggcatccag cgcggtcaca tgacccttca tgcgcgcaac 1800
atcgcgatca tggccggcgc aacaggcgcc gatatcgacc gcgtcacccg ggtcattgtc 1860
gaagcgggcg acgtcagcgt ggcccgtgca aaacaggtgc tggaaaacac ctgaagtgct 1920
tttaactaag aattattagt cttttctgct tattttttca tcatagttta gaacacttta 1980
tattaacgaa tagtttatga atctatttag gtttaaaaat tgatacagtt ttataagtta 2040
ctttttcaaa gactcgtgct gtctattgca taatgcactg gaaggggaaa aaaaaggtgc 2100
acacgcgtgg ctttttcttg aatttgcagt ttgaaaaata actacatgga tgataagaaa 2160
acatggagta cagtcacttt gagaaccttc aatcagctgg taacgtcttc gttaattgga 2220
tactcaaaaa agatggatag catgaatcac aagatggaag gaaatgcggg ccacgaccac 2280
agtgatatgc atatgggaga tggagatgat acctgatcca actggcaccg ctggcttgaa 2340
caacaatacc agccttccaa cttc 2364
<210> 6
<211> 2799
<212> DNA
<213> Artificial sequence
<400> 6
tgcgggccac gaccacagtg atatgcatat gggagatgga gatgatacct gatccaactg 60
gcaccgctgg cttgaacaac aataccagcc ttccaacttc tgtaaataac ggcggtacgc 120
cagtgccacc agtaccgtta cctttcggta tacctccttt ccccatgttt ccaatgccct 180
tcatgcctcc aacggctact atcacaaatc ctcatcaagc tgacgcaagc cctaagaaat 240
gaataacaat actgacagta ctaaataatt gcctacttgg cttcacatac gttgcatacg 300
tcgatataga taataatgat aatgacagca ggattatcgt aatacgtaat agttgaaaat 360
ctcaaaaatg tgtgggtcat tacgtaaata atgataggaa tgggattctt ctatttttcc 420
tttttccatt ctagcagccg tcgggaaaac gtggcatcct ctctttcggg ctcaattgga 480
gtcacgctgc cgtgagcatc ctctctttcc atatctaaca actgagcacg taaccaatgg 540
aaaagcatga gcttagcgtt gctccaaaaa agtattggat ggttaatacc atttgtctgt 600
tctcttctga ctttgactcc tcaaaaaaaa aaaatctaca atcaacagat cgcttcaatt 660
acgccctcac aaaaactttt ttccttcttc ttcgcccacg ttaaatttta tccctcatgt 720
tgtctaacgg atttctgcac ttgatttatt ataaaaagac aaagacataa tacttctcta 780
tcaatttcag ttattgttct tccttgcgtt attcttctgt tcttcttttt cttttgtcat 840
atataaccat aaccaagtaa tacatattca aaatgaaact ctcaactaaa ctttgttggt 900
gtggtattaa aggaagactt aggccgcaaa agcaacaaca attacacaat acaaacttgc 960
aaatgactga actaaaaaaa caaaagaccg ctgaacaaaa aaccagacct caaaatgtcg 1020
gtattaaagg tatccaaatt tacatcccaa ctcaatgtgt caaccaatct gagctagaga 1080
aatttgatgg cgtttctcaa ggtaaataca caattggtct gggccaaacc aacatgtctt 1140
ttgtcaatga cagagaagat atctactcga tgtccctaac tgttttgtct aagttgatca 1200
agagttacaa catcgacacc aacaaaattg gtagattaga agtcggtact gaaactctga 1260
ttgacaagtc caagtctgtc aagtctgtct tgatgcaatt gtttggtgaa aacactgacg 1320
tcgaaggtat tgacacgctt aatgcctgtt acggtggtac caacgcgttg ttcaactctt 1380
tgaactggat tgaatctaac gcatgggatg gtagagacgc cattgtagtt tgcggtgata 1440
ttgccatcta cgataagggt gccgcaagac caaccggtgg tgccggtact gttgctatgt 1500
ggatcggtcc tgatgctcca attgtatttg actctgtaag agcttcttac atggaacacg 1560
cctacgattt ttacaagcca gatttcacca gcgaatatcc ttacgtcgat ggtcattttt 1620
cattaacttg ttacgtcaag gctcttgatc aagtttacaa gagttattcc aagaaggcta 1680
tttctaaagg gttggttagc gatcccgctg gttcggatgc tttgaacgtt ttgaaatatt 1740
tcgactacaa cgttttccat gttccaacct gtaaattggt cacaaaatca tacggtagat 1800
tactatataa cgatttcaga gccaatcctc aattgttccc agaagttgac gccgaattag 1860
ctactcgcga ttatgacgaa tctttaaccg ataagaacat tgaaaaaact tttgttaatg 1920
ttgctaagcc attccacaaa gagagagttg cccaatcttt gattgttcca acaaacacag 1980
gtaacatgta caccgcatct gtttatgccg cctttgcatc tctattaaac tatgttggat 2040
ctgacgactt acaaggcaag cgtgttggtt tattttctta cggttccggt ttagctgcat 2100
ctctatattc ttgcaaaatt gttggtgacg tccaacatat tatcaaggaa ttagatatta 2160
ctaacaaatt agccaagaga atcaccgaaa ctccaaagga ttacgaagct gccatcgaat 2220
tgagagaaaa tgcccatttg aagaagaact tcaaacctca aggttccatt gagcatttgc 2280
aaagtggtgt ttactacttg accaacatcg atgacaaatt tagaagatct tacgatgtta 2340
aaaaataaat ttaactcctt aagttacttt aatgatttag tttttattat taataattca 2400
tgctcatgac atctcatata cacgtttata aaacttaaat agattgaaaa tgtattaaag 2460
attcctcagg gattcgattt ttttggaagt ttttgttttt ttttccttga gatgctgtag 2520
tatttgggaa caattataca atcgaaagat atatgcttac attcgaccgt tttagccgtg 2580
atcattatcc tatagtaaca taacctgaag cataactgac actactatca tcaatacttg 2640
tcacatgaga actctgtgaa taattaggcc actgaaattt gatgcctgaa ggaccggcat 2700
cacggatttt cgataaagca cttagtatca cactaattgg cttttcgcca tactagcgtt 2760
gaatgttagc gtcaacaaca agaagtttaa tgacgcgga 2799
<210> 7
<211> 2658
<212> DNA
<213> Artificial sequence
<400> 7
tcacggattt tcgataaagc acttagtatc acactaattg gcttttcgcc atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgtcagagt tgagagcctt cagtgcccca gggaaagcgt tactagctgg 900
tggatattta gttttagata caaaatatga agcatttgta gtcggattat cggcaagaat 960
gcatgctgta gcccatcctt acggttcatt gcaagggtct gataagtttg aagtgcgtgt 1020
gaaaagtaaa caatttaaag atggggagtg gctgtaccat ataagtccta aaagtggctt 1080
cattcctgtt tcgataggcg gatctaagaa ccctttcatt gaaaaagtta tcgctaacgt 1140
atttagctac tttaaaccta acatggacga ctactgcaat agaaacttgt tcgttattga 1200
tattttctct gatgatgcct accattctca ggaggatagc gttaccgaac atcgtggcaa 1260
cagaagattg agttttcatt cgcacagaat tgaagaagtt cccaaaacag ggctgggctc 1320
ctcggcaggt ttagtcacag ttttaactac agctttggcc tccttttttg tatcggacct 1380
ggaaaataat gtagacaaat atagagaagt tattcataat ttagcacaag ttgctcattg 1440
tcaagctcag ggtaaaattg gaagcgggtt tgatgtagcg gcggcagcat atggatctat 1500
cagatataga agattcccac ccgcattaat ctctaatttg ccagatattg gaagtgctac 1560
ttacggcagt aaactggcgc atttggttga tgaagaagac tggaatatta cgattaaaag 1620
taaccattta ccttcgggat taactttatg gatgggcgat attaagaatg gttcagaaac 1680
agtaaaactg gtccagaagg taaaaaattg gtatgattcg catatgccag aaagcttgaa 1740
aatatataca gaactcgatc atgcaaattc tagatttatg gatggactat ctaaactaga 1800
tcgcttacac gagactcatg acgattacag cgatcagata tttgagtctc ttgagaggaa 1860
tgactgtacc tgtcaaaagt atcctgaaat cacagaagtt agagatgcag ttgccacaat 1920
tagacgttcc tttagaaaaa taactaaaga atctggtgcc gatatcgaac ctcccgtaca 1980
aactagctta ttggatgatt gccagacctt aaaaggagtt cttacttgct taatacctgg 2040
tgctggtggt tatgacgcca ttgcagtgat tactaagcaa gatgttgatc ttagggctca 2100
aaccgctaat gacaaaagat tttctaaggt tcaatggctg gatgtaactc aggctgactg 2160
gggtgttagg aaagaaaaag atccggaaac ttatcttgat aaataagatt aatataatta 2220
tataaaaata ttatcttctt ttctttatat ctagtgttat gtaaaataaa ttgatgacta 2280
cggaaagctt ttttatattg tttctttttc attctgagcc acttaaattt cgtgaatgtt 2340
cttgtaaggg acggtagatt tacaagtgat acaacaaaaa gcaaggcgct ttttctaata 2400
aaaagaagaa aagcatttaa caattgaaca cctctatatc aacgaagaat attactttgt 2460
ctctaaatcc ttgtaaaatg tgtacgatct ctatatgggt tactcataag tgtaccgaag 2520
actgcattga aagtttatgt tttttcactg gaggcgtcat tttcgcgttg agaagatgtt 2580
cttatccaaa tttcaactgt tatatagaag tgatccccca cacaccatag cttcaaaatg 2640
tttctactcc ttttttac 2658
<210> 8
<211> 2034
<212> DNA
<213> Artificial sequence
<400> 8
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtctcaga acgtttacat tgtatcgact gccagaaccc caattggttc attccagggt 540
tctctatcct ccaagacagc agtggaattg ggtgctgttg ctttaaaagg cgccttggct 600
aaggttccag aattggatgc atccaaggat tttgacgaaa ttatttttgg taacgttctt 660
tctgccaatt tgggccaagc tccggccaga caagttgctt tggctgccgg tttgagtaat 720
catatcgttg caagcacagt taacaaggtc tgtgcatccg ctatgaaggc aatcattttg 780
ggtgctcaat ccatcaaatg tggtaatgct gatgttgtcg tagctggtgg ttgtgaatct 840
atgactaacg caccatacta catgccagca gcccgtgcgg gtgccaaatt tggccaaact 900
gttcttgttg atggtgtcga aagagatggg ttgaacgatg cgtacgatgg tctagccatg 960
ggtgtacacg cagaaaagtg tgcccgtgat tgggatatta ctagagaaca acaagacaat 1020
tttgccatcg aatcctacca aaaatctcaa aaatctcaaa aggaaggtaa attcgacaat 1080
gaaattgtac ctgttaccat taagggattt agaggtaagc ctgatactca agtcacgaag 1140
gacgaggaac ctgctagatt acacgttgaa aaattgagat ctgcaaggac tgttttccaa 1200
aaagaaaacg gtactgttac tgccgctaac gcttctccaa tcaacgatgg tgctgcagcc 1260
gtcatcttgg tttccgaaaa agttttgaag gaaaagaatt tgaagccttt ggctattatc 1320
aaaggttggg gtgaggccgc tcatcaacca gctgatttta catgggctcc atctcttgca 1380
gttccaaagg ctttgaaaca tgctggcatc gaagacatca attctgttga ttactttgaa 1440
ttcaatgaag ccttttcggt tgtcggtttg gtgaacacta agattttgaa gctagaccca 1500
tctaaggtta atgtatatgg tggtgctgtt gctctaggtc acccattggg ttgttctggt 1560
gctagagtgg ttgttacact gctatccatc ttacagcaag aaggaggtaa gatcggtgtt 1620
gccgccattt gtaatggtgg tggtggtgct tcctctattg tcattgaaaa gatatgaccg 1680
ctgatcctag agggccgcat catgtaatta gttatgtcac gcttacattc acgccctccc 1740
cccacatccg ctctaaccga aaaggaagga gttagacaac ctgaagtcta ggtccctatt 1800
tattttttta tagttatgtt agtattaaga acgttattta tatttcaaat ttttcttttt 1860
tttctgtaca gacgcgtgta cgcatgtaac attatactga aaaccttgct tgagaaggtt 1920
ttgggacgct cgaaggcttt aatttgcaag ctgcggccct gcattaatga atcggccaac 1980
gcgcggatgc aggtatcaga actggtgatt taggtggttc caacagtacc accg 2034
<210> 9
<211> 2241
<212> DNA
<213> Artificial sequence
<400> 9
tactaacctt tcattaaaga gaaataacaa tattataaaa agcgcttaaa acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggggagct tggggacgat gctgagatat ccggatgaca 840
tatatccgct cctgaagatg aaacgagcga ttgagaaagc ggagaagcag atccctcctg 900
agccacactg gggtttctgc tattcgatgc tccacaaggt ttctcgaagc ttttctctcg 960
ttattcagca actcaacacc gagctccgta acgccgtgtg tgtgttctac ttggttctcc 1020
