CN114907997A - Construction and application of diosgenin synthesis strain - Google Patents
Construction and application of diosgenin synthesis strain Download PDFInfo
- Publication number
- CN114907997A CN114907997A CN202110176223.3A CN202110176223A CN114907997A CN 114907997 A CN114907997 A CN 114907997A CN 202110176223 A CN202110176223 A CN 202110176223A CN 114907997 A CN114907997 A CN 114907997A
- Authority
- CN
- China
- Prior art keywords
- gene
- reductase
- saccharomyces cerevisiae
- diosgenin
- sterol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- DWCSNWXARWMZTG-UHFFFAOYSA-N Trigonegenin A Natural products CC1C(C2(CCC3C4(C)CCC(O)C=C4CCC3C2C2)C)C2OC11CCC(C)CO1 DWCSNWXARWMZTG-UHFFFAOYSA-N 0.000 title claims abstract description 61
- WQLVFSAGQJTQCK-VKROHFNGSA-N diosgenin Chemical compound O([C@@H]1[C@@H]([C@]2(CC[C@@H]3[C@@]4(C)CC[C@H](O)CC4=CC[C@H]3[C@@H]2C1)C)[C@@H]1C)[C@]11CC[C@@H](C)CO1 WQLVFSAGQJTQCK-VKROHFNGSA-N 0.000 title claims abstract description 61
- WQLVFSAGQJTQCK-UHFFFAOYSA-N diosgenin Natural products CC1C(C2(CCC3C4(C)CCC(O)CC4=CCC3C2C2)C)C2OC11CCC(C)CO1 WQLVFSAGQJTQCK-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 23
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 20
- 238000010276 construction Methods 0.000 title abstract description 19
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 117
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 117
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 112
- 238000000034 method Methods 0.000 claims abstract description 56
- 241000894006 Bacteria Species 0.000 claims abstract description 45
- 230000014509 gene expression Effects 0.000 claims abstract description 37
- 150000003431 steroids Chemical class 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000009466 transformation Effects 0.000 claims abstract description 7
- 239000013612 plasmid Substances 0.000 claims description 81
- 108090000854 Oxidoreductases Proteins 0.000 claims description 31
- 229930182558 Sterol Natural products 0.000 claims description 27
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 150000003432 sterols Chemical class 0.000 claims description 27
- 235000003702 sterols Nutrition 0.000 claims description 27
- 101100129088 Caenorhabditis elegans lys-2 gene Proteins 0.000 claims description 17
- 102000004316 Oxidoreductases Human genes 0.000 claims description 15
- 101100010928 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) tuf gene Proteins 0.000 claims description 14
- 101150001810 TEAD1 gene Proteins 0.000 claims description 14
- 101150074253 TEF1 gene Proteins 0.000 claims description 14
- 102100029898 Transcriptional enhancer factor TEF-1 Human genes 0.000 claims description 14
- 238000012258 culturing Methods 0.000 claims description 14
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 claims description 13
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 claims description 13
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 claims description 13
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 claims description 13
- 235000004360 Dioscorea zingiberensis Nutrition 0.000 claims description 12
- 241001678283 Dioscorea zingiberensis Species 0.000 claims description 12
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 claims description 12
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims description 12
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 claims description 12
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 claims description 12
- 101710152516 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 Proteins 0.000 claims description 9
- HDXIQHTUNGFJIC-UHFFFAOYSA-N (25R)-spirost-5-en-3beta-ol 3-O-<O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside> Natural products O1C2(OCC(C)CC2)C(C)C(C2(CCC3C4(C)CC5)C)C1CC2C3CC=C4CC5OC1OC(CO)C(O)C(O)C1OC1OC(C)C(O)C(O)C1O HDXIQHTUNGFJIC-UHFFFAOYSA-N 0.000 claims description 8
- VNONINPVFQTJOC-RXEYMUOJSA-N Collettiside III Natural products O([C@@H]1[C@@H](O)[C@H](O[C@H]2[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O2)[C@H](CO)O[C@@H]1O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]5[C@H](C)[C@@]6(O[C@H]5C4)OC[C@H](C)CC6)CC3)CC=2)CC1)[C@H]1[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O1 VNONINPVFQTJOC-RXEYMUOJSA-N 0.000 claims description 8
- 108700040132 Mevalonate kinases Proteins 0.000 claims description 8
- 101150053185 P450 gene Proteins 0.000 claims description 8
- VNONINPVFQTJOC-ZGXDEBHDSA-N dioscin Chemical compound O([C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)O[C@H]1[C@@H]([C@H](O)[C@@H](O)[C@H](C)O1)O)O[C@@H]1CC2=CC[C@H]3[C@@H]4C[C@H]5[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@@H]([C@]1(OC[C@H](C)CC1)O5)C)[C@@H]1O[C@@H](C)[C@H](O)[C@@H](O)[C@H]1O VNONINPVFQTJOC-ZGXDEBHDSA-N 0.000 claims description 8
- CJNUQCDDINHHHD-APRUHSSNSA-N dioscin Natural products C[C@@H]1CC[C@@]2(OC1)O[C@H]3C[C@H]4[C@@H]5CC=C6C[C@H](CC[C@@H]6[C@H]5CC[C@]4(C)[C@H]3[C@@H]2C)O[C@@H]7O[C@H](CO)[C@@H](O[C@@H]8O[C@@H](C)[C@H](O)[C@@H](O)[C@H]8O)[C@H](O)[C@H]7O[C@@H]9O[C@@H](C)[C@H](O)[C@@H](O)[C@H]9O CJNUQCDDINHHHD-APRUHSSNSA-N 0.000 claims description 8
- VNONINPVFQTJOC-UHFFFAOYSA-N polyphyllin III Natural products O1C2(OCC(C)CC2)C(C)C(C2(CCC3C4(C)CC5)C)C1CC2C3CC=C4CC5OC(C(C1O)OC2C(C(O)C(O)C(C)O2)O)OC(CO)C1OC1OC(C)C(O)C(O)C1O VNONINPVFQTJOC-UHFFFAOYSA-N 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 claims description 7
- 101000801742 Homo sapiens Triosephosphate isomerase Proteins 0.000 claims description 7
- 102100033598 Triosephosphate isomerase Human genes 0.000 claims description 7
- 101150051269 ERG10 gene Proteins 0.000 claims description 6
- 101150014913 ERG13 gene Proteins 0.000 claims description 6
- 101150045041 ERG8 gene Proteins 0.000 claims description 6
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 claims description 6
- 229950006238 nadide Drugs 0.000 claims description 6
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims description 6
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 claims description 5
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 claims description 5
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 claims description 5
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 5
- 108010022102 Cholestanetriol 26-monooxygenase Proteins 0.000 claims description 5
- 102100023033 Cyclic AMP-dependent transcription factor ATF-2 Human genes 0.000 claims description 5
- 101150071502 ERG12 gene Proteins 0.000 claims description 5
- 101710125754 Farnesyl pyrophosphate synthase Proteins 0.000 claims description 5
- 108010022535 Farnesyl-Diphosphate Farnesyltransferase Proteins 0.000 claims description 5
- 101100025321 Gibberella zeae (strain ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084 / PH-1) ERG19 gene Proteins 0.000 claims description 5
- 101000974934 Homo sapiens Cyclic AMP-dependent transcription factor ATF-2 Proteins 0.000 claims description 5
- 101000997829 Homo sapiens Glial cell line-derived neurotrophic factor Proteins 0.000 claims description 5
- 101001081533 Homo sapiens Isopentenyl-diphosphate Delta-isomerase 1 Proteins 0.000 claims description 5
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 claims description 5
- 108010065958 Isopentenyl-diphosphate Delta-isomerase Proteins 0.000 claims description 5
- 102100027665 Isopentenyl-diphosphate Delta-isomerase 1 Human genes 0.000 claims description 5
- 101100445407 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) erg10B gene Proteins 0.000 claims description 5
- 101100025327 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MVD1 gene Proteins 0.000 claims description 5
- 244000061456 Solanum tuberosum Species 0.000 claims description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 5
- 101710158485 3-hydroxy-3-methylglutaryl-coenzyme A reductase Proteins 0.000 claims description 4
- 241000287828 Gallus gallus Species 0.000 claims description 4
- 241001170744 Veratrum nigrum Species 0.000 claims description 4
- -1 alpha-aminoglutaryl Chemical group 0.000 claims description 4
- 230000037361 pathway Effects 0.000 claims description 4
- 101150084750 1 gene Proteins 0.000 claims description 3
- 108010013043 Acetylesterase Proteins 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 101001047090 Homo sapiens Potassium voltage-gated channel subfamily H member 2 Proteins 0.000 claims description 3
- 241000489523 Veratrum Species 0.000 claims description 3
- 229940057613 veratrum Drugs 0.000 claims description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims description 2
- 240000003768 Solanum lycopersicum Species 0.000 claims description 2
- 108020003891 Squalene monooxygenase Proteins 0.000 claims description 2
- 125000000539 amino acid group Chemical group 0.000 claims description 2
- 108010028143 Dioxygenases Proteins 0.000 claims 4
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 claims 2
- 108090000489 Carboxy-Lyases Proteins 0.000 claims 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 claims 2
- QYIMSPSDBYKPPY-BANQPHDMSA-N 2,3-epoxysqualene Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C=C(/C)CC\C=C(/C)CCC1OC1(C)C QYIMSPSDBYKPPY-BANQPHDMSA-N 0.000 claims 1
- 229930024421 Adenine Natural products 0.000 claims 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims 1
- 102100025560 Squalene monooxygenase Human genes 0.000 claims 1
- 241000219094 Vitaceae Species 0.000 claims 1
- 229960000643 adenine Drugs 0.000 claims 1
- 235000021021 grapes Nutrition 0.000 claims 1
- 229960003966 nicotinamide Drugs 0.000 claims 1
- 235000005152 nicotinamide Nutrition 0.000 claims 1
- 239000011570 nicotinamide Substances 0.000 claims 1
- 235000012015 potatoes Nutrition 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 19
- 108090000790 Enzymes Proteins 0.000 abstract description 19
- 239000003270 steroid hormone Substances 0.000 abstract description 13
- 239000003814 drug Substances 0.000 abstract description 12
- 230000001580 bacterial effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 238000002474 experimental method Methods 0.000 abstract description 4
- 239000000592 Artificial Cell Substances 0.000 abstract description 2
- 238000012269 metabolic engineering Methods 0.000 abstract description 2
- 239000012634 fragment Substances 0.000 description 72
- 238000012216 screening Methods 0.000 description 34
- 239000002609 medium Substances 0.000 description 32
- 239000000047 product Substances 0.000 description 31
- 108020004414 DNA Proteins 0.000 description 29
- 238000012408 PCR amplification Methods 0.000 description 29
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 23
- 239000008103 glucose Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 239000000203 mixture Substances 0.000 description 19
- 108020005004 Guide RNA Proteins 0.000 description 18
- 230000006801 homologous recombination Effects 0.000 description 18
- 238000002744 homologous recombination Methods 0.000 description 18
- 230000003321 amplification Effects 0.000 description 17
- 238000001976 enzyme digestion Methods 0.000 description 17
- 238000003199 nucleic acid amplification method Methods 0.000 description 17
- 229920001817 Agar Polymers 0.000 description 14
- 239000008272 agar Substances 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 13
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 12
- 239000000600 sorbitol Substances 0.000 description 12
- 238000000855 fermentation Methods 0.000 description 11
- 230000004151 fermentation Effects 0.000 description 11
- 239000000499 gel Substances 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 10
- 229940079593 drug Drugs 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 9
- 230000002194 synthesizing effect Effects 0.000 description 9
- 108091033409 CRISPR Proteins 0.000 description 8
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 108700010070 Codon Usage Proteins 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 239000003292 glue Substances 0.000 description 6
- 108700026220 vif Genes Proteins 0.000 description 6
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 5
- 101000918303 Bos taurus Exostosin-2 Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 238000012257 pre-denaturation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 4
- 235000009754 Vitis X bourquina Nutrition 0.000 description 4
- 235000012333 Vitis X labruscana Nutrition 0.000 description 4
- 240000006365 Vitis vinifera Species 0.000 description 4
- 235000014787 Vitis vinifera Nutrition 0.000 description 4
- 101150063416 add gene Proteins 0.000 description 4
- 101150003525 atf-2 gene Proteins 0.000 description 4
- 235000012000 cholesterol Nutrition 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 240000006162 Chenopodium quinoa Species 0.000 description 3
- 235000015493 Chenopodium quinoa Nutrition 0.000 description 3
- 241000234273 Dioscorea Species 0.000 description 3
- 235000005903 Dioscorea Nutrition 0.000 description 3
- 235000000504 Dioscorea villosa Nutrition 0.000 description 3
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 description 3
- 241000304195 Salvia miltiorrhiza Species 0.000 description 3
- 235000011135 Salvia miltiorrhiza Nutrition 0.000 description 3
- 102100037997 Squalene synthase Human genes 0.000 description 3
- 101150038500 cas9 gene Proteins 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 235000004879 dioscorea Nutrition 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 102000002678 mevalonate kinase Human genes 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000008223 sterile water Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 2
- SEHFUALWMUWDKS-UHFFFAOYSA-N 5-fluoroorotic acid Chemical compound OC(=O)C=1NC(=O)NC(=O)C=1F SEHFUALWMUWDKS-UHFFFAOYSA-N 0.000 description 2
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 2
- 102000004672 Acetyl-CoA C-acyltransferase Human genes 0.000 description 2
- 101100351264 Candida albicans (strain SC5314 / ATCC MYA-2876) PDC11 gene Proteins 0.000 description 2
- 102000012272 Cholestanetriol 26-monooxygenase Human genes 0.000 description 2
- 235000003913 Coccoloba uvifera Nutrition 0.000 description 2
- 244000163122 Curcuma domestica Species 0.000 description 2
- 235000003392 Curcuma domestica Nutrition 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 101150093680 ERG1 gene Proteins 0.000 description 2