gagctcttga tactgttgag gatgatacta gcataccaac tgatgaaaag gttcccatcc 1080
tgatagcttt tcaccggcac atatacgata ctgattggca ttattcatgt ggtacgaagg 1140
agtacaagat tctaatggac caatttcacc atgtttctgc agcttttttg gaacttgaaa 1200
aagggtatca agaggctatc gaggaaatta ctagaagaat gggtgcaggg atggccaagt 1260
ttatctgcca agaggtagaa actgttgatg actacgatga atactgccac tatgttgctg 1320
ggcttgttgg tttaggtttg tcgaaactct tcctcgctgc aggatcagag gttttgacac 1380
cagattggga ggcgatttcc aattcaatgg gtttatttct gcagaaaaca aacattatca 1440
gagattatct tgaggacatt aatgagatac caaaatcccg catgttttgg cctcgcgaga 1500
tttggggcaa atatgctgac aagcttgagg atttaaaata cgaggagaac acaaacaaat 1560
ccgtacagtg cttaaatgaa atggttacca atgcgttgat gcatattgaa gattgcctga 1620
aatacatggt ttccttgcgt gatccttcca tatttcggtt ctgtgccatc cctcagatca 1680
tggcgattgg aacacttgca ttatgctata acaatgaaca agtattcaga ggcgttgtga 1740
aactgaggcg aggtcttact gctaaagtca ttgatcgtac aaagacaatg gctgatgtct 1800
atggtgcttt ctatgatttt tcctgcatgc tgaagacaaa ggttgacaag aacgatccaa 1860
atgccagtaa gacactaaac cgacttgaag ccgttcagaa actctgcaga gacgctggag 1920
ttcttcaaaa cagaaaatct tatgttaatg acaaaggaca accaaacagt gtctttatta 1980
taatggttgt gattctactg gccatagtct ttgcatatct cagagcaaac tgaagttata 2040
aaaaaaataa gtgtatacaa attttaaagt gactcttagg ttttaaaacg aaaattctta 2100
ttcttgagta actctttcct gtaggtcagg ttgctttctc aggtatagca tgaggtcgct 2160
cttattgacc acacctctac cggcatgccg aatactagcg ttgaatgtta gcgtcaacaa 2220
caagaagttt aatgacgcgg a 2241
<210> 10
<211> 2793
<212> DNA
<213> Artificial sequence
<400> 10
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgtctgctg ttaacgttgc acctgaattg attaatgccg acaacacaat 900
tacctacgat gcgattgtca tcggtgctgg tgttatcggt ccatgtgttg ctactggtct 960
agcaagaaag ggtaagaaag ttcttatcgt agaacgtgac tgggctatgc ctgatagaat 1020
tgttggtgaa ttgatgcaac caggtggtgt tagagcattg agaagtctgg gtatgattca 1080
atctatcaac aacatcgaag catatcctgt taccggttat accgtctttt tcaacggcga 1140
acaagttgat attccatacc cttacaaggc cgatatccct aaagttgaaa aattgaagga 1200
cttggtcaaa gatggtaatg acaaggtctt ggaagacagc actattcaca tcaaggatta 1260
cgaagatgat gaaagagaaa ggggtgttgc ttttgttcat ggtagattct tgaacaactt 1320
gagaaacatt actgctcaag agccaaatgt tactagagtg caaggtaact gtattgagat 1380
attgaaggat gaaaagaatg aggttgttgg tgccaaggtt gacattgatg gccgtggcaa 1440
ggtggaattc aaagcccact tgacatttat ctgtgacggt atcttttcac gtttcagaaa 1500
ggaattgcac ccagaccatg ttccaactgt cggttcttcg tttgtcggta tgtctttgtt 1560
caatgctaag aatcctgctc ctatgcacgg tcacgttatt cttggtagtg atcatatgcc 1620
aatcttggtt taccaaatca gtccagaaga aacaagaatc ctttgtgctt acaactctcc 1680
aaaggtccca gctgatatca agagttggat gattaaggat gtccaacctt tcattccaaa 1740
gagtctacgt ccttcatttg atgaagccgt cagccaaggt aaatttagag ctatgccaaa 1800
ctcctacttg ccagctagac aaaacgacgt cactggtatg tgtgttatcg gtgacgctct 1860
aaatatgaga catccattga ctggtggtgg tatgactgtc ggtttgcatg atgttgtctt 1920
gttgattaag aaaataggtg acctagactt cagcgaccgt gaaaaggttt tggatgaatt 1980
actagactac catttcgaaa gaaagagtta cgattccgtt attaacgttt tgtcagtggc 2040
tttgtattct ttgttcgctg ctgacagcga taacttgaag gcattacaaa aaggttgttt 2100
caaatatttc caaagaggtg gcgattgtgt caacaaaccc gttgaatttc tgtctggtgt 2160
cttgccaaag cctttgcaat tgaccagggt tttcttcgct gtcgcttttt acaccattta 2220
cttgaacatg gaagaacgtg gtttcttggg attaccaatg gctttattgg aaggtattat 2280
gattttgatc acagctatta gagtattcac cccatttttg tttggtgagt tgattggtta 2340
agattaatat aattatataa aaatattatc ttcttttctt tatatctagt gttatgtaaa 2400
ataaattgat gactacggaa agctttttta tattgtttct ttttcattct gagccactta 2460
aatttcgtga atgttcttgt aagggacggt agatttacaa gtgatacaac aaaaagcaag 2520
gcgctttttc taataaaaag aagaaaagca tttaacaatt gaacacctct atatcaacga 2580
agaatattac tttgtctcta aatccttgta aaatgtgtac gatctctata tgggttactc 2640
ataagtgtac cgaagactgc attgaaagtt tatgtttttt cactggaggc gtcattttcg 2700
cgttgagaag atgttcttat ccaaatttca actgttatat agaagtgatc ccccacacac 2760
catagcttca aaatgtttct actccttttt tac 2793
<210> 11
<211> 1880
<212> DNA
<213> Artificial sequence
<400> 11
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctaatt tgaatggtga atctgctgat ttgagagcaa catttttggg tgtttactct 540
gttttgaagt cagaattgtt gaatgatcca gcatttgaat ggacagatgg ttcaagacaa 600
tgggttgaaa gaatgttgga ttacaacgtt ccaggtggta aattgaacag aggtttgtct 660
gttattgatt catacaaatt gttgaagggt ggtaaagatt tgactgatga tgaagttttc 720
ttggcttctg cattaggttg gtgtgttgaa tggttacaag catacttttt ggttttggat 780
gatatcatgg ataactcaca tacaagaaga ggtcaaccat gttggtttag agttccaaaa 840
gttggtatga tcgcaattaa tgatggtatc atcttgagaa atcatattcc aagaattttg 900
aagaaacatt ttagaactaa accatactac gttgatttgt tggatttgtt taatgaagtt 960
gaattccaaa cagcttctgg tcaaatgatc gatttgatca ctacaatcga aggtgaaaag 1020
gatttgtcta agtactcatt gccattgcat agaagaatcg ttcaatacaa gactgcttat 1080
tactcatttt acttgccagt tgcttgtgca ttgttaatgg caggtgaaga tttggaaaaa 1140
catccaacag ttaaggatgt tttgattaat atgggtatct atttccaagt tcaagatgat 1200
tacttagatt gttttggtga accagaaaag attggtaaaa tcggtactga tatcgaagat 1260
ttcaagtgtt cttggttggt tgttaaagca ttggaattgt gtaacgaaga acaaaagaaa 1320
actttatttg aacattatgg taaagaagat ccagctgatg ttgcaaagat taaagttttg 1380
tacaacgaaa ttaatttgca aggtgttttc gcagaattcg aatctaagtc atacgaaaaa 1440
ttgaattctt caattgaagc tcatccatct aagtcagttc aagcagtttt gaaatcattt 1500
ttgggtaaaa tctataaaag acaaaaatga ccgctgatcc tagagggccg catcatgtaa 1560
ttagttatgt cacgcttaca ttcacgccct ccccccacat ccgctctaac cgaaaaggaa 1620
ggagttagac aacctgaagt ctaggtccct atttattttt ttatagttat gttagtatta 1680
agaacgttat ttatatttca aatttttctt ttttttctgt acagacgcgt gtacgcatgt 1740
aacattatac tgaaaacctt gcttgagaag gttttgggac gctcgaaggc tttaatttgc 1800
aagctgcggc cctgcattaa tgaatcggcc aacgcgcata aactaatgat tttaaatcgt 1860
taaaaaaata tgcgaattct 1880
<210> 12
<211> 2553
<212> DNA
<213> Artificial sequence
<400> 12
gaattcaacg agtttcctat tttggtattc tatatttttt catacaccta acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggatttgc catctgcttc agctgctgtt gctgctgcta 840
ctgctgcagt tattttcttg ttgactatct acctgctgcc aaagaaaaaa tctccagctt 900
ctactggtaa gaacggttct acttctttgg aatcttaccc agttattggt aacttgccac 960
acttcgttaa gaacagaaac agattcttgg attgggttgc cgaaatcatt tctcaatctc 1020
caactggtac tgttattgct gctccattgg tttttacttc taacccagaa aacgttgaac 1080
ataccgctaa gtctagattt gatgcttatg ctagaggtcc agctgctaca gctgttttac 1140
atgatttttt aggttccggc atcttgaacg ttgatggtga tagttggagg gctcaaagaa 1200
agactgcttc ttctgaattc actaccagat ctttgagagc cttcattttg gatgctgttg 1260
acggtgaagc tgctggtaga ttattgccat tattgtctag agctgctgct tctggtgaag 1320
tttttgactt gcaagatgtc ttggaaagat tcgccttcga taacatttgc tccattattt 1380
tcgatgccga tccaaactgt ttgaacgata ctcatgatgg tgttggtgaa agattctacc 1440
atgcttttca tgatgctacc ttgttgtcta ctggcagata ttactatcca ttccattggg 1500
tttggaggtt gttgagatgg ttgaatttgg gtactgaaaa gcgtttgaga gatgccgttt 1560
ctgatgttca taaggccatt gatgaattgg tcggttctag aaaaactgaa gttggtacta 1620
ctgttagaag gcaaggtggt ggttctgatt tgttgtcaag atttgctgaa ggtggtgatt 1680
actccgatga tgttttaagg gatgtcttga tcaacttcgt tttggctggt agagatacaa 1740
ctccatcagc tttgacttgg tttttcttta tgatctcctc cagaccagat gttgttgatc 1800
aaattttgga cgagatcagg tccatcagag atcatcaaga tagatctaat ccaaacggtg 1860
gtggtggcgg ttttactttg gaagaattga gagaaatgaa ctacttgcat gctgccatta 1920
ccgaatcctt gagattgaat ccaccagttc cattgatgcc aaagatgtgt atggaagatg 1980
atgtattgcc agatggtact gtagttagaa gaggttggac tgttatgtac tctgcttttg 2040
ctatgggtag aaaggctgaa atttggggtg aagattgcat ggaattcaaa ccagaaagat 2100
ggttggatga tggtggttgt tttaaatctg cttccgctta tagattgcca gcatttcatg 2160
ctggtcctag aatttgtttg ggtaaagata tggcctacat tcagatgaag gctgttgctt 2220
catctttgtt ggaaaggttc gaagttgaag tcgttgaaaa aagaggtaag ccagaattgt 2280
ccatcaccat gagaatggac agaggtttgc cagttagagt gaaagaaaga aagcgtggtt 2340
gttaaagtta taaaaaaaat aagtgtatac aaattttaaa gtgactctta ggttttaaaa 2400
cgaaaattct tattcttgag taactctttc ctgtaggtca ggttgctttc tcaggtatag 2460
catgaggtcg ctcttattga ccacacctct accggcatgc cgaatactag cgttgaatgt 2520
tagcgtcaac aacaagaagt ttaatgacgc gga 2553
<210> 13
<211> 2304
<212> DNA
<213> Artificial sequence
<400> 13
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt gtttattggt 540
gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg tttgaatatc 600
cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag aaagttgcat 660
ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg taagatctac 720
aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt gaacagattc 780
gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt tgccgatatt 840
ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat gaagtctttg 900
tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga ttccgagagg 960
tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc taaagaagaa 1020
gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa tccaggtgaa 1080
ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt tattgccatg 1140
ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc cactatcttg 1200
aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg tactgataat 1260
attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga tgctgaacaa 1320
ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc taccgctatt 1380
actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt gagagaagaa 1440
catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt gacgtgggaa 1500
gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag attgggtaac 1560
atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg ttacgatatt 1620
ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc tactgtttac 1680
gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc tactgccaga 1740
atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt ggaattggct 1800
aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg ggaattagct 1860
gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt gccaatcaag 1920
gtcagaaagt tgtctatttt ggagtaaccg ctgatcctag agggccgcat catgtaatta 1980
gttatgtcac gcttacattc acgccctccc cccacatccg ctctaaccga aaaggaagga 2040
gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt agtattaaga 2100
acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta cgcatgtaac 2160
attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt aatttgcaag 2220
ctgcggccct gcattaatga atcggccaac gcgctgcgat actgccgtag cgggccttcg 2280
tatagctcgg ccgagctcgt acaa 2304
<210> 14
<211> 3414
<212> DNA
<213> Artificial sequence
<400> 14
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgcaatcat cctccgtaaa ggtatcccca ttcgacttaa tgtcagcaat 900
catcaagggt tctatggacc aatcaaacgt atcatcagaa tcaggtggtg ctgcagccat 960
ggttttggaa aacagagaat tcattatgat cttgactaca tccattgctg ttttgatcgg 1020
ttgtgttgtc gtattgatat ggagaagatc aggtcaaaaa caatccaaga ctccagaacc 1080
acctaaacct ttgattgtta aggatttgga agtagaagtt gatgacggta aacaaaaggt 1140
tacaatattt ttcggtacac aaaccggtac tgctgaaggt ttcgcaaaag ccttggctga 1200
agaagcaaag gccagatacg aaaaggcaat ttttaaggtt gtcgatttgg atgactatgc 1260
cggtgacgac gatgaatacg aagaaaaatt gaaaaaggaa actttggcct ttttcttttt 1320
ggctacatat ggtgacggtg aaccaaccga caatgctgca agattctaca aatggtttgc 1380
tgagggtaaa gaacgtggtg aatggttgca aaacttaaag tatggtgttt tcggtttggg 1440
taacagacaa tacgaacatt tcaacaaagt tgcaaaggta gttgacgata taatcacaga 1500
acaaggtggt aaaagaatcg tcccagtagg tttgggtgac gatgaccaat gtattgaaga 1560
tgacttcgcc gcttggagag aattattatg gcctgaatta gatcaattgt taagagacga 1620
agatgacgct accactgtat ctacaccata taccgcagcc gttttggaat acagagtcgt 1680
atttcatgat cctgaaggtg catcattaca agacaagtca tggggttccg ccaatggtca 1740
tactgttcac gatgctcaac acccatgtag agccaacgtt gctgtcagaa aagaattgca 1800
tactcctgct agtgatagat cttgcacaca cttggaattc gacatttctg gtactggttt 1860
aacatatgaa accggtgacc atgtaggtgt ttactgtgaa aatttgccag aaacagtcga 1920
agaagcagaa agattgttag gtttctcacc tgatgtatat ttttccatac acaccgaaag 1980
agaagacggt actccattaa gtggttcttc attgtctcca ccttttccac cttgcacttt 2040
gagaacagca ttaaccagat acgccgatgt tttgtccagt cctaaaaagt ctgcattggt 2100
cgccttagct gcacatgcat cagatccatc cgaagccgac agattgaaat atttggctag 2160
tccttctggt aaagatgaat acgctcaatg ggttgtcgca agtcaaagat ctttgttaga 2220
aattatggcc gaatttccat ctgctaagcc acctttgggt gtcttctttg ccgctgtagc 2280
tccaagattg caacctagat actacagtat ctcttcatcc ccaaagatgg ttccttctag 2340
aatacatgtt acctgtgcat tggtctgcga taaaatgcca actggtagaa tccacaaggg 2400
tatttgttca acatggatga aatatgccgt tccattagaa gaatcacaag attgctcctg 2460
ggcacctatc ttcgttagac aatcaaactt caaattgcca gctgatacct ccgtccctat 2520
cattatgatt ggtccaggta caggtttagc tcctttcaga ggtttcttgc aagaaagatt 2580
tgcattgaag gaagctggtg cagaattggg tagttctatc ttgttctttg gttgtagaaa 2640
cagaaagatg gattacatct acgaagacga attgaacggt ttcgtagaaa gtggtgcttt 2700
gtctgaattg atcgttgcat tttcaagaga aggtccaact aaggaatacg ttcaacataa 2760
gatgatggaa aaggctagtg atatctggaa cgtcatctct caaggtggtt atatatacgt 2820
atgcggtgac gctaagggta tggcaagaga cgttcataga actttgcaca caatcttaca 2880
agaacaaggt tctttagatt catccaaggc tgaatcaatg gtaaagaact tacaaatgac 2940
tggtagatac ttgagagatg tcgattaata taattatata aaaatattat cttcttttct 3000
ttatatctag tgttatgtaa aataaattga tgactacgga aagctttttt atattgtttc 3060
tttttcattc tgagccactt aaatttcgtg aatgttcttg taagggacgg tagatttaca 3120
agtgatacaa caaaaagcaa ggcgcttttt ctaataaaaa gaagaaaagc atttaacaat 3180
tgaacacctc tatatcaacg aagaatatta ctttgtctct aaatccttgt aaaatgtgta 3240
cgatctctat atgggttact cataagtgta ccgaagactg cattgaaagt ttatgttttt 3300
tcactggagg cgtcattttc gcgttgagaa gatgttctta tccaaatttc aactgttata 3360
tagaagtgat cccccacaca ccatagcttc aaaatgtttc tactcctttt ttac 3414
<210> 15
<211> 2325
<212> DNA
<213> Artificial sequence
<400> 15
ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatacg agccttaatt 60
aaacgcacag atattataac atctgcacaa taggcatttg caagaattac tcgtgagtaa 120
ggaaagagtg aggaactatc gcatacctgc atttaaagat gccgatttgg gcgcgaatcc 180
tttattttgg cttcaccctc atactattat cagggccaga aaaaggaagt gtttccctcc 240
ttcttgaatt gatgttaccc tcataaagca cgtggcctct tatcgagaaa gaaattaccg 300
tcgctcgtga tttgtttgca aaaagaacaa aactgaaaaa acccagacac gctcgacttc 360
ctgtcttcct attgattgca gcttccaatt tcgtcacaca acaaggtcct agcgacggct 420
cacaggtttt gtaacaagca atcgaaggtt ctggaatggc gggaaagggt ttagtaccac 480
atgctatgat gcccactgtg atctccagag caaagttcgt tcgatcgtac tgttactctc 540
tctctttcaa acagaattgt ccgaatcgtg tgacaacaac agcctgttct cacacactct 600
tttcttctaa ccaagggggt ggtttagttt agtagaacct cgtgaaactt acatttacat 660
atatataaac ttgcataaat tggtcaatgc aagaaataca tatttggtct tttctaattc 720
gtagtttttc aagttcttag atgctttctt tttctctttt ttacagatca tcaaggaagt 780
aattatctac tttttacaac aaatataaaa caatggccga atctcaattg gttcatccac 840
ctttgttcac ctacatttct atgttggctt tgttgacttt ggttccacca ttcgttattt 900
tgatgtggta cactaacgtt catgctgatg gttctgttct gcaaactttc aactacctga 960
aagaaaatgg cttgcaaggt ttgattgata tctggccaag accaactgct attgctggta 1020
agattattat ctgctacgct ttgtttgaag ccaccttgca attgctattg ccaggtaaaa 1080
gagttcaagg tccaatttct ccaactggtc atagacctgt ttacaaggct aatggtatgg 1140
ctgcttatac cgttactttg attacctact tgtctttgtg gtggttcggt attttcaacc 1200
caactgttgt ttacgatcac ttgggtgaaa ttctgtccac tttgaatttc ggctcactga 1260
ttttctgcct gttcttgtat attaagggtc atgttgctcc atcctctact gatcatggtt 1320
cttcaggtaa catcatcgtt gattattact ggggcatgga actgtatcca agaattggta 1380
aacacttcga catcaaggtt ttcaccaact gtagattcgg tatgatttct tggggtttgt 1440
tgccaattac ttactgcatc aagcagtacg aagaatacgg ttctttgtct gactctatgt 1500
tgatccatac catcatcacc ttggtttacg ttactaagtt tttctggtgg gaagctggtt 1560
attggaacac tatggatatt gctcatgata gagccggttt ctatatttgt tggggttgtt 1620
tggttttcct gccatgtatg tatacttctc caggtatgta cttggttaag cacccagtta 1680
atttgggtcc acaattggcc atttcaattt tggttgctgg tatcttgtgc gtctacatta 1740
actacgattg cgatagacag agacaagaat tcagaagaac taacggtaaa gctttggttt 1800
ggggtaaagc tccttctaaa atcgttgctt cttacactac tactaccggt gaaactaagt 1860
cctctttgtt gttaacttct ggttggtggg gtttgagcag acattttcat tatgttccag 1920
aaatcctggc ctcattcttt tggtctgttc cagctttgtt taaccacatc atgccatact 1980
tctacgtcat ctatttgacc ggtttgttgt tggatagagc taaaagggat gacgaaagat 2040
gcaaatccaa gtacggtaaa tactggaaga agtactgcga aaaggttcca tacagagtta 2100
ttccaggcat ctactgaagt tataaaaaaa ataagtgtat acaaatttta aagtgactct 2160
taggttttaa aacgaaaatt cttattcttg agtaactctt tcctgtaggt caggttgctt 2220
tctcaggtat agcatgaggt cgctcttatt gaccacacct ctaccggcat gccgaagtga 2280
tcccccacac accatagctt caaaatgttt ctactccttt tttac 2325
<210> 16
<211> 2416
<212> DNA
<213> Artificial sequence
<400> 16
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtcagctg tttggtcttt aggtgcaggt ttgttgttgt tgttgttgtg ggttagacat 540
agaggtttag aagctgtttt ggttcatcat agatggatct tcgtttgttt ctttttgatg 600
ccattgtcta tcttgttcga tgtttactac caattaagag cttgggcagt tagaagaatg 660
cattcagcac caagattgca tggtcaaaga gttagacata tccaagaaca agttagagaa 720
tggaaagaag aaggtggtag aagatatatg tgtactggta gaccaggatg gttaacagtt 780
tctttgagag ttggtaaata caagaaaact cataagaaca tcatgatcaa tttgatggat 840
gttttggaag ttgattcaga aagacaagtt gttagagttg aaccattggt tactatgggt 900
caattaacag cttatttgaa tccaatgggt tggactattc cagttgttcc agaattagat 960
gatttgactg ttggtggttt aattatgggt acaggtatcg aatcttcatc tcatatctat 1020
ggtttgttcc aacatacatg tatggcttac gaattggttt tagcagatgg ttcattagtt 1080
agatgttctc caactgaaaa ctcagatttg ttttatgctg ttccatggtc ttgtggtaca 1140
ttaggtttct tggttgctgc agaaattaaa atgatcccag ctaagaaata cattagatta 1200
cattacgaac cagttagagg tttgagatct atctgtgaaa agtttactga agaatctaaa 1260
aataaggaaa attcatttgt tgaaggttta gtttactctt tggaagaagc tgttattatg 1320
actggtgttt taacagatga agcagaacca tcaaagatta atagaatcgg taactactac 1380
aaaccatggt ttttcaagca tgttgaaaag tatttgaagg ctaataagac tggtatcgaa 1440
tacatcccat ctagacatta ctaccataga catacaagat caattttctg ggaattgcaa 1500
gatatcatcc cattcggtaa caatccagtt tttagatatt tgtttggttg gatggttcca 1560
ccaaagatct ctttgttgaa gttgactcaa ggtgaagcaa tcagaaaatt gtacgaacaa 1620
catcatgttg ttcaagatat gttggttcca atgaagtcat tggaaaaatc tatccaaaca 1680
ttccatgttg atttgaacgt ttacccattg tggttgtgtc catttttgtt gccaaacaac 1740
cctggtatgg ttcatccaaa aggtgacgaa actgaattgt atgttgatat tggtgcttac 1800
ggtgaaccaa aaacaaaaca atttgaagct agagcatcta tgagacaaat ggaaaagttc 1860
gttagatcag ttcatggttt ccaaatgttg tacgctgatt gttacatgac tagagaagaa 1920
ttctgggata tgttcgatgg ttcattgtac cattctttga gagaacaaat gaactgtaag 1980
gatgcattcc cagaagttta cgataagatc tgtaaggctg caagacatta accgctgatc 2040
ctagagggcc gcatcatgta attagttatg tcacgcttac attcacgccc tccccccaca 2100
tccgctctaa ccgaaaagga aggagttaga caacctgaag tctaggtccc tatttatttt 2160
tttatagtta tgttagtatt aagaacgtta tttatatttc aaatttttct tttttttctg 2220
tacagacgcg tgtacgcatg taacattata ctgaaaacct tgcttgagaa ggttttggga 2280
cgctcgaagg ctttaatttg caagctgcgg ccctgcatta atgaatcggc caacgcgccg 2340
tattacaatt cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgcgttg 2400
gccgattcat taatgc 2416
<210> 17
<211> 3120
<212> DNA
<213> Artificial sequence
<400> 17
ccagcgtata caatctcgat agttggtttc ccgttctttc cactcccgtc acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atgcaatcat cctccgtaaa ggtatcccca ttcgacttaa 840
tgtcagcaat catcaagggt tctatggacc aatcaaacgt atcatcagaa tcaggtggtg 900
ctgcagccat ggttttggaa aacagagaat tcattatgat cttgactaca tccattgctg 960
ttttgatcgg ttgtgttgtc gtattgatat ggagaagatc aggtcaaaaa caatccaaga 1020
ctccagaacc acctaaacct ttgattgtta aggatttgga agtagaagtt gatgacggta 1080
aacaaaaggt tacaatattt ttcggtacac aaaccggtac tgctgaaggt ttcgcaaaag 1140
ccttggctga agaagcaaag gccagatacg aaaaggcaat ttttaaggtt gtcgatttgg 1200
atgactatgc cggtgacgac gatgaatacg aagaaaaatt gaaaaaggaa actttggcct 1260
ttttcttttt ggctacatat ggtgacggtg aaccaaccga caatgctgca agattctaca 1320
aatggtttgc tgagggtaaa gaacgtggtg aatggttgca aaacttaaag tatggtgttt 1380
tcggtttggg taacagacaa tacgaacatt tcaacaaagt tgcaaaggta gttgacgata 1440
taatcacaga acaaggtggt aaaagaatcg tcccagtagg tttgggtgac gatgaccaat 1500
gtattgaaga tgacttcgcc gcttggagag aattattatg gcctgaatta gatcaattgt 1560
taagagacga agatgacgct accactgtat ctacaccata taccgcagcc gttttggaat 1620
acagagtcgt atttcatgat cctgaaggtg catcattaca agacaagtca tggggttccg 1680
ccaatggtca tactgttcac gatgctcaac acccatgtag agccaacgtt gctgtcagaa 1740
aagaattgca tactcctgct agtgatagat cttgcacaca cttggaattc gacatttctg 1800
gtactggttt aacatatgaa accggtgacc atgtaggtgt ttactgtgaa aatttgccag 1860
aaacagtcga agaagcagaa agattgttag gtttctcacc tgatgtatat ttttccatac 1920
acaccgaaag agaagacggt actccattaa gtggttcttc attgtctcca ccttttccac 1980
cttgcacttt gagaacagca ttaaccagat acgccgatgt tttgtccagt cctaaaaagt 2040
ctgcattggt cgccttagct gcacatgcat cagatccatc cgaagccgac agattgaaat 2100
atttggctag tccttctggt aaagatgaat acgctcaatg ggttgtcgca agtcaaagat 2160
ctttgttaga aattatggcc gaatttccat ctgctaagcc acctttgggt gtcttctttg 2220
ccgctgtagc tccaagattg caacctagat actacagtat ctcttcatcc ccaaagatgg 2280
ttccttctag aatacatgtt acctgtgcat tggtctgcga taaaatgcca actggtagaa 2340
tccacaaggg tatttgttca acatggatga aatatgccgt tccattagaa gaatcacaag 2400
attgctcctg ggcacctatc ttcgttagac aatcaaactt caaattgcca gctgatacct 2460
ccgtccctat cattatgatt ggtccaggta caggtttagc tcctttcaga ggtttcttgc 2520
aagaaagatt tgcattgaag gaagctggtg cagaattggg tagttctatc ttgttctttg 2580
gttgtagaaa cagaaagatg gattacatct acgaagacga attgaacggt ttcgtagaaa 2640
gtggtgcttt gtctgaattg atcgttgcat tttcaagaga aggtccaact aaggaatacg 2700
ttcaacataa gatgatggaa aaggctagtg atatctggaa cgtcatctct caaggtggtt 2760
atatatacgt atgcggtgac gctaagggta tggcaagaga cgttcataga actttgcaca 2820
caatcttaca agaacaaggt tctttagatt catccaaggc tgaatcaatg gtaaagaact 2880
tacaaatgac tggtagatac ttgagagatg tcagttataa aaaaaataag tgtatacaaa 2940
ttttaaagtg actcttaggt tttaaaacga aaattcttat tcttgagtaa ctctttcctg 3000
taggtcaggt tgctttctca ggtatagcat gaggtcgctc ttattgacca cacctctacc 3060
ggcatgccga agtgatcccc cacacaccat agcttcaaaa tgtttctact ccttttttac 3120
<210> 18
<211> 1988
<212> DNA
<213> Artificial sequence
<400> 18
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctccaa tggaattgct gttgatagtt tctccattgg ttttggccct gatcatcttt 540
tttagcttca ggggtacttc taaaggtggt gataaggctg aaaaaattcc tccaggtact 600
atgggttggc cattgattgg tcatacaatt ccttttatgc aaccccattc ttctgcttca 660
ttgggtttgt ttgttgacca gaatattgct aagcacggta gaatcttcag gatgaatttg 720
ttgggtaagc caactatcgt ttctgctgat gctgatttca acagattcat cttgcaatcc 780
gaaggtagga tgttcgaaaa ttcttgtcca acctccattg ccgaaattat gggtagatgg 840
tctatgttgg ctttggctgg tgatgttcat agagaaatga gatccattgc tgtcaacttc 900
atgtccaacg ttaagttgag aacttacttc ttgccagacg ttgaacaaca agccattaag 960
attttgtctg cttggagaca tggttctact ttctctgctc aagaagaagg taagaagttc 1020
gcttttaact tgatggtcaa gcacttgatg tctatggatc caggtatgcc agaaactgaa 1080
caattgagaa aagagtacat cacgttcatg aagggtatgg cttctattcc attgaatttg 1140
ccaggtactg cttacagaaa ggcattgcaa tctagatcca tcatcttgaa gatcatgggt 1200
caaaagttgg acgaaagagt tgaaaaagtt aagagaggtt gcgaaggttt ggaagaagat 1260
gatttgttag cttctgttgc tgcccaatct aacattacca gagatcaaat tctggacctg 1320
atcctgtcta tgttatttgc tggtcacgaa acttcatctg ctgctatttg tttggctatc 1380
tacttcttgg aatcttctcc aaaagccttg caacagttga gagaagaaca tatcaacata 1440
gccaagatga aggaagaaaa aggcgaaact ggtttgactt gggatgatta caaacagatg 1500
gaattcaccc attgcgttat caacgaaact ttgagattgg gtaacatcgt caagttcttg 1560
catagaaagg ccattaagga tgttcagtac aagggttacg atattccatg tggttgggaa 1620
gttgttccaa ttatttcttc cgctcatttg gacccatcta tctatgatga tccacaatct 1680
tacaatcctt ggagatggca aactatttct actgctactt ccaagaacaa caacatcatg 1740
tctttttcag gtggtccaag agtttgtcca ggtgctgaat tggctaaaat ggaaatggct 1800
gttttcttgc atcacttggt ccaaaagttc aactgggaat tagctgaaca tgactaccca 1860
gtttcttttc cattcttggg tttcccaaaa cacttgccaa tcaaggttca tgccattgat 1920
cataaggctt ccgcttaaaa gcatcttgcc ctgtgcttgg cccccagtgc agcgaacgtt 1980
ataaaaac 1988
<210> 19
<211> 2292
<212> DNA
<213> Artificial sequence
<400> 19
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctatgg aattgttgtt gttgatccca gcttttattg ttgcaatcat cattttcttt 540
tcttttaaat caactaacgg tacttctaca aagccattga agttgcctcc aggtcaaatg 600
ggttggcctt ttattggtca tacaatccct tttatgcaac cacattcttc agcttctttg 660
ggtccataca tcgatttgaa cactgcaaga tacggtacaa tttttagaat gaatttgttg 720
gctaagccaa ctatcgtttc agcagatcca gaattcaata gatacatctt gcaaaacgaa 780
ggtagattgt tcgaaaactc ttgtccaact tcaattgctg aaattatggg tagatggtct 840
atgttggcat taacaggtga cgttcataga gaaatgagat caatcgctgt ttcttttatg 900
tcaaacgtta agttgagaac atacttcatc ggtgacatcg aacaacaagc aattaaagtt 960
ttggcttctt gggcaggtag agatgctcca ttttcagcac aagatgaagg taaaaagttc 1020
gcttttaatt tgatggttaa acatttgatg tctatggaac caggaatgaa ggaaactgaa 1080
caattgagat ctgaatacca tgcttttatg aagggtatgg catcaattcc aattaatttg 1140
ccaggtacag cttacagaaa agcattgcaa tctagatcaa tcatcttgaa gattatgggt 1200
gaaaaattag atgaaagaat taaacaagtt aaagaaggtt gtgaaggttt ggaacaagat 1260
gatttgttag cttctgtttc aaagcatcca aatttggcaa aggaacaaat cttggatttg 1320
atcttgtcta tgttgtttgc tggtcatgaa acttcttcag ctgcaatcgc tttggcaata 1380
tactttttgg aatcatgtcc aaaagctgtt gaacaattga gagaagaaca taaggaaatc 1440
gcaagacaaa agaaagaaag aggtgaaaca ggtttgaact gggatgatta caagaaaatg 1500
gaattcactc attgtgttat taatgaaaca ttgagaatgg gtaacatcgt taagttctta 1560
catagaagag ctattaaaga tgttcaattc aaaggttacg atatcccatg tggttgggaa 1620
gttgttccaa ttatttctgc tgcacatttg gattcttcaa tctatgatga tccacaaaga 1680
tacgatccat ggagatggca agctatttta gctggtaaca ctaaaaataa caacgttaca 1740
tcaattatgt ctttttcagg tggtccaaga ttgtgtccag gtgctgaatt ggcaaagttg 1800
gaaatcgctg ttttcttgca tcatttggtt caaaagtacc aatgggaaat ggcagaacat 1860
gattacccag tttctttccc atttttaggt ttcccaaaga gattgccaat taaagttaga 1920
ccattgggtg actaaccgct gatcctagag ggccgcatca tgtaattagt tatgtcacgc 1980
ttacattcac gccctccccc cacatccgct ctaaccgaaa aggaaggagt tagacaacct 2040
gaagtctagg tccctattta tttttttata gttatgttag tattaagaac gttatttata 2100
tttcaaattt ttcttttttt tctgtacaga cgcgtgtacg catgtaacat tatactgaaa 2160
accttgcttg agaaggtttt gggacgctcg aaggctttaa tttgcaagct gcggccctgc 2220
attaatgaat cggccaacgc gcaagcatct tgccctgtgc ttggccccca gtgcagcgaa 2280
cgttataaaa ac 2292
<210> 20
<211> 2379
<212> DNA
<213> Artificial sequence
<400> 20
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgttcgaaa ccgaacatca taccttgttg cctttgttgt tgttgccatc tttgctgtcc 540
ttgctgttgt tcttgattct gttgaagaga agaaaccgta agaccagatt caatttgcct 600
ccaggtaaat ctggttggcc atttttgggt gaaactatcg gttatttgaa gccatacact 660
gctactactt tgggtgattt catgcaacaa cacgtttcta agtacggtaa gatctacagg 720
tctaatttgt tcggtgaacc tactatcgtt tctgctgatg ctggtttgaa tagattcatc 780
ttgcaaaacg aaggcaggtt gttcgaatgt tcttacccaa gatctatcgg tggtatttta 840
ggtaagtggt ccatgttggt tttggttggt gatatgcata gagatatgag gtccatctcc 900
ttgaatttct tgtctcatgc tagattgagg accatcttgt tgaaggatgt tgaaagacac 960