- 102100028652 Gamma-enolase Human genes 0.000 description 2
- 101001058231 Homo sapiens Gamma-enolase Proteins 0.000 description 2
- 101000582994 Homo sapiens Myelin regulatory factor Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102100030372 Myelin regulatory factor Human genes 0.000 description 2
- 101150018393 NDT80 gene Proteins 0.000 description 2
- 101150050255 PDC1 gene Proteins 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 241000795928 Pseudomonas zeshuii Species 0.000 description 2
- 240000008976 Pterocarpus marsupium Species 0.000 description 2
- 101710119239 Squalene epoxidase erg1 Proteins 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 235000003373 curcuma longa Nutrition 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000013976 turmeric Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- BQPPJGMMIYJVBR-UHFFFAOYSA-N (10S)-3c-Acetoxy-4.4.10r.13c.14t-pentamethyl-17c-((R)-1.5-dimethyl-hexen-(4)-yl)-(5tH)-Delta8-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products CC12CCC(OC(C)=O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C BQPPJGMMIYJVBR-UHFFFAOYSA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- QVHMXAMSRLOKNC-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;7h-purin-6-amine Chemical compound NC1=NC=NC2=C1NC=N2.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O QVHMXAMSRLOKNC-BTVCFUMJSA-N 0.000 description 1
- CHGIKSSZNBCNDW-UHFFFAOYSA-N (3beta,5alpha)-4,4-Dimethylcholesta-8,24-dien-3-ol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21 CHGIKSSZNBCNDW-UHFFFAOYSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- XYTLYKGXLMKYMV-UHFFFAOYSA-N 14alpha-methylzymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C XYTLYKGXLMKYMV-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 1
- FPTJELQXIUUCEY-UHFFFAOYSA-N 3beta-Hydroxy-lanostan Natural products C1CC2C(C)(C)C(O)CCC2(C)C2C1C1(C)CCC(C(C)CCCC(C)C)C1(C)CC2 FPTJELQXIUUCEY-UHFFFAOYSA-N 0.000 description 1
- 101150033839 4 gene Proteins 0.000 description 1
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 1
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 101100434663 Bacillus subtilis (strain 168) fbaA gene Proteins 0.000 description 1
- 101150085381 CDC19 gene Proteins 0.000 description 1
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 1
- 240000006122 Chenopodium album Species 0.000 description 1
- 235000009344 Chenopodium album Nutrition 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- 101100314303 Danio rerio tpi1a gene Proteins 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- 101150023788 ERG19 gene Proteins 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150095274 FBA1 gene Proteins 0.000 description 1
- BKLIAINBCQPSOV-UHFFFAOYSA-N Gluanol Natural products CC(C)CC=CC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(O)C(C)(C)C4CC3 BKLIAINBCQPSOV-UHFFFAOYSA-N 0.000 description 1
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 1
- 101000642268 Homo sapiens Speckle-type POZ protein Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- LOPKHWOTGJIQLC-UHFFFAOYSA-N Lanosterol Natural products CC(CCC=C(C)C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 LOPKHWOTGJIQLC-UHFFFAOYSA-N 0.000 description 1
- 229910009891 LiAc Inorganic materials 0.000 description 1
- 101710135431 Mevalonate kinase erg12 Proteins 0.000 description 1
- CAHGCLMLTWQZNJ-UHFFFAOYSA-N Nerifoliol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C CAHGCLMLTWQZNJ-UHFFFAOYSA-N 0.000 description 1
- 101100234604 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ace-8 gene Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 101150040663 PGI1 gene Proteins 0.000 description 1
- 101150093629 PYK1 gene Proteins 0.000 description 1
- 102100024279 Phosphomevalonate kinase Human genes 0.000 description 1
- 102100036422 Speckle-type POZ protein Human genes 0.000 description 1
- 102000005782 Squalene Monooxygenase Human genes 0.000 description 1
- 102000005938 Steroid Hydroxylases Human genes 0.000 description 1
- 108010030741 Steroid Hydroxylases Proteins 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 241000489520 Veratrum album Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001399 anti-metabolic effect Effects 0.000 description 1
- 230000000703 anti-shock Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 241000385736 bacterium B Species 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 1
- 235000000431 campesterol Nutrition 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QBSJHOGDIUQWTH-UHFFFAOYSA-N dihydrolanosterol Natural products CC(C)CCCC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 QBSJHOGDIUQWTH-UHFFFAOYSA-N 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 101150081406 idi1 gene Proteins 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011090 industrial biotechnology method and process Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- CAHGCLMLTWQZNJ-RGEKOYMOSA-N lanosterol Chemical compound C([C@]12C)C[C@@H](O)C(C)(C)[C@H]1CCC1=C2CC[C@]2(C)[C@H]([C@H](CCC=C(C)C)C)CC[C@@]21C CAHGCLMLTWQZNJ-RGEKOYMOSA-N 0.000 description 1
- 229940058690 lanosterol Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 108091000116 phosphomevalonate kinase Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- GRONZTPUWOOUFQ-UHFFFAOYSA-M sodium;methanol;hydroxide Chemical compound [OH-].[Na+].OC GRONZTPUWOOUFQ-UHFFFAOYSA-M 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000005856 steroid saponins Chemical class 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 101150003389 tdh2 gene Proteins 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 1
- 235000005282 vitamin D3 Nutrition 0.000 description 1
- 239000011647 vitamin D3 Substances 0.000 description 1
- 229940021056 vitamin d3 Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0036—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
- C12N9/0038—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
- C12N9/0042—NADPH-cytochrome P450 reductase (1.6.2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P33/00—Preparation of steroids
- C12P33/06—Hydroxylating
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P33/00—Preparation of steroids
- C12P33/20—Preparation of steroids containing heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y106/00—Oxidoreductases acting on NADH or NADPH (1.6)
- C12Y106/02—Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
- C12Y106/02004—NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention discloses construction and application of a diosgenin synthesis strain. The invention provides a recombinant bacterium, which is obtained by carrying out the following 1) transformation in a chassis yeast containing a relevant gene of a diosgenin synthesis path: 1) allowing the saccharomyces cerevisiae with the chassis to express a steroid 22-hydroxylase gene and improving the expression of an SvvCPR gene in the genome of the saccharomyces cerevisiae with the chassis; experiments prove that the invention perfects the heterogenous synthetic route of the diosgenin and obviously improves the heterogenous production of the diosgenin by comparing the activities of key enzymes from different sources. In addition, the bacterial strain is modified by a metabolic engineering method to obtain the diosgenin artificial cell factory. Finally, the yield of the diosgenin in a 5L tank reaches 1.3g/L, which is the highest yield reported at present, and provides a good reference case for the heterologous synthesis of other steroid hormone medicaments.
Description
Technical Field
The invention belongs to the technical field of biology, and relates to construction and application of a diosgenin synthesis strain.
Background
Steroids, which are widely distributed in nature, are an important component of cell membranes, such as cholesterol, which is common in animals, campesterol, sitosterol and stigmasterol in plants, and ergosterol in lower eukaryotes, such as saccharomyces cerevisiae, which play a vital role in the survival of animals and plants. In addition, the steroid compounds can further synthesize other steroid hormones in organisms, such as progesterone, vitamin D3 and the like. Steroid hormones, also called steroid hormones, are endogenous medicines of human bodies and have irreplaceable effects on maintaining the health of the human bodies. Steroid drugs are interesting molecules, and have various pharmacological activities due to the structural diversity, so that the steroid drugs are mainly applied to the aspects of medicine and health care, have strong pharmacological effects of resisting infection, allergy, virus and shock, and can improve protein metabolism, recover and enhance physical strength, promote urination and reduce blood pressure. According to statistics, the sales of steroid hormone medicines is higher than 280 hundred million dollars in 2011, which accounts for about 6 percent of the total sales of medicines in the world; steroid hormone drugs have been sold for over $ 1000 billion in 2016, and are second only to antibiotics in the second main group.
Diosgenin (Diosgenin), also called Diosgenin, has a structure shown in fig. 1. Since the discovery of diosgenin (Diosgenia) in the rhizome of the genus dioscorea as a source of steroid hormone drugs in 1940, a great deal of attention has been paid by experts in botany and pharmacology to the study of this genus of plants. Diosgenin has a greater similarity with steroid hormone medicines in structure, is a basic raw material of steroid hormone medicines, has the efficacies of antianaphylaxis, antiviral property, antishock property and the like, and is called as medicinal gold. The water-soluble steroid saponin and the derivatives thereof have various pharmacological activities such as gastric mucosa protection, anti-inflammation, anti-cancer and the like. With the ever-expanding market demand of steroid hormones, the biosynthesis of diosgenin, a precursor thereof, is receiving wide attention, and the current synthesis process of diosgenin is mainly a traditional acidolysis method. The diosgenin is finally obtained by the steps of crushing, acidolysis, rinsing, extraction, crystallization and the like of the plant turmeric. Due to the factors of uncertainty and long period (more than 2 years) of the planting state of the turmeric, serious pollution of the extraction process and the like, the supply and price of the dioscin have large fluctuation, an efficient, clean and stable steroid compound production mode is expected, and if the conversion from plant extraction to biosynthesis can be realized, the dioscin production in China can be greatly promoted, and the development of steroid hormone industry in China is promoted.
Disclosure of Invention
An object of the present invention is to provide a recombinant bacterium.
The recombinant bacterium provided by the invention is obtained by carrying out the following 1) transformation in the base yeast containing the relevant gene of the dioscin synthetic path:
1) allowing the saccharomyces cerevisiae with the chassis to express a steroid 22 hydroxylase gene;
or allowing the saccharomyces cerevisiae chassis to express a steroid 22-hydroxylase gene and increasing the expression of a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvvCPR gene in the genome of the saccharomyces cerevisiae chassis;
the dioscin synthetic path related gene is 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1, alpha-aminooxalate reductase gene Lys2, mevalonate kinase gene ERG12, isopentenyl pyrophosphate isomerase IDI1, mevalonate decarboxylase ERG19, (derived from Ruje) 3-hydroxy-3-methylglutaryl coenzyme A reductase HMGR, 3-hydroxy-3-methylglutaryl coenzyme A ERG13, mevalonate kinase ERG8, acetyl coenzyme A acyltransferase ERG10, squalene synthase AtSQS derived from Arabidopsis thaliana, farnesyl pyrophosphate synthase SmFPS derived from Salvia miltiorrhiza, squalene epoxidase ERG1, liraginose derived sterol 26-position hydroxylase VcCYP94N, grape-derived nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvCPR CPR, dioscorea origin sterol 16, 22 dihydroxy oxidase DGCYP90G, potato-derived sterol 7-site reductase StDWF5 and/or raw chicken-derived sterol 24-site reductase GgDHCR 24.
In the recombinant bacteria, the steroid 22-hydroxylase is derived from rhizoma et radix Veratri, Arabidopsis thaliana, tomato or dioscorea zingiberensis.
In the recombinant bacterium, the steroid 22-hydroxylase is any one of the following 1) -3):
1) a protein encoded by the nucleotide shown in the 482-1937 position of the sequence 19 in the sequence table;
2) protein derived from the protein with the same function as 1) obtained by substituting and/or deleting and/or adding 1) one or more amino acid residues;
3) a protein having 95% or more identity to 1) and having the same function as 1).
In the recombinant bacteria, the recombinant bacteria are obtained by modifying the 1) and the following 2) in the base yeast containing the relevant genes of the diosgenin synthesis path:
2) improving the expression of sterol 26-hydroxylase VcCYP94N gene (a chenopodium album derived enzyme) gene, sterol 16, 22-dioxygenase gene DGCYP90G dioscorea zingiberensis derived and the steroid 22-hydroxylase in the genome of the saccharomyces cerevisiae with the chassis.
In the recombinant bacteria, the expression of sterol 26-hydroxylase gene VcCYP94N (a chenopodium quinoa-derived enzyme) gene, sterol 16, 22-dioxygenase gene DGCYP90G dioscorea zingiberensis-derived gene and the steroid 22-hydroxylase in the genome of the saccharomyces cerevisiae with the improved chassis is obtained by integrating sterol 26-reductase VcCYP94N gene, sterol 16, 22-dioxygenase gene DGCYP90G and the steroid 22-hydroxylase gene expression cassette into the genome of the saccharomyces cerevisiae containing tHMG1 and Lys2 genes;
the VcCYP94N gene comprises a TEF1 promoter, a VcCYP94N gene derived from veratrum nigrum and a CYC1 terminator;
the DGCYP90G expression cassette comprises a TDH3 promoter, a dioscorea zingiberensis-derived DGCYP90G gene and a TPI1 terminator;
the expression cassette of the steroid 22-position hydroxylase gene expression cassette comprises a PGK1 promoter, a yangtao uniflower-derived VcCYP90B27 gene and an ADH1 terminator.
In the recombinant bacteria, the recombinant bacteria are obtained by carrying out the transformation of 1), 2) and 3) in the chassis yeast containing relevant genes of the diosgenin synthesis path:
3) the DGCYP90G gene is expressed in the saccharomyces cerevisiae with high copy in a plasmid form, and specifically pRS426-URA3-pTEF1-DGCYP90G-tCYC1 plasmid is transferred.
In the recombinant strain, the saccharomyces cerevisiae on the chassis is obtained by modifying according to at least one of the following A) -D):
A) increasing the expression of tmg 1, mevalonate kinase ERG12, isopentenyl pyrophosphate isomerase IDI1, mevalonate decarboxylase ERG19, 3-hydroxy-3-methylglutaryl coa reductase hmg, 3-hydroxy-3-methylglutaryl coa ERG13, mevalonate kinase ERG8 and acetyl coa acyl transferase ERG10 in the s.cerevisiae genome containing the 3-hydroxy-3-methylglutaryl coa reductase 1 gene tmg 1 and the α -aminooxalate reductase gene Lys 2;
B) improving the expression of squalene synthase AtSQS, farnesyl pyrophosphate synthase SmFPS and squalene epoxidase ERG1 in the saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and alpha-aminooxalate reductase gene Lys 2;
C) allowing the saccharomyces cerevisiae genome containing the 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and the alpha-aminooxalate reductase gene Lys2 to express sterol 26 hydroxylase VcCYP94N, nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvvCPR, sterol 16, 22 dihydroxy oxidase DGCYP90G, sterol 7 reductase StDWF5 and/or sterol 24 reductase GgDHCR 24;
D) knocking out alcohol acetylase ATF2 gene in the saccharomyces cerevisiae genome containing tHMG1 and Lys2 genes.
In the recombinant bacterium B, the Saccharomyces cerevisiae genome containing tHMG1 and Lys2 genes is expressed by VcCYP94N, SvvCPR, DGCYP90G, StDWF5 and/or GgDHCR24, and the expression cassettes of VcCYP94N, SvvCPR, DGCYP90G, StDWF5 and/or GgDHCR24 are integrated into the Saccharomyces cerevisiae genome containing the tHMG1 and Lys2 genes;
the VcCYP94N expression cassette comprises a PGK1 promoter, a VcCYP94N gene derived from veratrum nigrum and an ADH1 terminator;
the SvvCPR expression cassette comprises a TDH3 promoter, a grape-derived SvvCPR gene and a TPI1 terminator;
the DGCYP90G expression cassette comprises a TEF1 promoter, a dioscorea zingiberensis-derived DGCYP90G gene and a CYC1 terminator;
the StDWF5 expression cassette comprises a PGK1 promoter, a potato-derived StDWF5 gene and an ADH1 terminator;
the GgDHCR24 expression cassette comprises a TEF1 promoter, a chick-derived GgDHCR24 gene and a CYC1 terminator.
It is another object of the invention to provide a method.
The method for preparing the first target recombinant bacterium provided by the invention is prepared according to a transformation method in the recombinant bacterium.
The recombinant bacterium obtained by the method is also within the protection scope of the invention.
The application of the recombinant bacterium or the recombinant bacterium obtained by the method in producing diosgenin or improving the yield of diosgenin is also within the protection scope of the invention;
the invention also provides a method for producing diosgenin, which comprises the following steps: fermenting and culturing the recombinant bacteria to obtain the diosgenin.
Experiments prove that the invention perfects the heterogenous synthesis path of the diosgenin and obviously improves the heterogenous production of the diosgenin by comparing the activities of key enzymes from different sources. In addition, the bacterial strain is modified by a metabolic engineering method to obtain the diosgenin artificial cell factory. Finally, the yield of the diosgenin in a 5L tank reaches 1.3g/L, which is the highest yield reported at present, and provides a good reference case for the heterologous synthesis of other steroid hormone medicaments.
Drawings
Fig. 1 is the structural formula of diosgenin.
FIG. 2 shows GC-MS detection analysis of fermentation products of strain LP-074.
FIG. 3 shows the yield of diosgenin in the LP-085 series of strains.
FIG. 4 shows the yield of diosgenin.
FIG. 5 is a graph of LP-BC fed-batch fermentation.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The Saccharomyces cerevisiae BY-T1 strain (described in Chinese patent 201210453416.X) in the following examples, which contains tHMG1 (3-hydroxy-3-methylglutaryl coenzyme A reductase 1 derived from a part of Saccharomyces cerevisiae) and Lys2 (alpha-aminooxalate reductase), was obtained from Tianjin Industrial Biotechnology research institute and can synthesize squalene with higher yield.
Example 1 getting through the pathway for the synthesis of Saccharomyces cerevisiae dioscin
Firstly, constructing a strain BY-T5 and increasing MVA path flux
1. Construction of gRNA plasmid of endogenous Leu2 gene of Saccharomyces cerevisiae
PCR amplification was first performed using the primers 43803-up and 43803-Leu2gRNA-down1 (see Table 1) using the plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (#43803, purchased from Addgene, containing cas9 binding region) as template.
The amplification system is TAKARA 10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix, 4. mu.l of each primer (see Table 1), 0.5. mu.l of template, 0.5. mu.l of Primerstar HS polymerase (2.5U/. mu.L), and distilled water to a total volume of 50. mu.l.
Amplification conditions were 98 ℃ pre-denaturation for 2min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 5 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the PCR product obtained by amplification, wherein the Dpn1 treatment system is as follows: mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. mu.L Dpn1(Therom Co., 400,000 chemical end units/ml), 100. mu.L of PCR amplification product, digestion treatment for 4 hours, and gel recovery treatment of the treated product for use.
The digest obtained after gel recovery was transferred to Trans1-T1 competent cells in an ice bath for 30 min, heat-shocked at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800 mul LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, coating the bacterial liquid on LB plate containing ampicillin, directly selecting two monoclonal plasmids to carry out sequencing verification after overnight culture, and the sequencing result shows that the correct plasmidsNamed pLeu2 gRNA.
Table 1 shows gRNA plasmid primers for constructing Leu2, NDT80, ATF2 and Gal80 sites
The gRNA sequences of N20 corresponding to each gene are bolded in the table above. .
2. Construction of homologous recombination fragments
Yeast endogenous genes tHMG1 (3-hydroxy-3-methylglutaryl coenzyme A reductase 1 from a part of Saccharomyces cerevisiae), ERG12 (mevalonate kinase of Saccharomyces cerevisiae), IDI1 (isopentenyl pyrophosphate isomerase of Saccharomyces cerevisiae), ERG19 (mevalonate decarboxylase of Saccharomyces cerevisiae), ERG13 (3-hydroxy-3-methylglutaryl coenzyme A of Saccharomyces cerevisiae), ERG8 (phosphomevalonate kinase of Saccharomyces cerevisiae), ERG10 (acetyl coenzyme A acyltransferase of Saccharomyces cerevisiae) were amplified from the genome of Saccharomyces cerevisiae BY4742(Saccharomyces cerevisiae BY4742, described in Carrier baker brachhmann et al, 1998, Yeast,14: 115-fold 132, publicly available from the institute of Biotechnology in Tianjin) strain BY an upstream primer with a SexA I cleavage site and a downstream primer with an Asc I cleavage site (amplification primers are shown in Table 2).
The amplification system is TAKARA 10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix, 4. mu.l of each primer (see Table 2), 0.5. mu.l of template, 0.5. mu.l of Primerstar HS polymerase (2.5U/. mu.L), and distilled water to a total volume of 50. mu.l.
Amplification conditions were 98 ℃ pre-denaturation for 2min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 2 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle). And (5) recovering and treating the glue for later use.
TABLE 2 Saccharomyces cerevisiae MVA pathway gene amplification primers
Primer name | Sequence (5 '-3') |
SexAI-tHMG1-F | ACCTGGTAAAACAATGGCTGCAGACCAATTG |
AscI-tHMG1-R | GGCGCGCCTTAGGATTTAATGCAGGTGACGGA |
SexAI-ERG12-F | ACCTGGTAAAACAATGTCATTACCGTTCTTAACTTCTG |
AscI-ERG12-R | GGCGCGCCTTAGGATTTATGAAGTCCATGGTAAATTCGTGTTT |
SexAI-IDI1-F | ACCTGGTAAAACAATGACTGCCGACAACAATAGTA |
AscI-IDI1-R | GGCGCGCCTTAGGATTTATAGCATTCTATGAATTTGCCTGTCAT |
SexAI-ERG19-F | ACCTGGTAAAACAATGACCGTTTACACAGCATC |
AscI-ERG19-R | GGCGCGCCTTAGGATTTATTCCTTTGGTAGACCAGTCTTTGC |
SexAI-ERG13-F | ACCTGGTAAAACAATGAAACTCTCAACTAAACTTTGTTGG |
AscI-ERG13-R | GGCGCGCCTTATTTTTTAACATCGTAAGATCTTCTAAATTTGT |
SexAI-ERG8-F | ACCTGGTAAAACAATGTCAGAGTTGAGAGCCTT |
AscI-ERG8-R | GGCGCGCCTTATTTATCAAGATAAGTTTCCGGATCTTTTTCT |
SexAI-ERG10-F | ACCTGGTAAAACAATGTCTCAGAACGTTTACATTGTAT |
AscI-ERG10-R | TGCTTCCTCTATTGTCATTGAAAAGATATGAGGCGCGCC |
The sequence of the exogenous gene HMGR-N (derived from 3-hydroxy-3-methylglutaryl coenzyme A reductase of the genus Rujie) is optimized according to the codon preference of the saccharomyces cerevisiae and is synthesized by the Kinsley company. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained total gene synthetic product and the 7 PCR amplified fragments are subjected to double enzyme digestion by using SexA I and Asc I of Thermo company, and simultaneously, the enzyme digestion products of plasmids M2, M9, M16, M5, M7, M8, M4 and M3 (described in Chinese patent 201210453416.X) are recovered for later use.
Plasmids M2-tHMG1, M9-ERG12, M16-IDI1, M5-ERG19, M7-HMGR-N, M8-ERG13, M4-ERG8 and M3-ERG10 are obtained by ligation. A connection system: fragments and scaffold were 50ng each, 5. mu.L of 2 XQuick ligation Buffer (NEB), 0.5. mu.L of Quick ligation (NEB, 400,000 covalent end units/ml), supplemented with distilled water to 10. mu.L, reacted at room temperature for 10min to give a ligation product, transferred to Trans1-T1 competent cells, incubated in ice for 30 min, heat-shocked at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800 mu.l LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, smearing the bacterial liquid on LB plate containing ampicillin, after overnight culture, PCR screening 5 positive single colonies, and verifying the correct single colony sequencing to obtain plasmids M2-tHMG1, M9-ERG12, M16-IDI1, M5-ERG19, M7-HMGR-N, M8-ERG13, M4-ERG8 and M3-ERG 10.
PCR amplification was carried out using Leu2-50-pPGK1-F and S-7G-1-M-tADH1-pPDC1-R (see Table 3) using the constructed plasmid M2-tHMG1 as a template (the same procedure as in step 1) to obtain Leu2-50-pPGK1-tHMG1-tADH1-pPDC1-50 fragment (SEQ ID NO: 1) comprising the PGK1 promoter (position 51-801 of SEQ ID NO: 1), the Saccharomyces cerevisiae endogenous truncated tHMG1 (position 802-2386 of SEQ ID NO: 1) and the ADH1 terminator (position 2387-2545 of SEQ ID NO: 1).
PCR amplification was carried out using the constructed plasmid M9-ERG12 as a template and using primers S-7G-1-M-tADH1-pPDC1-F and 3G-1-M-tADH2-pENO2-R (see Table 3) (the same procedure as in step 1) to obtain a fragment of tADH1-50-pPDC1-ERG12-tADH2-pENO2-50 (SEQ ID NO: 2) comprising a PDC1 promoter (position 51-851 of SEQ ID NO: 2), an endogenous ERG12 gene of Saccharomyces cerevisiae (position 852-2184 of SEQ ID NO: 2) and an ADH2 terminator (position 2185-2585 of SEQ ID NO: 2).
PCR amplification was carried out using the constructed plasmid M16-IDI1 as a template and using primers 3G-2-M-tADH2-pENO2-F and 3G-2-M-tPDC1-pPYK1-R (see Table 3) (the same procedure as in step 1) to obtain a tADH2-50-pENO2-IDI1-tPDC1-pPYK1-50 fragment (SEQ ID NO: 3) comprising the ENO2 promoter (position 51-1051 of SEQ ID NO: 3), the Saccharomyces cerevisiae endogenous IDI1 gene (position 1052-1949 of SEQ ID NO: 3) and the PDC1 terminator (position 1950-2350 of SEQ ID NO: 3).