accttgttcg ttttggattc ttggcaacaa aactccattt tctccgctca agatgaagct 1020
aagaagttca cttttaactt gatggccaag cacatcatgt ctatggatcc aggtgaagaa 1080
gaaactgagc aactgaagaa agaatacgtc actttcatga agggtgttgt ttctgctcca 1140
ttgaatttgc caggtactgc ttatcataag gccttgcaat ctagagctac catcttgaag 1200
ttcatcgaac gtaagatgga agagagaaag ttggacatca aagaagagga ccaagaggaa 1260
gaagaggtta agactgaaga tgaggctgaa atgtctaagt ccgatcatgt tagaaagcaa 1320
agaaccgatg atgacttgtt aggttgggtt ttgaagcact ctaacttgtc cactgaacaa 1380
atcttggacc tgatcttgtc tttgttattt gctggtcacg aaacctcatc tgttgctatt 1440
gctttggcta tattcttctt gcaagcttgt ccaaaagccg tcgaagaatt gagagaagaa 1500
catttggaaa ttgccagggc caaaaaagaa ttgggtgaat ctgaattgaa ctgggacgat 1560
tacaagaaga tggatttcac tcaatgcgtc atcaacgaaa ctttgagatt gggtaacgtt 1620
gtcagattct tgcatagaaa ggccttgaaa gatgtcagat acaagggtta cgatattcca 1680
tcaggttgga aagttttgcc agttatttct gccgttcact tggataactc tagatacgat 1740
caacccaatt tgttcaatcc ttggagatgg cagcagcaaa acaatggtgc ttcttcttct 1800
ggttctggtt cattttctac ttggggtaac aattacatgc catttggtgg tggtcctaga 1860
ttgtgtgctg gttcagaatt ggctaaattg gaaatggccg ttttcatcca tcatctggtg 1920
ttgaagttta actgggaatt agccgaagat gataagccat ttgctttccc atttgttgat 1980
ttcccaaacg gtttgccaat cagagtttcc agaattttgt gaccgctgat cctagagggc 2040
cgcatcatgt aattagttat gtcacgctta cattcacgcc ctccccccac atccgctcta 2100
accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt ttttatagtt 2160
atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct gtacagacgc 2220
gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg acgctcgaag 2280
gctttaattt gcaagctgcg gccctgcatt aatgaatcgg ccaacgcgca agcatcttgc 2340
cctgtgcttg gcccccagtg cagcgaacgt tataaaaac 2379
<210> 21
<211> 2313
<212> DNA
<213> Artificial sequence
<400> 21
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtctgatt tggaattttt cttgtttttg attccaccaa tcttagcagt tttgatcatc 540
ttgaatttgt ttaaaagaaa acataatttt caaaatttgc caccaggaga tatgggttgg 600
ccatttttag gtgaaactat cggttatttg agaccatact ctgctactac aattggtgac 660
ttcatgcaag atcatatctc tagatacggt aaaattttta agtcaaattt gtttggtgaa 720
ccaacaattg tttcagctga tgcaggtttg aacagataca tcttgcaaaa cgaaggtaga 780
ttgttcgaat gtaactaccc aagatctatt ggtggtattt tgggtaaatg gtcaatgttg 840
gttcaagttg gtcaaatgca tagagatatg agaatgatcc cattgaattt cttgtctaac 900
gctagattga gaaatcaatt gttatctgaa gttgaaaagc atactttgtt ggttttgggt 960
tcttggaaac aagattcagt tgtttgtgct caagatgaag ctaagaaatt gacttttaat 1020
ttcatggcag aacatattat gtctttacaa ccaggaaatc cagaaactga aaagttgaag 1080
aaagaataca tcacttttat gaaaggtgtt gtttcagctc cattaaattt tccaggtact 1140
gcttacagaa aggcattgca atctagatca acaatcttgg gttttattga aagaaagatg 1200
gaagaaagat tgaaagaaat gaatagaaac gaaaacgatt tgttgggttg ggttttgaaa 1260
aattctaatt tgtcaaagga acaaatctta gatttgttat tgtctttatt gtttgcaggt 1320
catgaaactt cttcagttgc tattgcattg tctattttct tgttggaatc atgtccagct 1380
gcagttcaac aattgactga agaacatttg gaaatctcta gagctaagaa acaatcaggt 1440
gaaacagaat tgaactggga tgattacaag aaaatggaat tcactcaatg tgttattaat 1500
gaaacattga gattgggtaa cgttgttaga tttttacata gaaaagcagt taaggatgtt 1560
agatacaagg gttacgatat cccatgtggt tggaaagttt tgccagttat ttctgctgca 1620
catttggatc catcattgtt tgatagacca catgattttg atccatggag atggcaaaat 1680
gctgaagaat ctccatctgg taaaggtggt tctactggta catcttcaac tacaaagtct 1740
tcaaacaact tcatgccatt tggtggtggt ccaagattgt gtgctggttc agaattggca 1800
aagttggaaa tggctatttt cattcattac ttagttttga acttccattg gaagttggct 1860
gcaacagatc aagcttttgc atatccatac gttgatttcc caaacgcttt gccaattaat 1920
atccaacata gatctttaaa taagttgcat gattaaccgc tgatcctaga gggccgcatc 1980
atgtaattag ttatgtcacg cttacattca cgccctcccc ccacatccgc tctaaccgaa 2040
aaggaaggag ttagacaacc tgaagtctag gtccctattt atttttttat agttatgtta 2100
gtattaagaa cgttatttat atttcaaatt tttctttttt ttctgtacag acgcgtgtac 2160
gcatgtaaca ttatactgaa aaccttgctt gagaaggttt tgggacgctc gaaggcttta 2220
atttgcaagc tgcggccctg cattaatgaa tcggccaacg cgcaagcatc ttgccctgtg 2280
cttggccccc agtgcagcga acgttataaa aac 2313
<210> 22
<211> 2413
<212> DNA
<213> Artificial sequence
<400> 22
acgcacagat attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg 60
aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt 120
tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt 180
cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc 240
gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct 300
gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca 360
caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat 420
gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc 480
tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt 540
tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat 600
atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt 660
agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa 720
ttatctactt tttacaacaa atataaaaca atggctatgg aattgttgtt gttgatccca 780
gcttttattg ttgcaatcat cattttcttt tcttttaaat caactaacgg tacttctaca 840
aagccattga agttgcctcc aggtcaaatg ggttggcctt ttattggtca tacaatccct 900
tttatgcaac cacattcttc agcttctttg ggtccataca tcgatttgaa cactgcaaga 960
tacggtacaa tttttagaat gaatttgttg gctaagccaa ctatcgtttc agcagatcca 1020
gaattcaata gatacatctt gcaaaacgaa ggtagattgt tcgaaaactc ttgtccaact 1080
tcaattgctg aaattatggg tagatggtct atgttggcat taacaggtga cgttcataga 1140
gaaatgagat caatcgctgt ttcttttatg tcaaacgtta agttgagaac atacttcatc 1200
ggtgacatcg aacaacaagc aattaaagtt ttggcttctt gggcaggtag agatgctcca 1260
ttttcagcac aagatgaagg taaaaagttc gcttttaatt tgatggttaa acatttgatg 1320
tctatggaac caggaatgaa ggaaactgaa caattgagat ctgaatacca tgcttttatg 1380
aagggtatgg catcaattcc aattaatttg ccaggtacag cttacagaaa agcattgcaa 1440
tctagatcaa tcatcttgaa gattatgggt gaaaaattag atgaaagaat taaacaagtt 1500
aaagaaggtt gtgaaggttt ggaacaagat gatttgttag cttctgtttc aaagcatcca 1560
aatttggcaa aggaacaaat cttggatttg atcttgtcta tgttgtttgc tggtcatgaa 1620
acttcttcag ctgcaatcgc tttggcaata tactttttgg aatcatgtcc aaaagctgtt 1680
gaacaattga gagaagaaca taaggaaatc gcaagacaaa agaaagaaag aggtgaaaca 1740
ggtttgaact gggatgatta caagaaaatg gaattcactc attgtgttat taatgaaaca 1800
ttgagaatgg gtaacatcgt taagttctta catagaagag ctattaaaga tgttcaattc 1860
aaaggttacg atatcccatg tggttgggaa gttgttccaa ttatttctgc tgcacatttg 1920
gattcttcaa tctatgatga tccacaaaga tacgatccat ggagatggca agctatttta 1980
gctggtaaca ctaaaaataa caacgttaca tcaattatgt ctttttcagg tggtccaaga 2040
ttgtgtccag gtgctgaatt ggcaaagttg gaaatcgctg ttttcttgca tcatttggtt 2100
caaaagtacc aatgggaaat ggcagaacat gattacccag tttctttccc atttttaggt 2160
ttcccaaaga gattgccaat taaagttaga ccattgggtg actaaagtta taaaaaaaat 2220
aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag 2280
taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga 2340
ccacacctct accggcatgc cgaatactag cgttgaatgt tagcgtcaac aacaagaagt 2400
ttaatgacgc gga 2413
<210> 23
<211> 2382
<212> DNA
<213> Artificial sequence
<400> 23
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggatttgc catctgcttc agctgctgtt gctgctgcta ctgctgcagt tattttcttg 540
ttgactatct acctgctgcc aaagaaaaaa tctccagctt ctactggtaa gaacggttct 600
acttctttgg aatcttaccc agttattggt aacttgccac acttcgttaa gaacagaaac 660
agattcttgg attgggttgc cgaaatcatt tctcaatctc caactggtac tgttattgct 720
gctccattgg tttttacttc taacccagaa aacgttgaac ataccgctaa gtctagattt 780
gatgcttatg ctagaggtcc agctgctaca gctgttttac atgatttttt aggttccggc 840
atcttgaacg ttgatggtga tagttggagg gctcaaagaa agactgcttc ttctgaattc 900
actaccagat ctttgagagc cttcattttg gatgctgttg acggtgaagc tgctggtaga 960
ttattgccat tattgtctag agctgctgct tctggtgaag tttttgactt gcaagatgtc 1020
ttggaaagat tcgccttcga taacatttgc tccattattt tcgatgccga tccaaactgt 1080
ttgaacgata ctcatgatgg tgttggtgaa agattctacc atgcttttca tgatgctacc 1140
ttgttgtcta ctggcagata ttactatcca ttccattggg tttggaggtt gttgagatgg 1200
ttgaatttgg gtactgaaaa gcgtttgaga gatgccgttt ctgatgttca taaggccatt 1260
gatgaattgg tcggttctag aaaaactgaa gttggtacta ctgttagaag gcaaggtggt 1320
ggttctgatt tgttgtcaag atttgctgaa ggtggtgatt actccgatga tgttttaagg 1380
gatgtcttga tcaacttcgt tttggctggt agagatacaa ctccatcagc tttgacttgg 1440
tttttcttta tgatctcctc cagaccagat gttgttgatc aaattttgga cgagatcagg 1500
tccatcagag atcatcaaga tagatctaat ccaaacggtg gtggtggcgg ttttactttg 1560
gaagaattga gagaaatgaa ctacttgcat gctgccatta ccgaatcctt gagattgaat 1620
ccaccagttc cattgatgcc aaagatgtgt atggaagatg atgtattgcc agatggtact 1680
gtagttagaa gaggttggac tgttatgtac tctgcttttg ctatgggtag aaaggctgaa 1740
atttggggtg aagattgcat ggaattcaaa ccagaaagat ggttggatga tggtggttgt 1800
tttaaatctg cttccgctta tagattgcca gcatttcatg ctggtcctag aatttgtttg 1860
ggtaaagata tggcctacat tcagatgaag gctgttgctt catctttgtt ggaaaggttc 1920
gaagttgaag tcgttgaaaa aagaggtaag ccagaattgt ccatcaccat gagaatggac 1980
agaggtttgc cagttagagt gaaagaaaga aagcgtggtt gttaaccgct gatcctagag 2040
ggccgcatca tgtaattagt tatgtcacgc ttacattcac gccctccccc cacatccgct 2100