PCR amplification was performed using the constructed plasmid M5-ERG19 as a template and using primers 3G-3-M-tPDC1-pPYK1-F and S-8G-1-M-tPGGI 1-pTEF2-R (see Table 3) (the method is the same as step 1), and a tPDC1-50-pPYK1-ERG 19-tPGGI 1-pTEF2-50 fragment (SEQ ID NO: 4) was obtained, which fragment contains the PYK1 promoter (position 51-1051 of SEQ ID NO: 4), the endogenous Saccharomyces cerevisiae ERG19 gene (position 1052-2243 of SEQ ID NO: 4) and the PGI1 terminator (position 2244-2643 of SEQ ID NO: 4).
PCR amplification was performed using primers S-8G-1-M-tPGI1-pTEF2-F and S-8G-1-M-tENO2-pFBA1-R (see Table 3) using the constructed plasmid M7-HMGR-N as a template (the method is the same as step 1), to obtain tPGI1-50-pTEF2-HMGR-N-tENO2-pFBA1-50 fragment (SEQ ID NO: 5) containing TEF2 promoter (SEQ ID NO: 51-613), HMGR-N gene (SEQ ID NO: 5: 614-1916) and ENO2 terminator (SEQ ID NO: 5: 1917-2317).
PCR amplification was performed using the constructed plasmid M8-ERG13 as a template and primers S-8G-1-M-tENO2-pFBA1-F and S-4G-4-M-tTDH2-pTDH3-R (see Table 3) (the method is the same as step 1), and a tENO 2-50-pFBBA 1-ERG13-tTDH2-pTDH3-50 fragment (SEQ ID NO: 6) was obtained, which comprises the FBA1 promoter (position 51-873 of SEQ ID NO: 6), the Saccharomyces cerevisiae endogenous ERG13 gene (position 874-2299 of SEQ ID NO: 6) and the TDH2 terminator (position 2300-2701 of SEQ ID NO: 6).
PCR amplification was performed using the constructed plasmid M4-ERG8 as a template and primers S-4G-3-M-tTDH2-pTDH3-F and 3G-3-M-tTPI1-pTEF1-R (see Table 3) (the same procedure as in step 1) to obtain a tTDH2-50-pTDH3-ERG8-tTPI1-pTEF1-50 fragment (SEQ ID NO: 7) comprising the TDH3 promoter (position 51-851 of SEQ ID NO: 7), the Saccharomyces cerevisiae endogenous ERG8 gene (position 852-2208 of SEQ ID NO: 7) and TPI1A terminator (at positions 2209-2609 of SEQ ID NO: 7).
PCR amplification was performed using the constructed plasmid M3-ERG10 as a template and primers 3G-2-M-tTPI1-pTEF1-F and Leu2-50-tCYC1-R (see Table 3) (the same procedure as step 1) to obtain a tTPI1-50-pTEF1-ERG10-tCYC1-Leu2-50 fragment (SEQ ID NO: 8) comprising a TEF1 promoter (position 51-454 of SEQ ID NO: 8), an endogenous ERG10 gene of Saccharomyces cerevisiae (position 455-1652 of SEQ ID NO: 8) and a CYC1 terminator (position 1653-1960 of SEQ ID NO: 8).
TABLE 3 primers for homologous recombination fragments for amplifying Leu sites
3. Transformation of Cas9 plasmid
The strain BY-T1 (described in Chinese patent 201210453416.X) was used, SD-Ura-His-Leu-Trp (Beijing Pankeno technology Co., Ltd.), 2% glucose, 0.005% His., 0.01% Leu, 0.01% Ura, 0.01% Trp (each percentage indicates g/100 mL). 1mL (OD: about 0.6-1.0) was taken and dispensed into 1.5mL EP tubes, centrifuged at 10000g for 1min at 4 ℃ and the supernatant was discarded, the precipitate was washed with sterile water (4 ℃), centrifuged under the same conditions and the supernatant discarded. The cells were incubated at 25 ℃ for 20min with 1mL of a treatment solution (10mM LiAc; 10mM DTT; 0.6M sorbitol; 10mM Tris-HCl (pH7.5) added thereto, and the treatment solution was used. After centrifugation, the supernatant was discarded, 1mL of 1M sorbitol (0.22 μ M aqueous membrane filtration sterilization) was added to the cells for resuspension, and the cells were centrifuged, and the supernatant was discarded (resuspended twice with 1M sorbitol) to a final volume of about 80. mu.L. Cas9 plasmid p414-TEF1p-Cas9-CYC1t (#43802 purchased from Addgene)1 uL is added, the mixture is transferred to an electric transfer cup after being mixed evenly, electric shock is carried out for 5.6ms at 2.7kv, 1mL of 1M sorbitol is added, the mixture is revived at 30 ℃ for 1h, and the mixture is coated on a screening medium plate (formula: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura, 1.5% agar, and each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more.
Optionally selecting a strain named as strain BY-T1(Cas9), wherein the strain is a recombinant strain obtained BY transferring plasmid p414-TEF1p-Cas9-CYC1T into Saccharomyces cerevisiae BY-T1.
4. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T1(Cas9) was cultured overnight in screening medium. The screening medium consisted of: SD-Trp (beijing pan kino (functional genome) science and technology ltd), 2% glucose, 0.005% his, 0.01% leu, 0.01% Ura (each percentage number indicates g/100 mL). Preparing saccharomyces cerevisiae competence (the method is the same as the step 3), adding pLeu2gRNA plasmid and 2 muL of each of eight homologous recombination fragments into prepared By-T1(Cas9) competent cells, uniformly mixing, transferring the mixture into an electric transfer cup, shocking BY 2.7kv for 5.6ms, adding 1mL of 1M sorbitol, recovering at 30 ℃ for 1h, and coating the mixture on a screening medium plate (the formula: 0.8% of yeast selection medium SD-Ura-His-Leu-Trp, 2% of glucose, 0.005% of His., 0.01% of Leu., 1.5% of agar, wherein each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. PCR identified the correct positive clone, designated strain BY-T5(Cas 9).
The strain BY-T5 is a recombinant strain which is obtained BY replacing a Leu2 Gene (Gene ID:850342, updated on 14-Jan-2021) in a BY-T1(Cas9) genome with a pPGK1-tHMG1-tADH1-pPDC1-ERG12-tADH2-pENO2-IDI 1-tPMDC 1-pPYK1-ERG19-tPGI1-pTE F2-HMGR-N-tENO2-pFBA1-ERG13-tTDH2-pTDH3-ERG8-tTPI1-pTEF1-ERG10-tCYC1 (nucleotide sequences are composed of sequence 51-2545, sequence 51-2585, sequence 2 51-2585, sequence 3 51-2600, sequence 4 51-2643, sequence 5, sequence 51-1967, sequence 51-2317, sequence 2706-2317, sequence 2311-51-2318 and sequence 51-2358 of the number of the bacterium, and a recombinant strain.
5. gRNA plasmid elimination
BYT5 was streaked onto three zones on screening media plates. The screening medium consisted of: 5-FOA-Trp (Beijing Pankeno (functional genome) science and technology Co., Ltd.), 2% glucose 0.005% 5-FOA, 0.005% His, 0.01% Leu, 0.01% Ura.1.5% agar (each percentage indicates g/100 mL). After single colonies grew out on the plates, they were screened back on SD-Trp (Beijing Pankeno (functional genome) technologies, Ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage indicates g/100mL) and SD-Trp-URA (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.005% His, 0.01% Leu, 1.5% agar; each percentage indicates g/100mL), and strains which could not grow on SD-Trp-URA plates and could grow on SD-Trp were selected for use.
Secondly, constructing a strain BY-T30 to increase the yield of lanosterol
1. Construction of gRNA plasmid of endogenous NDT80 gene of saccharomyces cerevisiae
PCR amplification was first performed using the primers 43803-up and 43803-NDT80gRNA-down1 (see Table 1) using the plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (#43803, purchased from Addgene, containing cas9 binding region) as template.
The amplification system is TAKARA 10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix, 4. mu.l of each primer (see Table 1), 0.5. mu.l of template, 0.5. mu.l of Primerstar HS polymerase (2.5U/. mu.L), and distilled water to a total volume of 50. mu.l.
Amplification conditions were 98 ℃ pre-denaturation for 2min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 5 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the PCR product obtained by amplification, wherein the Dpn1 treatment system is as follows: 10. mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. mu.L of Dpn1(Therom Co., 400,000 covalent end units/ml), 100. mu.L of the PCR amplification product, digestion treatment for 4 hours, and subsequent gel recovery treatment of the treated product for use.
The digest obtained after the gel recovery was transferred to Trans1-T1 competent cells in an ice bath for 30 minutes, heat-shocked at 42 ℃ for 30 seconds and immediately placed on ice for 2 minutes. Adding 800 mul LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, coating the bacterial liquid on LB plate containing ampicillin, directly selecting two monoclonal plasmids for sequencing verification after overnight culture, and the sequencing result shows that the plasmid is correctThe plasmid of (3) was designated pNDT80 gRNA.
2. Construction of homologous recombination fragments
The yeast endogenous gene ERG1 (squalene epoxidase from Saccharomyces cerevisiae) was amplified from the genome of Saccharomyces cerevisiae BY4742 strain BY an upstream primer with SexA I cleavage site and a downstream primer with Asc I cleavage site (shown in Table 4).
The amplification system is TAKARA 10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix, 4. mu.l of each primer (see Table 4), 0.5. mu.l of template, 0.5. mu.l of PrimerSTAR HS polymerase (2.5U/. mu.L), and distilled water were added to a total volume of 50. mu.l.
Amplification conditions were 98 ℃ pre-denaturation for 2min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 2 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle). And (5) recovering and treating the glue for later use.
TABLE 4 Saccharomyces cerevisiae ERG1 gene amplification primers
Name of primer | Sequence (5 '-3') |
SexAI-ERG1-F | ACCTGGTAAAACAATGTCTGCTGTTAACGTTGCA |
AscI-ERG1-R | GGCGCGCCTTAACCAATCAACTCACCAAACAAAAATG |
The sequences of the foreign genes AtSQS (squalene synthase from Arabidopsis thaliana) and SmFPS (farnesyl pyrophosphate synthase from Salvia miltiorrhiza) were optimized according to the codon preference of Saccharomyces cerevisiae, and were synthesized by Kinseri. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained total gene synthetic product and the PCR amplified fragment are subjected to double enzyme digestion by SexA I and Asc I of Thermo company, and simultaneously, the enzyme digestion products of plasmids M2, M3 and M4 (described in Chinese patent 201210453416.X) are recovered for later use.
The plasmids M2-AtSQS, M3-SmFPS and M4-ERG1 are obtained by ligation. A connection system: the fragments and the backbone were each 50ng, 5. mu.L of 2 Xquick ligation Buffer (NEB), 0.5. mu.L of Quick ligation (NEB, 400,000 synergistic end units/ml), supplemented with distilled water to 10. mu.L, reacted at room temperature for 10min to give a ligation product, transferred into Trans1-T1 competent cells, incubated in ice for 30 min, heat-shocked at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800. mu.l LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, coating the bacterial liquid on LB plate containing ampicillin, culturing overnight, PCR screening 5 positive single colonies, verifying the correct single colony sequencing to obtain plasmids M2-AtSQS, M3-SmFPS and M4-ERG 1.
PCR amplification was performed using the constructed plasmid M2-AtSQS as a template and primers NDT80-50-pPGK1-F and 3G-2M-pTDH3-tADH1-R (see Table 5) (the same procedure as in step 1) to obtain an NDT80-50-pPGK1-AtSQS-tADH1-pTDH3-50 fragment (SEQ ID NO: 9) comprising a PGK1 promoter (position 51-801 of SEQ ID NO: 9), an Arabidopsis derived AtSQS (position 802-22035 of SEQ ID NO: 9) and an ADH1 terminator (position 2036-2194 of SEQ ID NO: 9).
PCR amplification was performed using the constructed plasmid M4-ERG1 as a template and using primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (the same procedure as step 1) to obtain a tADH1-50-pTDH3-ERG1-tTPI1-pTEF1-50 fragment (sequence 10) comprising a TDH3 promoter (position 51-851 of sequence 10), a Saccharomyces cerevisiae-derived ERG1 gene (position 852-2343 of sequence 10) and a TPI1 terminator (position 2344-2746 of sequence 10). And performing gel recovery treatment on the target fragment obtained by amplification for later use.
PCR amplification was performed using the constructed plasmid M3-SmFPS as a template and using primers 3G-2M-tTPI1-pTEF1-F and NDT80-50-tCYC1-R (see Table 5) (the same procedure as in step 1) to obtain a tTPI1-50-pTEF 1-pTFPS-tCYC 1-NDT80-50 fragment (SEQ ID NO: 11) comprising a TEF1 promoter (position 51-481 of SEQ ID NO: 11), a SmFPS gene derived from Salvia miltiorrhiza (position 482-1532 of SEQ ID NO: 11), and a CYC1 terminator (position 1533-1840 of SEQ ID NO: 11).