ctaaccgaaa aggaaggagt tagacaacct gaagtctagg tccctattta tttttttata 2160
gttatgttag tattaagaac gttatttata tttcaaattt ttcttttttt tctgtacaga 2220
cgcgtgtacg catgtaacat tatactgaaa accttgcttg agaaggtttt gggacgctcg 2280
aaggctttaa tttgcaagct gcggccctgc attaatgaat cggccaacgc gcaagcatct 2340
tgccctgtgc ttggccccca gtgcagcgaa cgttataaaa ac 2382
<210> 24
<211> 2769
<212> DNA
<213> Artificial sequence
<400> 24
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt 900
gtttattggt gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg 960
tttgaatatc cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag 1020
aaagttgcat ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg 1080
taagatctac aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt 1140
gaacagattc gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt 1200
tgccgatatt ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat 1260
gaagtctttg tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga 1320
ttccgagagg tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc 1380
taaagaagaa gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa 1440
tccaggtgaa ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt 1500
tattgccatg ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc 1560
cactatcttg aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg 1620
tactgataat attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga 1680
tgctgaacaa ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc 1740
taccgctatt actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt 1800
gagagaagaa catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt 1860
gacgtgggaa gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag 1920
attgggtaac atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg 1980
ttacgatatt ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc 2040
tactgtttac gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc 2100
tactgccaga atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt 2160
ggaattggct aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg 2220
ggaattagct gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt 2280
gccaatcaag gtcagaaagt tgtctatttt ggagtaagat taatataatt atataaaaat 2340
attatcttct tttctttata tctagtgtta tgtaaaataa attgatgact acggaaagct 2400
tttttatatt gtttcttttt cattctgagc cacttaaatt tcgtgaatgt tcttgtaagg 2460
gacggtagat ttacaagtga tacaacaaaa agcaaggcgc tttttctaat aaaaagaaga 2520
aaagcattta acaattgaac acctctatat caacgaagaa tattactttg tctctaaatc 2580
cttgtaaaat gtgtacgatc tctatatggg ttactcataa gtgtaccgaa gactgcattg 2640
aaagtttatg ttttttcact ggaggcgtca ttttcgcgtt gagaagatgt tcttatccaa 2700
atttcaactg ttatatagaa gtgatccccc acacaccata gcttcaaaat gtttctactc 2760
cttttttac 2769
<210> 25
<211> 2081
<212> DNA
<213> Artificial sequence
<400> 25
tcctctaatc aggttccacc aaacagatac cccggtgttt cacggaatgg tacgtttgat 60
atcgctgatt tgagaggagg ttacacttga agaatcacag tcttgcgacc ggctattcaa 120
caaggcattc ccccaagttt gaattctttg aaatagattg ctattagcta gtaatccacc 180
aaatccttcg ctgctcacca atggaatcgc aagatgccca cgatgagact gttcaggtta 240
aacgcaaaag aaacacactc tgggaatttc ttcccaaatt gtatctctca atacgcatca 300
acccatgtca attaaacacg ctgtatagag actaggcaga tctgacgatc acctagcgac 360
tctctccacc gtttgacgag gccatttaca aaaacataac gaacgacaag cctactcgaa 420
ttcgtttcca aactcttttc gaacttgtct tcaactgctt tcgcatgaag tacctcccaa 480
ctacttttcc tcacacttgt actccatgac taaacccccc ctcccattac aaactaaaat 540
cttactttta ttttcttttg ccctctctgt cgctctgcct taactacgta tttctcgccg 600
agaaaaactt caatttaagc tattctccaa aaatcttagc gtatattttt tttccaaagt 660
gacaggtgcc ccgggtaacc cagttcatgt ctgcccctaa gaagatcgtc gttttgccag 720
gtgaccacgt tggtcaagaa atcacagccg aagccattaa ggttcttaaa gctatttctg 780
atgttcgttc caatgtcaag ttcgatttcg aaaatcattt aattggtggt gctgctatcg 840
atgctacagg tgttccactt ccagatgagg cgctggaagc ctccaagaag gctgatgccg 900
ttttgttagg tgctgtgggt ggtcctaaat ggggtaccgg tagtgttaga cctgaacaag 960
gtttactaaa aatccgtaaa gaacttcaat tgtacgccaa cttaagacca tgtaactttg 1020
catccgactc tcttttagac ttatctccaa tcaagccaca atttgctaaa ggtactgact 1080
tcgttgttgt cagagaatta gtgggaggta tttactttgg taagagaaag gaagacgatg 1140
gtgatggtgt cgcttgggat agtgaacaat acaccgttcc agaagtgcaa agaatcacaa 1200
gaatggccgc tttcatggcc ctacaacatg agccaccatt gcctatttgg tccttggata 1260
aagctaatgt tttggcctct tcaagattat ggagaaaaac tgtggaggaa accatcaaga 1320
acgaattccc tacattgaag gttcaacatc aattgattga ttctgccgcc atgatcctag 1380
ttaagaaccc aacccaccta aatggtatta taatcaccag caacatgttt ggtgatatca 1440
tctccgatga agcctccgtt atcccaggtt ccttgggttt gttgccatct gcgtccttgg 1500
cctctttgcc agacaagaac accgcatttg gtttgtacga accatgccac ggttctgctc 1560
cagatttgcc aaagaataag gtcaacccta tcgccactat cttgtctgct gcaatgatgt 1620
tgaaattgtc attgaacttg cctgaagaag gtaaggccat tgaagatgca gttaaaaagg 1680
ttttggatgc aggtatcaga actggtgatt taggtggttc caacagtacc accgaagtcg 1740
gtgatgctgt cgccgaagaa gttaagaaaa tccttgctta aatactagcg ttgaatgtta 1800
gcgtcaacaa caagaagttt aatgacgcgg aggccaaggc aaaaagattc cttgattacg 1860
taagggagtt agaatcattt tgaataaaaa acacgctttt tcagttcgag tttatcatta 1920
tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt cctaacttta 1980
tttagtcaaa aaattagcct tttaattctg ctgtaacccg tacatgccca aaataggggg 2040
cgggttacac agaatatata acatcgtagg tgtctgggtg a 2081
<210> 26
<211> 705
<212> DNA
<213> Artificial sequence
<400> 26
agtctaggtc cctatttatt tttttatagt tatgttagta ttaagaacgt tatttatatt 60
tcaaattttt cttttttttc tgtacagacg cgtgtacgca tgtaacatta tactgaaaac 120
cttgcttgag aaggttttgg gacgctcgaa ggctttaatt tgcaagctgc ggccctgcat 180
taatgaatcg gccaacgcgc ctcactattt tttactgcgg aagcggaagc ggaaaatacg 240
gaaacgcgcg ggaacataca aaacatacaa aatatacctt tctcacacaa gaaatatatg 300
ctacttgcaa aatatcatac caaaaaactt ttcacaaccg aaaccaaaac caacggatat 360
catacattac actaccacca ttcaaacttt actactatcc tcccttcagt ttcccttttt 420
ctgccttttt cggtgacgga aatacgcttc agagacccta aagggaaatc catgccataa 480
caggaaagta acatcccaat gcggactata ccaccccacc acactcctac caataacggt 540
aactattcta tgttttctta ctcctatgtc tattcatctt tcatctgact acctaatact 600
atgcaaaaat gtaaaatcat cacacaaaac ataaacaatc aaaatcagcc atttccgcac 660
cttttcctct gtccactttc aaccgtccct ccaaatgtaa aatgg 705
<210> 27
<211> 5337
<212> DNA
<213> Artificial sequence
<400> 27
aactgcggtc aagatatttc ttgaatcagg cgccttagac cgctcggcca aacaaccaat 60
tacttgttga gaaatagagt ataattatcc tataaatata acgtttttga acacacatga 120
acaaggaagt acaggacaat tgattttgaa gagaatgtgg attttgatgt aattgttggg 180
attccatttt taataaggca ataatattag gtatgtggat atactagaag ttctcctcga 240
ccgtcgatat gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcagga 300
aattgtaaac gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tcagctcatt 360
ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat agaccgagat 420
agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tggactccaa 480
cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac catcacccta 540
atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc 600
ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag ggaagaaagc 660
gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac 720
acccgccgcg cttaatgcgc cgctacaggg cgcgtcgcgc cattcgccat tcaggctgcg 780
caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 840
gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 900
taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tgggtaccgg 960
gccccccctc gaggtcgacg gtatcgataa gcttgatatc gaattcctgc agcccggggg 1020
atccactagt tctagagcgg ccgccaccgc ggtggagctc cagcttttgt tccctttagt 1080
gagggttaat tgcgcgcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt 1140
atccgctcac aattccacac aacataggag ccggaagcat aaagtgtaaa gcctggggtg 1200
cctaatgagt gaggtaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg 1260
gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 1320
gtattgggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 1380
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1440
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1500
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1560
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1620
gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc 1680
tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 1740
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 1800
ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 1860
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 1920
tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 1980
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 2040
ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 2100
aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 2160
aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa 2220
aatgaagttt taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat 2280
gcttaatcag tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct 2340