Table 5 shows primers for amplifying homologous recombination fragments at NDT80, ATF2 and Gal80 sites
3. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T5 was cultured overnight in selection medium. The screening medium consisted of: SD-Trp (beijing pan keno (functional genome) science and technology ltd), 2% glucose, 0.005% his, 0.01% leu, 0.01% Ura (each percentile represents g/100 mL). Preparing saccharomyces cerevisiae competence (same step 3 of the method), adding pNDT80gRNA plasmid and three homologous recombination fragments (sequence 9 to sequence 11) into prepared BY-T5 competent cells, uniformly mixing, transferring to an electric rotating cup, shocking BY 2.7kv for 5.6ms, adding 1mL of 1M sorbitol, recovering at 30 ℃ for 1h, and coating on a screening medium plate (formula: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.005% His, 0.01% Leu, 1.5% agar, wherein each percentage represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. The correct positive clone was identified BY PCR and was designated strain BY-T30.
The strain BY-T30 is a recombinant bacterium obtained BY replacing NDT80 Gene (Gene ID:856524, updated on 6-Oct-2020) in BY-T5 genome with pPGK1-AtSQS-tADH1-pTDH3-ERG1-tTPI1-pTEF1-SmFPS-tCYC 1(the nucleotide sequence consists of 51 st to 2194 of a sequence 9, 51 st to 2746 of the sequence 10 and 51 st to 1840 of the sequence 11).
4. gRNA plasmid elimination
BYT30 was streaked onto three zones on screening media plates. The screening medium consisted of: 5-FOA-Trp (Beijing Pankeno (functional genome) science and technology Co., Ltd.), 2% glucose 0.005% 5-FOA, 0.005% His., 0.01% Leu., 0.01% Ura.1.5% agar (each percentage indicates g/100 mL). After single colonies grew out on the plates, they were back-screened on SD-Trp (Beijing Pankeno (functional genome) science and technology Co., Ltd.), 2% glucose, 0.005% His, 0.01% Leu, 0.01% Ura (each percentage number indicates g/100mL) and SD-Trp-URA (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.005% His, 0.01% Leu, 1.5% agar; each percentage number indicates g/100mL), and strains that could not grow on SD-Trp-URA plates and could grow on SD-Trp were selected for use.
Thirdly, construction of saccharomyces cerevisiae chassis strain LP-034
The alcohol acetylase (ATF2) gene of the saccharomyces cerevisiae can perform acetylation reaction on the C3 position of the steroid compound to form an ester precipitate, so that subsequent reaction cannot be performed. Therefore, in order to avoid the influence of acetylation reaction of steroid C3-hydroxyl on the experiment, a saccharomyces cerevisiae chassis strain LP-034 is constructed by a Crispr-Cas9 method at an ATF2 site by a knocking-up operation:
1. construction of Saccharomyces cerevisiae endogenous ATF2 gene gRNA plasmid
PCR amplification was first performed using the primers 43803-up and 43803-ATF2gRNA-down1 (see Table 1) using the plasmid p426-SNR52p-gRNA. CAN. Y-SUP4t (#43803, purchased from Addgene, containing cas9 binding region) as template.
The amplification system is TAKARA 10. mu.l of HS DNA polymerase, 10. mu.l of Dntp mix, 4. mu.l of each primer (see Table 1), 0.5. mu.l of template, 0.5. mu.l of Primerstar HS polymerase (2.5U/. mu.L), and distilled water to a total volume of 50. mu.l.
Amplification conditions were 98 ℃ pre-denaturation for 2min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 56 ℃ for 15 seconds, and extension at 72 ℃ for 5 minutes (30 cycles); extension at 72 ℃ for 8 min (1 cycle).
And (3) carrying out Dpn1 digestion treatment on the PCR product obtained by amplification, wherein the Dpn1 treatment system is as follows: 10. mu.L of 10 XDpn 1 Buffer (Thermo Co.), 5. mu.L of Dpn1(Therom Co., 400,000 covalent end units/ml), 100. mu.L of the PCR amplification product, digestion treatment for 4 hours, and subsequent gel recovery treatment of the treated product for use.
The digest obtained after gel recovery was transferred to Trans1-T1 competent cells in an ice bath for 30 min, heat-shocked at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800 μ l LB medium, incubating at 250rpm and 37 deg.C for 1 hr, spreading the culture solution on LB plate containing ampicillin, culturing overnight, and randomly selecting two monoclonal substancesThe particles are subjected to sequencing verification, and the sequencing result shows that the correct plasmid is obtainedWas designated pATF2 gRNA.
The pATF2gRNA plasmid contains the gRNA sequence of N20 corresponding to the ATF2 gene.
2. Construction of homologous recombination fragments
Exogenous genes VcCYP94N (a 26-position hydroxylase derived from rhizoma et radix Veratri), DGCYP90G (a 16, 22-dihydroxyoxidase derived from rhizoma Dioscoreae Zingiberensis), and SvvCPR (a phosphate-cytochrome P450 reductase derived from glucose adenine dinucleotide) are related genes for synthesizing diosgenin, and sequences are optimized according to the codon preference of Saccharomyces cerevisiae and synthesized by Kinry corporation. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end.
The obtained whole gene synthetic product is subjected to double enzyme digestion by SexA I and Asc I of Thermo company, and simultaneously SexA I and Asc I are used for enzyme digestion of plasmids M2, M3 and M4, and enzyme digestion product glue is recovered for later use.
50ng of enzyme digestion plasmids M2, M3 and M4 are respectively added into a connection system with 50ng of each of the obtained VcCYP94N, DGCYP90G and SvvCPR gene fragments: mu.L of 2 XQuick ligation Buffer (NEB), 0.5. mu.L of Quick ligation Buffer (NEB, 400,000 covalent end units/ml), distilled water was added to 10. mu.L, and the mixture was reacted at room temperature for 10min to obtain a ligation product, which was transferred to Trans1-T1 competent cells for 30 min in ice bath, heat-shocked at 42 ℃ for 30 sec, and immediately placed on ice for 2 min. Adding 800 mul LB culture medium, incubating at 250rpm and 37 ℃ for 1 hour, smearing bacterial liquid on LB plate containing ampicillin, after overnight culture, PCR screening 5 positive single colonies, verifying the correct single colony sequencing to obtain plasmids M2-VcCYP94N, M3-DGCYP90G and M4-SvvCPR.
PCR amplification was performed using the constructed plasmid M2-VcCYP94N as a template and primers ATF2-50-pPGK1-F and 3G-2M-pTDH3-tADH1-R (see Table 5) (the method is the same as step 1), and an ATF2-50-pPGK1-VcCYP94N-ADH1t-pTDH3-50 fragment (sequence 12) was obtained, which comprises a PGK1 promoter (position 51-801 of sequence 12), a Veratrum nigrum-derived VcCYP94N gene (position 802-2257 of sequence 12) and an ADH1 terminator (position 2258-2416 of sequence 12).
PCR amplification was carried out using the constructed plasmid M3-DGCYP90G as a template and using primers 3G-2M-tTPI1-pTEF1-F and ATF2-50-tCYC1-R (see Table 5) (the same procedure as in step 1) to obtain a pTEF1-DGCYP90G-tCYC1 fragment (SEQ ID NO: 13) comprising a TEF1 promoter (position 51-481 of SEQ ID NO: 13), a Dioscorea zingiberensis-derived DGCYP90G gene (position 482-1949 of SEQ ID NO: 13) and a CYC1 terminator (position 1950-2257 of SEQ ID NO: 13).
PCR was performed using the constructed plasmid M4-SvvCPR as a template and primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (the same procedure as in step 1), to obtain a pTDH3-SvvCPR-tTPI1 fragment (SEQ ID NO: 14) comprising the TDH3 promoter (position 51-851 of SEQ ID NO: 14), the grape-derived SvvCPR gene (position 852-2964 of SEQ ID NO: 14) and the TPI1 terminator (position 2965-3367 of SEQ ID NO: 14). And performing gel recovery treatment on the target fragment obtained by amplification for later use.
3. Co-transformation of gRNA plasmids and gene homologous recombination fragments
BY-T30 was grown overnight in selection medium. The screening medium consisted of: SD-Trp (beijing pan kino (functional genome) science and technology ltd), 2% glucose, 0.005% his, 0.01% leu, 0.01% Ura (each percentage number indicates g/100 mL). Preparation of Saccharomyces cerevisiae competence (method same as step 3) to the prepared BY-T30 competent cells, pATF2gRNA plasmid (containing Cas9 binding region) and three homologous recombination fragments (sequence 12 to sequence 14) each 2. mu.L were added, mixed well, transferred to an electric cuvette, shocked at 2.7kv for 5.6ms, added with 1mL of sorbitol, revived at 30 ℃ for 1h, and spread on a screening medium plate (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.005% His, 0.01% Leu, 1.5% agar, each percentage number indicates g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. The correct positive clone was identified by PCR and was designated strain LP-034.
The strain LP-034 is a recombinant bacterium obtained by replacing an ATF2 Gene (Gene ID:853088, updated on 21-Mar-2020) in a BYT30 genome with pPGK1-VcCYP94N-tADH1-pTDH3-SvvCPR-tTPI1-TEF1-DGCYP90G-tCYC1 fragment (a nucleotide sequence sequentially consists of 51 th to 2416 th nucleotides of a sequence 12, 51 th to 2964 th nucleotides of a sequence 14 and 51 th to 2257 th nucleotides of the sequence 13).
Secondly, construction of saccharomyces cerevisiae chassis strain LP-074
1. Introducing cholesterol synthesis gene to break through the synthetic path of dioscin
Exogenous genes StDWF5 (potato-derived sterol 7-site reductase) and GgDHCR24 (chicken-derived sterol 24-site reductase) are enzymes required by cholesterol precursors in a diosgenin synthesis path, sequences are optimized according to the codon preference of saccharomyces cerevisiae, and are synthesized by Kinserin. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained whole gene synthetic product is subjected to double enzyme digestion by SexA I and Asc I of Thermo company, and simultaneously, the SexA I and Asc I are used for enzyme digestion of plasmid M2 and enzyme digestion product glue of M3 are recovered for later use. Plasmids M2-StDWF5, M3-GgDHCR24 were obtained (step 1 of the same procedure).
PCR was performed using the constructed plasmid M2-StDWF5 as a template and primers 1M-pEASY-pPGK1-F and 1M-tADH1-pTEF1-R (see Table 6) (step 1 of the same method), to obtain pPGK1-StDWF5-tADH1t fragment (SEQ ID NO: 15) comprising PGK1 promoter (positions 63-813 of SEQ ID NO: 15), potato-derived StDWF5 gene (positions 814-2119 of SEQ ID NO: 15) and ADH1 terminator (position 2120-2278 of SEQ ID NO: 15).
PCR amplification was performed using the constructed plasmid M3-GgDHCR24 as a template using primers 2M-tADH1-pTEF1-F and 2M-tCYC1-pEASY-R (see Table 6) (step 1 of the same method), to obtain a pTEF1-GgDHCR24-tCYC1 fragment (SEQ ID NO: 16) comprising the TEF1 promoter (position 51-481 of SEQ ID NO: 16), the original chicken-derived GgDHCR24 gene (position 482-2033 of SEQ ID NO: 16), and the CYC1 terminator (position 2034-2341 of SEQ ID NO: 16).
Saccharomyces cerevisiae LP-034 competence was prepared (same method as step 3), pPGK1-StDWF5-tADH1 fragment, pTEF1-GgDHCR24-tCYC1 and laboratory-established homologous arm marker fragment TRP-His3-up, TRP-down (described in Chinese patent ZL201210453416. X) were added to the prepared competent cells, each 2. mu.L was mixed, transferred to an electric cuvette, shocked with 2.7kv for 5.7ms, added with 1mL of 1M sorbitol, revived at 30 ℃ for 1h, and spread on a solid screening medium (formulation: yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.01% Leu., 0.01% Ura, 1.5% agar, each percentage representing g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. The correct positive clone was identified by PCR and was designated strain LP-074.
Through sequencing, the strain LP-074 is a recombinant bacterium obtained by replacing TRP1 Gene (Gene ID:851570, updated on 10-Oct-2020) of saccharomyces cerevisiae LP-034 with His-pPGK1-StDWF5-tADH1-TEF1-GgDHCR24-tCYC1 (nucleotide sequence is composed of His sequence (Gene ID:854377, updated on 6-Oct-2020), nucleotide 63-2278 of sequence 15 and nucleotide 51-2341 of sequence 16), namely StDWF5 and GgDHCR24 Gene segments are integrated at TRP1 site of LP-034.
Table 6 shows StDWF5 and GgDHCR24 gene integration amplification primers
2. Identification of Saccharomyces cerevisiae LP-074 strain product
And (3) shaking flask fermentation: activating a saccharomyces cerevisiae LP-074 strain in a corresponding solid selection medium (formula: solid yeast screening medium SD-Ura-His-Leu-Trp, 2% glucose, 1.5% agar; each percentage number represents g/100 mL); then inoculating the strain in a corresponding liquid selection culture medium (formula: liquid yeast screening culture medium SD-Ura-His-Leu-Trp, 2% glucose; each percentage number represents g/100mL) to prepare a seed solution (30 ℃, 250rpm, 16 h); the original OD 0.1 inoculum sizes were inoculated into 3 bottles of 100mL flasks containing the corresponding liquid selection medium (formulation: Yeast selection Medium SD-Ura-His-Leu-Trp, 2% glucose; each percentage number indicates g/100mL) respectively, and shaking cultured at 30 ℃ and 250rpm for 5 days to obtain fermentation broth.
The product extraction method comprises the following steps: taking 5mL of fermentation liquor in a 15mL centrifuge tube, centrifuging at 11000r/min for 2min, removing the culture medium, washing with sterile water for 2 times, adding 1mL of 3M HCL, boiling for 10min, washing with sterile water for 1 time, resuspending the precipitate with 1mL of 1.5M NaOH-methanol solution, and incubating at 60 ℃ for 6 h. Add 1ml of n-hexane and vortex for 10 min. Taking the upper layer to pass through a 0.22 mu m organic nylon filter membrane for detection and standby.
Gas chromatography detection: an agilent technologies 5975C gas chromatograph was used, equipped with a chromatography column: HP-5ms (30m 0.25mm 0.5 μm). The injection port temperature is 300 ℃, the injection volume is 1 mu L, the flow is not divided, and the solvent is delayed for 5 min; chromatographic conditions are as follows: maintaining at 240 deg.C for 5min, heating at 10 deg.C/min to 300 deg.C, and maintaining at 300 deg.C for 25min, for 36 min.
Gas chromatography-mass spectrometry (GC-MS) detection: a gas chromatograph tandem mass spectrometry (GC-MS) agilent technologies 5975C gas chromatograph and a three-axis insert xl MSD detector equipped with a chromatographic column: HP-5ms (30m 0.25mm 0.5 μm). GC-MS measurement conditions: the injection port temperature is 300 ℃, the injection volume is 1 mu L, the flow is not divided, and the solvent is delayed for 5 min; chromatographic conditions are as follows: maintaining at 240 deg.C for 5min, heating at 10 deg.C/min to 300 deg.C, and maintaining at 300 deg.C for 25min, and totally 36 min. MS conditions: SIM: 69,139,282, and 414.
Diosgenin standards were purchased from alatin for qualitative and quantitative analysis.
The product was detected using an agilent technologies 5975C gas chromatograph.
The yield of diosgenin is shown in figure 2, and trace amount of diosgenin can be produced.
Example 2 identification of key enzyme for heterologous synthesis of diosgenin by Saccharomyces cerevisiae and screening of sterol 22-hydroxylase activity of different sources
Identification of key enzyme for heterogeneously synthesizing diosgenin by saccharomyces cerevisiae
Constructing a saccharomyces cerevisiae chassis strain LP-085-DG by a method of Crispr-Cas 9:
1. construction of gRNA plasmid of endogenous Gal80 gene of Saccharomyces cerevisiae
First, using a plasmid p426-SNR52p-gRNA.CAN.Y-SUP4t as a template, and using primers 43803-up and 43803-Gal80gRNA-down1 (see Table 1), PCR amplification was performed (the same procedure as in step 1 of example 1), and the obtained plasmid was named pGal80 gRNA.
The pGal80gRNA plasmid contains the gRNA sequence of N20 corresponding to the Gal80 gene.
2. Construction of homologous recombination fragments
Exogenous genes SvvCPR (glucose-derived nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase) and DGCYP059 (dioscorea zingiberensis-derived steroid 22-hydroxylase gene) were optimized in sequence according to the codon preference of Saccharomyces cerevisiae, and synthesized by Kinsley. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained whole gene synthetic product is subjected to double enzyme digestion by SexA I and Asc I of Thermo company, and simultaneously, the SexA I and Asc I are used for enzyme digestion of plasmid M2 and enzyme digestion product glue of M3 are recovered for later use. The plasmid M2-SvvCPR, M3-DGCYP059 (procedure same as step 2 of example 1).
PCR was performed using the constructed plasmid M2-SvvCPR as a template and using primers Gal80-50-pPGK1-F and 1M-tADH1-pTEF1-R (see Table 5) (step 1 of example 1), to obtain a pPGK1-SvvCPR-ADH1t fragment (SEQ ID NO: 17) comprising a PGK1 promoter (position 51-801 of SEQ ID NO: 17), a grape-derived SvvCPR gene (position 802-2914 of SEQ ID NO: 17) and an ADH1 terminator (position 2915-3073 of SEQ ID NO: 17).
PCR amplification was performed using the constructed plasmid M3-DGCYP059 as a template using primers 2M-tADH1-pTEF1-F and Gal80-50-tCYC1-R (see Table 5) (the same procedure as in step 1 of example 1), to obtain a pTEF1-DGCYP059-tCYC1 fragment (SEQ ID NO: 18) comprising the TEF1 promoter (position 51-481 of SEQ ID NO: 18), the dioscorea zingiberensis-derived DGCYP059 gene (position 482-1934 of SEQ ID NO: 18), and the CYC1 terminator (position 1935-2242 of SEQ ID NO: 18).
Saccharomyces cerevisiae LP-074 strain competence was prepared (same procedure as example 1, step 3), pGal80gRNA plasmid and two homologous recombination fragments (pPGK1-SvvCPR-ADH1t fragment and pTEF1-DGCYP059-tCYC1 fragment) were added at 2. mu.L each, mixed well and transferred to an electric cuvette, shocked at 2.7kv for 5.6ms, added with 1mL of 1M sorbitol, thawed at 30 ℃ for 1h, spread on screening medium plates (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.01% Leu, 1.5% agar, each percentage number indicating g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more.
A correct positive clone was identified by PCR and named strain LP-085-DG.
LP-085-DG is a recombinant bacterium obtained by replacing the Gal80 Gene (Gene ID:854954, updated on 14-Jan-2021) in the genome of LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-DGCYP059-tCYC 1(the nucleotide sequence consists of 51 st to 3073 nd nucleotides in sequence 17 and 51 st to 2242 nd nucleotides in sequence 18).
3. Detection of saccharomyces cerevisiae LP-085-DG fermentation product
The yield of the recombinant strain LP-085-DG diosgenin was determined according to 2 of example 1, and the result is shown in FIG. 3, wherein the yield of the recombinant strain LP-085-DG diosgenin was 3.75mg/l of fermentation broth supernatant; therefore, the externally introduced steroid 22-hydroxylase improves the synthetic pathway of the diosgenin and improves the capability of the saccharomyces cerevisiae for synthesizing the diosgenin.
Screening of steroid 22-hydroxylase activity from different sources
In order to screen suitable steroid 22 hydroxylase, steroid 22 hydroxylase of different sources is introduced by a method of Crispr-Cas9, and saccharomyces cerevisiae chassis strains LP-085-Vc, LP-085-At and LP-085-Sl are constructed:
1. construction of gRNA plasmid of endogenous Gal80 gene of saccharomyces cerevisiae
The same procedure as described in step 1 above gave pGal80gRNA plasmid.
2. Construction of homologous recombination fragments
Sequences of exogenous genes VcCYP90B27, AtDWF4 and SlCYP90B3 are optimized according to the codon preference of saccharomyces cerevisiae and are synthesized by Kinsley. When synthesizing the gene, a SexA I enzyme cutting site is introduced at the 5 'end, and an Asc I enzyme cutting site is introduced at the 3' end. The obtained whole gene synthetic product is subjected to double enzyme digestion by SexA I and Asc I of Thermo company, and meanwhile, the enzyme digestion product glue of SexA I and Asc I enzyme digestion plasmid M3 is recovered for later use. Plasmids M3-VcCYP90B27, M3-AtDWF4 and M3-SlCYP90B3 were obtained (same procedure as in example 1, step 2). PCR amplification is carried out by taking the constructed plasmids M3-VcCYP90B 27M 3-AtDWF4 and M3-SlCYP90B3 as templates and using primers 2M-tADH1-pTEF1-F and Gal80-50-tCYC1t-R (see tables 5 and 6) (the method is the same as the step 1 of the example 1) to obtain a pTEF1-VcCYP90B27-tCYC1 fragment (sequence 19) which comprises a TEF1 promoter (position 51-481 of the sequence 19), a Vera derived VcCYP90B27 gene (position 482-1937 of the sequence 19) and a CYC1 terminator (position 1938-2245 of the sequence 19), a pTEF1-AtDWF4-tCYC1 fragment (sequence 20) which comprises a TEF 5 promoter (position 51-1 of the sequence 20), an AtDWF 4-ATF 4 gene (position 2025) and an Arabidopsis thaliana derived sequence 2022-2025-position 20224-AMT CYC 465 of the sequence). pTEF1-Sl-CYP90B3-tCYC1 fragment (SEQ ID NO: 21), which comprises a TEF1 promoter (position 51-481 of SEQ ID NO: 21), a Veratrum-derived SlCYP90B3 gene (position 482-1955 of SEQ ID NO: 21) and a CYC1 terminator (position 1956-2263 of SEQ ID NO: 21).
Saccharomyces cerevisiae LP-074 strain competence was prepared (same method as example 1, step 3), pGal80gRNA plasmid and 2. mu.L of each of the two homologous recombination fragments were added, mixed well and transferred to an electric cuvette, shocked at 2.7kv for 5.6ms, added with 1mL of 1M sorbitol, revived at 30 ℃ for 1h, and spread on a screening medium plate (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.01% Leu., 1.5% agar; each percentage indicates g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. The correct positive clones were identified by PCR and named strains LP-085-Vc (the corresponding 2 homologous fragments were pPGK1-SvvCPR-ADH1t fragment and pTEF1-VcCYP90B27-tCYC1 fragment), LP-085-At (the corresponding 2 homologous fragments were pPGK1-SvvCPR-ADH1t fragment and pTEF 1-DWF 4-tCYC1 fragment) and LP-085-Sl (the corresponding 2 homologous fragments were pPGK 1-SvvCPR-1 t fragment and pTEF1-Sl-CYP90B3-tCYC1 fragment).
LP-085-Vc is a recombinant bacterium obtained by replacing Gal80 Gene (Gene ID:854954, updated on 14-Jan-2021) in the genome of LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-VcCYP90B27-tCYC 1(the nucleotide sequence consists of 51-3073 th nucleotides in a sequence 17 and 51-2245 th nucleotides in a sequence 19).
LP085-At is a recombinant bacterium obtained by replacing the Gal80 Gene (Gene ID:854954, updated on 14-Jan-2021) in the genome of LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-AtDWF4-tCYC 1(the nucleotide sequence is composed of 51-3073 th nucleotides of sequence 17 and 51-2332 th nucleotides of sequence 20).
LP-085-Sl is a recombinant bacterium obtained by replacing Gal80 Gene (Gene ID:854954, updated on 14-Jan-2021) in the genome of LP-074 bacterium with pPGK1-SvvCPR-tADH1-pTEF1-SlCYP90B3-tCYC 1(the nucleotide sequence consists of 51-3073 nucleotides in a sequence 17 and 51-2263 nucleotides in a sequence 21).
3. Detection of fermentation products of Saccharomyces cerevisiae LP-085-Vc, LP-085-At and LP-085-Sl
The recombinant strain was tested according to 2 of example 1, and the yield of diosgenin is shown in fig. 3, and it can be seen that the yield of diosgenin of the recombinant strain introduced with VcCYP90B27 is the highest.
Example 3 construction of a high Dioscorea saponin-producing Strain LP-104
Due to the large accumulation of precursor cholesterol, diosgenin production is increased by increasing the diosgenin synthesis module copy number.
Plasmids M2-VcCYP90B27, M3-VcCYP94N and M4-DGCYP90G were constructed (the same procedure as in step 2 of example 1).
PCR amplification was performed using the constructed plasmid M2-VcCYP90B27 as a template and using primers 1M-pEASY-pPGK1-F and 3G-2M-tADH1-pTDH3-R (see tables 5 and 6) (the method is the same as step 1 of example 1) to obtain pPGK1-VcCYP90B27-ADH1t fragment (SEQ ID NO: 22) comprising PGK1 promoter (position 1-750 of SEQ ID NO: 22), Veratrum-derived VcCYP90B27 gene (position 751-236 of SEQ ID NO: 22) and ADH1 terminator (position 2207-2365 of SEQ ID NO: 22).
PCR amplification was performed using the constructed plasmid M3-VcCYP94N as a template and using primers 3G-2M-tTPI1-pTEF1-F and 2M-TCYC1-pEASY-R (see tables 2 and 3) (the method is the same as step 1 of example 1), to obtain a pTEF1-VcCYP94N-tCYC1 fragment (SEQ ID NO: 23) comprising a TEF1 promoter (position 51-481 of SEQ ID NO: 23), a Veratrum album-derived VcCYP94N gene (position 482-2027 of SEQ ID NO: 23) and a CYC1 terminator (position 2028-2335 of SEQ ID NO: 23). PCR amplification was carried out using the constructed plasmid M4-DGCYP90G as a template and using primers 3G-2M-tADH1-pTDH3-F and 3G-2M-pTEF1-tTPI1-R (see Table 5) (the same procedure as in step 1 of example 1) to obtain a pTDH3-DGCYP90G-tCYC1 fragment (SEQ ID NO: 24) comprising the TDH3 promoter (position 51-851 of SEQ ID NO: 24), the dioscorea zingiberensis-derived DGCYP90G gene (position 852-2319 of SEQ ID NO: 24) and the TPI1 terminator (position 2320-2722 of SEQ ID NO: 24). Preparing Saccharomyces cerevisiae LP-085 competence, adding pPGK1-VcCYP90B27-ADH1t fragment, pTDH3-DGCYO90G-tTPI1 fragment, pTEF1-VcCYP94N-tCYC1 fragment, laboratory-existing homologous arm marker fragment rDNA-Leu2-up (sequence 25; the homologous arm fragment comprises 400bp homologous region upstream of rDNA site, Leu2 marker Gene (Gene ID:850342, updated on 14-Jan-2021), PGK promoter 400bp homologous region, rDNA-Leu2-down (sequence 26; the homologous arm fragment comprises ADH1 terminator 200bp homologous region, and rDNA site downstream 300bp homologous region), mixing, transferring into electroporation cuvette, 2.7kv 5.7ms, adding 1mL 1M sorbitol, applying to the cell culture medium with temperature of 30 ℃, inoculating the solid culture medium, and resuscitating, screening and culturing on the medium (Tr-Ura selection Gene), 2% glucose, 1.5% agar; each percentage number represents g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. PCR identified the correct positive clone, designated strain LP-104.