gactccccgt cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg 2400
caatgatacc gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag 2460
ccggaagggc cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta 2520
attgttgccg ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg 2580
ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg 2640
gttcccaacg atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct 2700
ccttcggtcc tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta 2760
tggcagcact gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg 2820
gtgagtactc aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc 2880
cggcgtcaat acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg 2940
gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga 3000
tgtaacccac tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg 3060
ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat 3120
gttgaatact catactcttc ctttttcaat attattgaag catttatcag ggttattgtc 3180
tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca 3240
catttccccg aaaagtgcca cctgaacgaa gcatctgtgc ttcattttgt agaacaaaaa 3300
tgcaacgcga gagcgctaat ttttcaaaca aagaatctga gctgcatttt tacagaacag 3360
aaatgcaacg cgaaagcgct attttaccaa cgaagaatct gtgcttcatt tttgtaaaac 3420
aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag 3480
aacagaaatg caacgcgaga gcgctatttt accaacaaag aatctatact tcttttttgt 3540
tctacaaaaa tgcatcccga gagcgctatt tttctaacaa agcatcttag attacttttt 3600
ttctcctttg tgcgctctat aatgcagtct cttgataact ttttgcactg taggtccgtt 3660
aaggttagaa gaaggctact ttggtgtcta ttttctcttc cataaaaaaa gcctgactcc 3720
acttcccgcg tttactgatt actagcgaag ctgcgggtgc attttttcaa gataaaggca 3780
tccccgatta tattctatac cgatgtggat tgcgcatact ttgtgaacag aaagtgatag 3840
cgttgatgat tcttcattgg tcagaaaatt atgaacggtt tcttctattt tgtctctata 3900
tactacgtat aggaaatgtt tacattttcg tattgttttc gattcactct atgaatagtt 3960
cttactacaa tttttttgtc taaagagtaa tactagagat aaacataaaa aatgtagagg 4020
tcgagtttag atgcaagttc aaggagcgaa aggtggatgg gtaggttata tagggatata 4080
gcacagagat atatagcaaa gagatacttt tgagcaatgt ttgtggaagc ggtattcgca 4140
atattttagt agctcgttac agtccggtgc gtttttggtt ttttgaaagt gcgtcttcag 4200
agcgcttttg gttttcaaaa gcgctctgaa gttcctatac tttctagaga ataggaactt 4260
cggaatagga acttcaaagc gtttccgaaa acgagcgctt ccgaaaatgc aacgcgagct 4320
gcgcacatac agctcactgt tcacgtcgca cctatatctg cgtgttgcct gtatatatat 4380
atacatgaga agaacggcat agtgcgtgtt tatgcttaaa tgcgtactta tatgcgtcta 4440
tttatgtagg atgaaaggta gtctagtacc tcctgtgata ttatcccatt ccatgcgggg 4500
tatcgtatgc ttccttcagc actacccttt agctgttcta tatgctgcca ctcctcaatt 4560
ggattagtct catccttcaa tgctatcatt tcctttgata ttggatcata ctaagaaacc 4620
attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtctcgcg 4680
cgtttcggtg atgacggtga aaacctctga cacatgcagc tcccggagac ggtcacagct 4740
tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg gcgcgtcagc gggtgttggc 4800
gggtgtcggg gctggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat 4860
atcgactacg tcgtaaggcc gtttctgaca gagtaaaatt cttgagggaa ctttcaccat 4920
tatgggaaat gcttcaagaa ggtattgact taaactccat caaatggtca ggtcattgag 4980
tgttttttat ttgttgtatt tttttttttt tagagaaaat cctccaatat caaattagga 5040
atcgtagttt catgattttc tgttacacct aactttttgt gtggtgccct cctccttgtc 5100
aatattaatg ttaaagtgca attctttttc cttatcacgt tgagccatta gtatcaattt 5160
gcttacctgt attcctttac tatcctcctt tttctccttc ttgataaatg tatgtagatt 5220
gcgtatatag tttcgtctac cctatgaaca tattccattt tgtaatttcg tgtcgtttct 5280
attatgaatt tcatttataa agtttatgta caaatatcat aaaaaaagag aatcttt 5337
<210> 28
<211> 1120
<212> DNA
<213> Artificial sequence
<400> 28
atttcattta taaagtttat gtacaaatat cataaaaaaa gagaatcttt ttagttttgc 60
tggccgcatc ttctcaaata tgcttcccag cctgcttttc tgtaacgttc accctctacc 120
ttagcatccc ttccctttgc aaatagtcct cttccaacaa taataatgtc agatcctgta 180
gagaccacat catccacggt tctatactgt tgacccaatg cgtctccctt gtcatctaaa 240
cccacaccgg gtgtcataat caaccaatcg taaccttcat ctcttccacc catgtctctt 300
tgagcaataa agccgataac aaaatctttg tcgctcttcg caatgtcaac agtaccctta 360
gtatattctc cagtagatag ggagcccttg catgacaatt ctgctaacat caaaaggcct 420
ctaggttcct ttgttacttc ttctgccgcc tgcttcaaac cgctaacaat acctgggccc 480
accacaccgt gtgcattcgt aatgtctgcc cattctgcta ttctgtatac acccgcagag 540
tactgcaatt tgactgtatt accaatgtca gcaaattttc tgtcttcgaa gagtaaaaaa 600
ttgtacttgg cggataatgc ctttagcggc ttaactgtgc cctccatgga aaaatcagtc 660
aagatatcca catgtgtttt tagtaaacaa attttgggac ctaatgcttc aactaactcc 720
agtaattcct tggtggtacg aacatccaat gaagcacaca agtttgtttg cttttcgtgc 780
atgatattaa atagcttggc agcaacagga ctaggatgag tagcagcacg ttccttatat 840
gtagctttcg acatgattta tcttcgtttc ctgcaggttt ttgttctgtg cagttgggtt 900
aagaatactg ggcaatttca tgtttcttca acactacata tgcgtatata taccaatcta 960
agtctgtgct ccttccttcg ttcttccttc tgttcggaga ttaccgaatc aaaaaaattt 1020
caaagaaacc gaaatcaaaa aaaagaataa aaaaaaaatg atgaattgaa agtgatcccc 1080
cacacaccat agcttcaaaa tgtttctact ccttttttac 1120
<210> 29
<211> 2204
<212> DNA
<213> Artificial sequence
<400> 29
agtgatcccc cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat 60
tttctcggac tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat 120
ttcccctctt tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa 180
aaaagagacc gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg 240
tttctttttc ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga 300
tatttaagtt aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta 360
ttacaacttt ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt 420
taattacaaa atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt 480
gtttattggt gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg 540
tttgaatatc cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag 600
aaagttgcat ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg 660
taagatctac aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt 720
gaacagattc gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt 780
tgccgatatt ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat 840
gaagtctttg tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga 900
ttccgagagg tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc 960
taaagaagaa gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa 1020
tccaggtgaa ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt 1080
tattgccatg ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc 1140
cactatcttg aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg 1200
tactgataat attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga 1260
tgctgaacaa ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc 1320
taccgctatt actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt 1380
gagagaagaa catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt 1440
gacgtgggaa gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag 1500
attgggtaac atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg 1560
ttacgatatt ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc 1620
tactgtttac gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc 1680
tactgccaga atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt 1740
ggaattggct aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg 1800
ggaattagct gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt 1860
gccaatcaag gtcagaaagt tgtctatttt ggagtaaccg ctgatcctag agggccgcat 1920
catgtaatta gttatgtcac gcttacattc acgccctccc cccacatccg ctctaaccga 1980
aaaggaagga gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt 2040
agtattaaga acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta 2100
cgcatgtaac attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt 2160
aatttgcaag ctgcggccct gcattaatga atcggccaac gcgc 2204

Claims (6)

1. A recombinant strain is obtained by modifying the following 1) in chassis yeast LP-074 containing genes related to dioscin synthesis paths:
The 1) is any one of the following:
1) -A is the radical of formula (I)pPGK1-SvvCPR-tADH1-pTEF1-VcCYP90B27-tCYC1Substitution in the LP-074 GeneGal80The gene is used for obtaining recombinant bacteria LP-085-Vc; wherein the saidpPGK1-SvvCPR-tADH1-pTEF1-VcCYP90B27- tCYC1Consists of 51 to 3073 nucleotides of sequence 17 and 51 to 2245 nucleotides of sequence 19;
1) -B is the radical of formula (I)pPGK1-SvvCPR-tADH1-pTEF1-AtDWF4-tCYC1Substitution in the LP-074 bacterium genomeGal80Genes to obtain recombinant bacteria; wherein the saidpPGK1-SvvCPR-tADH1-pTEF1-AtDWF4-tCYC1Consists of 51 to 3073 nucleotides of the sequence 17 and 51 to 2332 nucleotides of the sequence 20;
1) -C is the radical of formulapPGK1-SvvCPR-tADH1-pTEF1-SlCYP90B3-tCYC1Substitution in the LP-074 GeneGal80Genes to obtain recombinant bacteria; wherein the saidpPGK1-SvvCPR-tADH1-pTEF1-SlCYP90B3-tCYC1Consists of the 51 st to 3073 rd nucleotides of the sequence 17 and the 51 st to 2263 st nucleotides of the sequence 21;