The strain LP-104 is a recombinant bacterium obtained by replacing rDNA (Chinese patent 201210453416.X) in an LP-085-Vc genome with Leu2-pPGK1-VcCYP90B27-tADH1-pTDH3-DGCYP90G-tTPI1-TEF1-VcCYP94N-tCYC 1(the nucleotide sequence consists of 687 th and 1746 th nucleotides of the sequence 25, 1 st to 2365 th nucleotides of the sequence 22, 51 st to 2335 th nucleotides of the sequence 23 and 51 st to 2722 th nucleotides of the sequence 27) to realize that gene segments of the VcCYP90B27, the DGCYP90G and the VcCYP94N are integrated at the rDNA site of the saccharomyces cerevisiae LP-085.
Example 4 overexpression of DGCYP90G using a high copy number plasmid to obtain strain LP-BC
By utilizing the efficient homologous recombination capability of saccharomyces cerevisiae, a high-copy plasmid pRS426-URA3-pTEF1-DGCYP90G-tCYC1 is constructed
1. Obtaining homologous recombination fragments
First, using pRS425 plasmid as a template, PCR amplification was performed using primers 425-F and 425-50-tCYC1-R (see Table 7) (method identity 1) to obtain fragment 425 (SEQ ID NO: 27), which was then recovered and processed for further use.
PCR amplification was performed using Saccharomyces cerevisiae BY4742 genome as template and primers 425-50-URA3-R and pTEF1-50-URA3-F (see Table 7) (1 of the same protocol) to obtain fragment 425-50-URA3-pTEF1-50 (SEQ ID NO: 28), and gel was recovered and processed for further use.
M3-DGCYP90G plasmid is used as a template, primers pTEF1-up-F and tCYC1-down-R (shown in Table 7) are used for PCR amplification (1 of the same method), a fragment pTEF1-DGCYP90G-tCYC1 (sequence 29) is obtained, and the gel is recovered for standby.
2. In vivo homologous recombination of Saccharomyces cerevisiae
Saccharomyces cerevisiae LP-104 strain competence was prepared (same method as example 1, step 3), 2. mu.L of each of the three fragments was added, mixed well, transferred to an electric cuvette, shocked at 2.7kv for 5.6ms, added with 1mL of 1M sorbitol, revived at 30 ℃ for 1h, and spread on a screening medium plate (formulation: 0.8% yeast selection medium SD-Ura-His-Leu-Trp, 2% glucose, 0.01% Leu., 1.5% agar; each percentage number indicates g/100 mL). The conditions of the screening culture are as follows: culturing at 30 deg.C for 36 hr or more. 5 single clones were randomly selected and verified to be 3274bp in correct size with primers 425-50-URA3-R and tCYC 1-down-R. Was named LP-BC.
The recombinant strain LP-BC is obtained by introducing high-copy plasmid pRS426-URA3-pTEF1-DGCYP90G-tCYC1 into Saccharomyces cerevisiae LP-104.
TABLE 7 primers for high copy plasmid construction
3. Detection of fermentation products of Saccharomyces cerevisiae LP-034, LP-074, LP-085-Vc, LP-104, LP-BC (genotypes are shown in Table 8)
The method is the same as step 2 of example 1, and the yield of diosgenin is shown in FIG. 4.
The data show that the yield of the diosgenin of the strain LP-074 is extremely low, and the yield of the diosgenin of the strain LP-085 expressing the VcCYP90B27 derived from the chenopodium quinoa is obviously improved on the basis of the strain LP-074. Further integrating a diosgenin synthesis module at rDNA multicopy sites, screening a LP-104 strain capable of producing 24.6mg/L diosgenin, further integrating high-copy plasmids, and over-expressing DGCYP90G to increase the yield of diosgenin to 32.3 mg/L.
4. Fed-batch fermentation
Specific methods and procedures reference the references [ Paddon C J, Westfall P J, Pitera D J, et al, high-Level Semi-Synthetic Production of the post anti metabolic ingredient [ J ] Nature,2013,496(7446), 528-32 ], or Westfall P J, Pitera D J, Lenihan J R, et al, Production of Amorphodiene in Yeast, and Its Conversion to hydrolytic ingredient, Precursor the anti enzymatic ingredient [ J ]. Proc Natl Acad Sci USA,2012,109(3): E111-8 ], for the final tank of 5 liter fermentation of LP-BC strain diosgenin yield 1.3g/L, final OD600 (final 401: OD 401).
The discovery result shows that the VcCYP90B27 from the chenopodium quinoa has a great help effect on the heterologous production of diosgenin by saccharomyces cerevisiae. In addition, the yield of diosgenin of the LP-BC strain is the highest reported yield, and a solid foundation is laid for biosynthesis of steroid hormones in a one-step method.
Table 8 shows the genotypes of the strains according to the invention
SEQUENCE LISTING
<110> institute of biotechnology for Tianjin industry of Chinese academy of sciences
Construction and application of <120> dioscin synthetic strain
<160> 29
<170> PatentIn version 3.5
<210> 1
<211> 2592
<212> DNA
<213> Artificial sequence
<400> 1
gccaggtgac cacgttggtc aagaaatcac agccgaagcc attaaggttc acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggctgcag accaattggt gaaaactgaa gtcaccaaga 840
agtcttttac tgctcctgta caaaaggctt ctacaccagt tttaaccaat aaaacagtca 900
tttctggatc gaaagtcaaa agtttatcat ctgcgcaatc gagctcatca ggaccttcat 960
catctagtga ggaagatgat tcccgcgata ttgaaagctt ggataagaaa atacgtcctt 1020
tagaagaatt agaagcatta ttaagtagtg gaaatacaaa acaattgaag aacaaagagg 1080
tcgctgcctt ggttattcac ggtaagttac ctttgtacgc tttggagaaa aaattaggtg 1140
atactacgag agcggttgcg gtacgtagga aggctctttc aattttggca gaagctcctg 1200
tattagcatc tgatcgttta ccatataaaa attatgacta cgaccgcgta tttggcgctt 1260
gttgtgaaaa tgttataggt tacatgcctt tgcccgttgg tgttataggc cccttggtta 1320
tcgatggtac atcttatcat ataccaatgg caactacaga gggttgtttg gtagcttctg 1380
ccatgcgtgg ctgtaaggca atcaatgctg gcggtggtgc aacaactgtt ttaactaagg 1440
atggtatgac aagaggccca gtagtccgtt tcccaacttt gaaaagatct ggtgcctgta 1500
agatatggtt agactcagaa gagggacaaa acgcaattaa aaaagctttt aactctacat 1560
caagatttgc acgtctgcaa catattcaaa cttgtctagc aggagattta ctcttcatga 1620
gatttagaac aactactggt gacgcaatgg gtatgaatat gatttctaaa ggtgtcgaat 1680
actcattaaa gcaaatggta gaagagtatg gctgggaaga tatggaggtt gtctccgttt 1740
ctggtaacta ctgtaccgac aaaaaaccag ctgccatcaa ctggatcgaa ggtcgtggta 1800
agagtgtcgt cgcagaagct actattcctg gtgatgttgt cagaaaagtg ttaaaaagtg 1860
atgtttccgc attggttgag ttgaacattg ctaagaattt ggttggatct gcaatggctg 1920
ggtctgttgg tggatttaac gcacatgcag ctaatttagt gacagctgtt ttcttggcat 1980
taggacaaga tcctgcacaa aatgttgaaa gttccaactg tataacattg atgaaagaag 2040
tggacggtga tttgagaatt tccgtatcca tgccatccat cgaagtaggt accatcggtg 2100
gtggtactgt tctagaacca caaggtgcca tgttggactt attaggtgta agaggcccgc 2160
atgctaccgc tcctggtacc aacgcacgtc aattagcaag aatagttgcc tgtgccgtct 2220
tggcaggtga attatcctta tgtgctgccc tagcagccgg ccatttggtt caaagtcata 2280
tgacccacaa caggaaacct gctgaaccaa caaaacctaa caatttggac gccactgata 2340
taaatcgttt gaaagatggg tccgtcacct gcattaaatc ctaaagttat aaaaaaaata 2400
agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt attcttgagt 2460
aactctttcc tgtaggtcag gttgctttct caggtatagc atgaggtcgc tcttattgac 2520
cacacctcta ccggcatgcc gacatgcgac tgggtgagca tatgttccgc tgatgtgatg 2580
tgcaagataa ac 2592
<210> 2
<211> 2632
<212> DNA
<213> Artificial sequence
<400> 2
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga catgcgactg 60
ggtgagcata tgttccgctg atgtgatgtg caagataaac aagcaaggca gaaactaact 120
tcttcttcat gtaataaaca caccccgcgt ttatttacct atctctaaac ttcaacacct 180
tatatcataa ctaatatttc ttgagataag cacactgcac ccataccttc cttaaaaacg 240
tagcttccag tttttggtgg ttccggcttc cttcccgatt ccgcccgcta aacgcatatt 300
tttgttgcct ggtggcattt gcaaaatgca taacctatgc atttaaaaga ttatgtatgc 360
tcttctgact tttcgtgtga tgaggctcgt ggaaaaaatg aataatttat gaatttgaga 420
acaattttgt gttgttacgg tattttacta tggaataatc aatcaattga ggattttatg 480
caaatatcgt ttgaatattt ttccgaccct ttgagtactt ttcttcataa ttgcataata 540
ttgtccgctg cccctttttc tgttagacgg tgtcttgatc tacttgctat cgttcaacac 600
caccttattt tctaactatt ttttttttag ctcatttgaa tcagcttatg gtgatggcac 660
atttttgcat aaacctagct gtcctcgttg aacataggaa aaaaaaatat ataaacaagg 720
ctctttcact ctccttgcaa tcagatttgg gtttgttccc tttattttca tatttcttgt 780
catattcctt tctcaattat tattttctac tcataacctc acgcaaaata acacagtcaa 840
atcaatcaaa atgtcattac cgttcttaac ttctgcaccg ggaaaggtta ttatttttgg 900
tgaacactct gctgtgtaca acaagcctgc cgtcgctgct agtgtgtctg cgttgagaac 960
ctacctgcta ataagcgagt catctgcacc agatactatt gaattggact tcccggacat 1020
tagctttaat cataagtggt ccatcaatga tttcaatgcc atcaccgagg atcaagtaaa 1080
ctcccaaaaa ttggccaagg ctcaacaagc caccgatggc ttgtctcagg aactcgttag 1140
tcttttggat ccgttgttag ctcaactatc cgaatccttc cactaccatg cagcgttttg 1200
tttcctgtat atgtttgttt gcctatgccc ccatgccaag aatattaagt tttctttaaa 1260
gtctacttta cccatcggtg ctgggttggg ctcaagcgcc tctatttctg tatcactggc 1320
cttagctatg gcctacttgg gggggttaat aggatctaat gacttggaaa agctgtcaga 1380
aaacgataag catatagtga atcaatgggc cttcataggt gaaaagtgta ttcacggtac 1440
cccttcagga atagataacg ctgtggccac ttatggtaat gccctgctat ttgaaaaaga 1500
ctcacataat ggaacaataa acacaaacaa ttttaagttc ttagatgatt tcccagccat 1560
tccaatgatc ctaacctata ctagaattcc aaggtctaca aaagatcttg ttgctcgcgt 1620
tcgtgtgttg gtcaccgaga aatttcctga agttatgaag ccaattctag atgccatggg 1680
tgaatgtgcc ctacaaggct tagagatcat gactaagtta agtaaatgta aaggcaccga 1740
tgacgaggct gtagaaacta ataatgaact gtatgaacaa ctattggaat tgataagaat 1800
aaatcatgga ctgcttgtct caatcggtgt ttctcatcct ggattagaac ttattaaaaa 1860
tctgagcgat gatttgagaa ttggctccac aaaacttacc ggtgctggtg gcggcggttg 1920
ctctttgact ttgttacgaa gagacattac tcaagagcaa attgacagct tcaaaaagaa 1980
attgcaagat gattttagtt acgagacatt tgaaacagac ttgggtggga ctggctgctg 2040
tttgttaagc gcaaaaaatt tgaataaaga tcttaaaatc aaatccctag tattccaatt 2100
atttgaaaat aaaactacca caaagcaaca aattgacgat ctattattgc caggaaacac 2160
gaatttacca tggacttcat aagcggatct cttatgtctt tacgatttat agttttcatt 2220
atcaagtatg cctatattag tatatagcat ctttagatga cagtgttcga agtttcacga 2280
ataaaagata atattctact ttttgctccc accgcgtttg ctagcacgag tgaacaccat 2340
ccctcgcctg tgagttgtac ccattcctct aaactgtaga catggtagct tcagcagtgt 2400
tcgttatgta cggcatcctc caacaaacag tcggttatag tttgtcctgc tcctctgaat 2460
cgtctccctc gatatttctc attttccttc gcatgccagc attgaaatga tcgaagttca 2520
atgatgaaac ggtaattctt ctgtcattta ctcatctcat ctcatcaagt tatataattc 2580
taaatcctac tcttgccgtt gccatccaaa atgagctaga aggtggatta ac 2632
<210> 3
<211> 2367
<212> DNA
<213> Artificial sequence
<400> 3
taattcttct gtcatttact catctcatct catcaagtta tataattcta aatcctactc 60
ttgccgttgc catccaaaat gagctagaag gtggattaac aaatataatg acaaatcgtt 120
gcttgtctga cttgattcca ctacagttac aaatatttga cattgtatat aagttttgca 180
agttcatcaa atctatgaga gcaaaattat gtcaactgga ccccgtacta tatgagaaac 240
acaaaagcgg gatgatgaaa acactaaacg aaggctatcg tacaaacaat ggcggtcagg 300
aagatgttgg ttaccaagaa gatgccgccc tggaattaat tcagaagctg attgaataca 360
ttagcaacgc gtccagcatt tttcggaagt gtctcataaa ctttactcaa gagttaagta 420
ctgaaaaatt cgacttttat gatagttcaa gtgtcgacgc tgcgggtata gaaagggttc 480
tttactctat agtacctcct cgctcagcat ctgcttcttc ccaaagatga acgcggcgtt 540
atgtcactaa cgacgtgcac caacttgcgg aaagtggaat cccgttccaa aactggcatc 600
cactaattga tacatctaca caccgcacgc cttttttctg aagcccactt tcgtggactt 660
tgccatatgc aaaattcatg aagtgtgata ccaagtcagc atacacctca ctagggtagt 720
ttctttggtt gtattgatca tttggttcat cgtggttcat taattttttt tctccattgc 780
tttctggctt tgatcttact atcatttgga tttttgtcga aggttgtaga attgtatgtg 840
acaagtggca ccaagcatat ataaaaaaaa aaagcattat cttcctacca gagttgattg 900
ttaaaaacgt atttatagca aacgcaattg taattaattc ttattttgta tcttttcttc 960
ccttgtctca atcttttatt tttattttat ttttcttttc ttagtttctt tcataacacc 1020
aagcaactaa tactataaca tacaataata atgactgccg acaacaatag tatgccccat 1080
ggtgcagtat ctagttacgc caaattagtg caaaaccaaa cacctgaaga cattttggaa 1140
gagtttcctg aaattattcc attacaacaa agacctaata cccgatctag tgagacgtca 1200
aatgacgaaa gcggagaaac atgtttttct ggtcatgatg aggagcaaat taagttaatg 1260
aatgaaaatt gtattgtttt ggattgggac gataatgcta ttggtgccgg taccaagaaa 1320
gtttgtcatt taatggaaaa tattgaaaag ggtttactac atcgtgcatt ctccgtcttt 1380
attttcaatg aacaaggtga attactttta caacaaagag ccactgaaaa aataactttc 1440
cctgatcttt ggactaacac atgctgctct catccactat gtattgatga cgaattaggt 1500
ttgaagggta agctagacga taagattaag ggcgctatta ctgcggcggt gagaaaacta 1560
gatcatgaat taggtattcc agaagatgaa actaagacaa ggggtaagtt tcacttttta 1620
aacagaatcc attacatggc accaagcaat gaaccatggg gtgaacatga aattgattac 1680
atcctatttt ataagatcaa cgctaaagaa aacttgactg tcaacccaaa cgtcaatgaa 1740
gttagagact tcaaatgggt ttcaccaaat gatttgaaaa ctatgtttgc tgacccaagt 1800
tacaagttta cgccttggtt taagattatt tgcgagaatt acttattcaa ctggtgggag 1860
caattagatg acctttctga agtggaaaat gacaggcaaa ttcatagaat gctataagcg 1920
atttaatctc taattattag ttaaagtttt ataagcattt ttatgtaacg aaaaataaat 1980
tggttcatat tattactgca ctgtcactta ccatggaaag accagacaag aagttgccga 2040
cagtctgttg aattggcctg gttaggctta agtctgggtc cgcttcttta caaatttgga 2100
gaatttctct taaacgatat gtatattctt ttcgttggaa aagatgtctt ccaaaaaaaa 2160
aaccgatgaa ttagtggaac caaggaaaaa aaaagaggta tccttgatta aggaacactg 2220
tttaaacagt gtggtttcca aaaccctgaa actgcattag tgtaatagaa gactagacac 2280
ctcgatacaa ataatggtta ctcaattcaa aactgccaat gctactattt tggagattaa 2340
tctcagtaca aaacaatatt aaaaaga 2367
<210> 4
<211> 2691
<212> DNA
<213> Artificial sequence
<400> 4
gaagactaga cacctcgata caaataatgg ttactcaatt caaaactgcc aatgctacta 60
ttttggagat taatctcagt acaaaacaat attaaaaaga ggtgaattat ttttcccccc 120
ttattttttt tttgttaaaa ttgatccaaa tgtaaataaa caatcacaag gaaaaaaaaa 180
aaaaaaaaaa aaatagccgc catgaccccg gatcgtcggt tgtgatacgg tcagggtagc 240
gccctggtca aacttcagaa ctaaaaaaat aataaggaag aaaaaaatag ctaatttttc 300
cggcagaaag attttcgcta cccgaaagtt tttccggcaa gctaaatgga aaaaggaaag 360
attattgaaa gagaaagaaa gaaaaaaaaa aaatgtacac ccagacatcg ggcttccaca 420
atttcggctc tattgttttc catctctcgc aacggcggga ttcctctatg gcgtgtgatg 480
tctgtatctg ttacttaatc cagaaactgg cacttgaccc aactctgcca cgtgggtcgt 540
tttgccatcg acagattggg agattttcat agtagaattc agcatgatag ctacgtaaat 600
gtgttccgca ccgtcacaaa gtgttttcta ctgttctttc ttctttcgtt cattcagttg 660
agttgagtga gtgctttgtt caatggatct tagctaaaat gcatattttt tctcttggta 720
aatgaatgct tgtgatgtct tccaagtgat ttcctttcct tcccatatga tgctaggtac 780
ctttagtgtc ttcctaaaaa aaaaaaaagg ctcgccatca aaacgatatt cgttggcttt 840
tttttctgaa ttataaatac tctttggtaa cttttcattt ccaagaacct cttttttcca 900
gttatatcat ggtccccttt caaagttatt ctctactctt tttcatattc attctttttc 960
atcctttggt tttttattct taacttgttt attattctct cttgtttcta tttacaagac 1020
accaatcaaa acaaataaaa catcatcaca atgaccgttt acacagcatc cgttaccgca 1080
cccgtcaaca tcgcaaccct taagtattgg gggaaaaggg acacgaagtt gaatctgccc 1140
accaattcgt ccatatcagt gactttatcg caagatgacc tcagaacgtt gacctctgcg 1200
gctactgcac ctgagtttga acgcgacact ttgtggttaa atggagaacc acacagcatc 1260
gacaatgaaa gaactcaaaa ttgtctgcgc gacctacgcc aattaagaaa ggaaatggaa 1320
tcgaaggacg cctcattgcc cacattatct caatggaaac tccacattgt ctccgaaaat 1380
aactttccta cagcagctgg tttagcttcc tccgctgctg gctttgctgc attggtctct 1440
gcaattgcta agttatacca attaccacag tcaacttcag aaatatctag aatagcaaga 1500
aaggggtctg gttcagcttg tagatcgttg tttggcggat acgtggcctg ggaaatggga 1560
aaagctgaag atggtcatga ttccatggca gtacaaatcg cagacagctc tgactggcct 1620
cagatgaaag cttgtgtcct agttgtcagc gatattaaaa aggatgtgag ttccactcag 1680
ggtatgcaat tgaccgtggc aacctccgaa ctatttaaag aaagaattga acatgtcgta 1740
ccaaagagat ttgaagtcat gcgtaaagcc attgttgaaa aagatttcgc cacctttgca 1800
aaggaaacaa tgatggattc caactctttc catgccacat gtttggactc tttccctcca 1860
atattctaca tgaatgacac ttccaagcgt atcatcagtt ggtgccacac cattaatcag 1920
ttttacggag aaacaatcgt tgcatacacg tttgatgcag gtccaaatgc tgtgttgtac 1980
tacttagctg aaaatgagtc gaaactcttt gcatttatct ataaattgtt tggctctgtt 2040
cctggatggg acaagaaatt tactactgag cagcttgagg ctttcaacca tcaatttgaa 2100
tcatctaact ttactgcacg tgaattggat cttgagttgc aaaaggatgt tgccagagtg 2160
attttaactc aagtcggttc aggcccacaa gaaacaaacg aatctttgat tgacgcaaag 2220
actggtctac caaaggaata aacaaatcgc tcttaaatat atacctaaag aacattaaag 2280
ctatattata agcaaagata cgtaaatttt gcttatatta ttatacacat atcatatttc 2340
tatattttta agatttggtt atataatgta cgtaatgcaa aggaaataaa ttttatacat 2400
tattgaacag cgtccaagta actacattat gtgcactaat agtttagcgt cgtgaagact 2460
ttattgtgtc gcgaaaagta aaaattttaa aaattagagc accttgaact tgcgaaaaag 2520
gttctcatca actgtttaaa aggaggatat caggtcctat ttctgacaaa caatatacaa 2580
atttagtttc aaagatgaat cagtgcgcga aggacataac tcatgaagcc tccagtatac 2640
catggggccg tatacttaca tatagtagat gtcaagcgta ggcgcttccc c 2691
<210> 5
<211> 2364
<212> DNA
<213> Artificial sequence
<400> 5
aagatgaatc agtgcgcgaa ggacataact catgaagcct ccagtatacc atggggccgt 60
atacttacat atagtagatg tcaagcgtag gcgcttcccc tgccggctgt gagggcgcca 120
taaccaaggt atctatagac cgccaatcag caaactacct ccgtacattc atgttgcacc 180
cacacattta tacacccaga ccgcgacaaa ttacccataa ggttgtttgt gacggcgtcg 240
tacaagagaa cgtgggaact ttttaggctc accaaaaaag aaagaaaaaa tacgagttgc 300
tgacagaagc ctcaagaaaa aaaaaattct tcttcgacta tgctggaggc agagatgatc 360
gagccggtag ttaactatat atagctaaat tggttccatc accttctttt ctggtgtcgc 420
tccttctagt gctatttctg gcttttccta tttttttttt tccatttttc tttctctctt 480
tctaatatat aaattctctt gcattttcta tttttctctc tatctattct acttgtttat 540
tcccttcaag gttttttttt aaggagtact tgtttttaga atatacggtc aacgaactat 600
aattaactaa acatgacagg caagacgggt cacatcgatg gtttgaactc gcgcattgaa 660
aagatgcgag atctcgaccc cgcacaacgg ctggtgcgcg ttgccgaggc ggcgggcctc 720
gagcccgagg cgatcagcgc gctggcgggt aacggcgccc tgcccctctc gctggccaac 780
gggatgatcg agaacgtcat cggcaaattc gaactgccgc tgggcgtggc cacgaatttc 840
actgtgaacg gccgcgacta tctgatcccg atggcggtcg aagagccctc ggtggtggcg 900
gccgcgtcct atatggcgcg tatcgcgcgc gagaatggcg gattcaccgc gcatggcacc 960
gcgcccttga tgcgcgccca gatccaggtg gtcgggttgg gtgatcccga gggcgcccgg 1020
cagcgtctcc tcgcccacaa ggccgcgttc atggaggcgg cggacgctgt cgatccggtg 1080
cttgtcgggc tgggtggcgg ctgccgcgat atcgaggttc acgtgttccg ggatacgccg 1140
gtgggcgcga tggtcgtcct gcacctgatc gtcgatgtgc gcgacgcgat gggggccaat 1200
acggtcaaca cgatggccga acggctggcc cccgaggtcg agcggattgc cggtggcacc 1260
gtgcggctgc gcatcctgtc gaacctcgcc gacctgcgat tggtccgggc gcgggtggaa 1320
ctggccccgg aaacactgac aacgcagggc tatgacggcg ccgacgtggc gcggggcatg 1380
gtcgaggcct gcgcgcttgc catcgtcgac ccctatcgcg cggcgaccca taacaagggg 1440
atcatgaacg gcatcgaccc ggtcgtcgtc gccaccggca atgactggcg cgcgatcgag 1500
gcgggtgccc atgcctatgc cgcccgcacg ggtcattata cctcgctgac ccgctgggaa 1560
ctggcgaatg acgggcggct tgtgggcacg atcgaactgc ccctggcgct tggccttgtc 1620
ggcggcgcga ccaagacgca cccgaccgca cgggcggcgc tggccctgat gcaggtagag 1680
actgcaaccg aactggccca ggtcaccgcc