the LP-074 bacterium is to beHis-pPGK1-StDWF5-tADH1-TEF1-GgDHCR24-tCYC1Replacement of Saccharomyces cerevisiae LP-034TRP1Recombinant bacteria obtained by the genes; wherein saidHis-pPGK1-StDWF5-tADH1-TEF1-GgDHCR24-tCYC1Is composed of nucleotide sequences ofHisSequence, nucleotide 63-2278 of sequence 15 and nucleotide 51-2341 of sequence 16;
the Saccharomyces cerevisiae LP-034 is a strain of BYT30 genomeATF2Gene replacement intopPGK1-VcCYP94N-tADH1- pTDH3-SvvCPR-tTPI1-TEF1-DGCYP90G-tCYC1Fragments, the obtained recombinant bacteria;wherein the saidpPGK1- VcCYP94N-tADH1-pTDH3-SvvCPR-tTPI1-TEF1-DGCYP90G-tCYC1The nucleotide sequence of the fragment consists of 51 to 2416 nucleotides of the sequence 12, 51 to 2964 nucleotides of the sequence 14 and 51 to 2257 nucleotides of the sequence 13 in sequence;
The BY-T30 is recombinant bacteria obtained BY replacing NDT80 genes in BY-T5 genome with pPGK1-AtSQS-tADH1-pTDH3-ERG1-tTPI1-pTEF1-SmFPS-tCYC 1; wherein the nucleotide sequence of pPGK1-AtSQS-tADH1-pTDH3-ERG1-tTPI1-pTEF1-SmFPS-tCYC1 consists of sequence 9 51-2194, sequence 10 51-2746 and sequence 11 51-1840;
the strain BY-T5 is recombinant bacteria obtained BY replacing Leu2 genes in BY-T1 (Cas 9) genome with pPGK1-tHMG1-tADH1-pPDC1-ERG12-tADH2-pENO2-IDI1-tPDC1-pPYK1-ERG19-tPGI1-pTEF2-HMGR-N-tENO2-pFBA1-ERG13-tTDH2-pTDH3-ERG8-tTPI1-pTEF1-ERG10-tCYC 1; wherein the nucleotide sequence of pPGK1-tHMG1-tADH1-pPDC1-ERG12-tADH2-pENO2-IDI1-tPDC1-pPYK1-ERG19-tPGI1-pTEF2-HMGR-N-tENO2-pFBA1-ERG13-tTDH2-pTDH3-ERG8-tTPI1-pTEF1-ERG10-tCYC1 consists of sequence 1 51-2545, sequence 2 51-2585, sequence 3 51-2350, sequence 4 51-2643, sequence 5 51-2317, sequence 6 51-2701, sequence 7 51-2609 and sequence 8 51-1960;
the strain BY-T1 (Cas 9) is prepared BY transferring a plasmid p414-TEF1p-Cas9-CYC1T into Saccharomyces cerevisiae BY-T1.
2. The recombinant bacterium according to claim 1, wherein:
the recombinant strain is obtained by sequentially modifying the 1) -A and the following 2) in the chassis yeast LP-074 containing genes related to the dioscin synthesis path to obtain recombinant strain LP-104:
2): will beLeu2-pPGK1-VcCYP90B27-tADH1-pTDH3-DGCYP90G-tTPI1-TEF1-VcCYP94N-tCYC1Recombinant bacterium obtained by replacing rDNA in LP-085-Vc genome, wherein the recombinant bacterium comprisesLeu2-pPGK1-VcCYP90B27-tADH1- pTDH3-DGCYP90G-tTPI1-TEF1-VcCYP94N-tCYC1Consists of nucleotide sequence No. 687-1746, nucleotide sequence No. 22-2365, nucleotide sequence No. 51-2335 of sequence No. 23 and nucleotide sequence No. 51-2722 of sequence No. 27.
3. The recombinant bacterium according to claim 2, wherein:
the recombinant strain is obtained by sequentially modifying the 1) -A, the 2) and the following 3) in the chassis yeast LP-074 containing genes related to the dioscin synthesis path to obtain the recombinant strain LP-BC:
3) The sterol 16, 22 dihydroxyoxidase gene DGCYP90G is expressed in high copy in the form of plasmid in the Saccharomyces cerevisiae LP-104.
4. A method of preparing the recombinant bacterium of any one of claims 1-3, according to the method of engineering in the recombinant bacterium of any one of claims 1-3.
5. Use of the recombinant bacterium obtained by the method of claim 4 for producing diosgenin or improving the yield of diosgenin.
6. A method for producing diosgenin, comprising the steps of: fermenting and culturing the recombinant strain of any one of claims 1-3 to obtain diosgenin.
CN202110176223.3A 2021-02-07 2021-02-07 Construction and application of diosgenin synthetic strain Active CN114907997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110176223.3A CN114907997B (en) 2021-02-07 2021-02-07 Construction and application of diosgenin synthetic strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110176223.3A CN114907997B (en) 2021-02-07 2021-02-07 Construction and application of diosgenin synthetic strain

Publications (2)

Publication Number Publication Date
CN114907997A CN114907997A (en) 2022-08-16
CN114907997B true CN114907997B (en) 2024-02-06

Family

ID=82761954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110176223.3A Active CN114907997B (en) 2021-02-07 2021-02-07 Construction and application of diosgenin synthetic strain

Country Status (1)

Country Link
CN (1) CN114907997B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547868A (en) * 1993-06-09 1996-08-20 Regents Of The University Of California Cholesterol disposal fusion enzymes
CN106967775A (en) * 2017-04-05 2017-07-21 中国医学科学院医药生物技术研究所 Living things catalysis prepares the method and its microbial inoculum used of diosgenin
CN109097342A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 Mould middle 11 B-hydroxylase of steroid of Absidia and its encoding gene and application
CN109097343A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata
EP3699282A1 (en) * 2017-10-19 2020-08-26 Ajinomoto Co., Inc. Method for producing sterol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547868A (en) * 1993-06-09 1996-08-20 Regents Of The University Of California Cholesterol disposal fusion enzymes
CN106967775A (en) * 2017-04-05 2017-07-21 中国医学科学院医药生物技术研究所 Living things catalysis prepares the method and its microbial inoculum used of diosgenin
EP3699282A1 (en) * 2017-10-19 2020-08-26 Ajinomoto Co., Inc. Method for producing sterol
CN109097342A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 Mould middle 11 B-hydroxylase of steroid of Absidia and its encoding gene and application
CN109097343A (en) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway;Yan Yin et al.;《Phytochemistry》;116-123 *
Engineering of Phytosterol-Producing Yeast Platforms for Functional Reconstitution of Downstream Biosynthetic Pathways;Shanhui Xu et al.;《ACS Synth. Biol.》;1-14 *
etabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast;Yuehao Gu et al.;《Bioresources and Bioprocessing》;第8卷(第1期);1-14 *
Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production;Liping Xu et al.;《Metabolic Engineering》;第70卷;115-128 *
Yeast as a promising heterologous host for steroid bioproduction;Shanhui Xu et al.;《Journal of Industrial Microbiology and Biotechnology》;第47卷(第10期);829-843 *

Also Published As

Publication number Publication date
CN114907997A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
CN109777761B (en) Construction and application of engineering bacteria for secretory expression of chitobiose deacetylase
KR102021914B1 (en) Production of acetyl-coenzyme a derived isoprenoids
CN106795484B (en) Alpha (1,2) fucosyltransferase variants for use in the production of fucosylated oligosaccharides
CA2714592C (en) A pentose sugar fermenting cell
CN111556873A (en) Fermentative production of N-acetylneuraminic acid
CN107429269A (en) The method for being used to produce at least one metabolin interested by converting pentose in microorganism
KR20120051705A (en) Transformant and process for production thereof, and process for production of lactic acid
CN107058404A (en) Using restructuring yeast strains from glucose, galactolipin and arabinose fermentative production of ethanol
CN108220176B (en) Method for improving fermentation production of glucaric acid by saccharomyces cerevisiae engineering strain
CN107604004A (en) Tracer target practice plasmid for vaccinia virus Tiantan strain TK genes and preparation method thereof
CN110944656B (en) Novel polynucleotides encoding human FKRP proteins
WO1992017581A1 (en) Mammalian expression vector
KR101756338B1 (en) Variant Microorganism for Producing L-Cystein and Method for Preparing L-Cystein Using thereof
CN109251897A (en) A kind of 3 type strain of pig circular ring virus and its preparation method and application
CN114907997B (en) Construction and application of diosgenin synthetic strain
DK3022290T3 (en) MODIFIED ALGE STREAMS AND PROCEDURE FOR TRIACYLGYCLEROL ACCUMULATION WITH USING THESE STRAINS
CN113046369B (en) Novel mRNA vaccine of coronavirus
CN114032217A (en) Novel coronavirus compound vaccine based on DNA vector and replicative vaccinia virus vector
CN114716520B (en) Pichia kudriavzevii tricarboxylic acid transporter as well as encoding gene and application thereof
CN110607267B (en) Sheep listeria balanced lethal system, construction method and application
CN113862235B (en) Chimeric enzyme and application and method thereof in one-step reaction synthesis of Cap0 mRNA in vitro
CN111206024B (en) Engineering bacterium for expressing pectate endo-hydrolase and application thereof
CN111560392B (en) MiRNA expression vector and application thereof
CN112080439B (en) Application of human apoptosis regulatory protein Bcl-2 in increasing yield of saccharomyces cerevisiae nerolidol
CN107557383A (en) A kind of Cruciferae endogenous gene silencing methods of TYMV virus inductions and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant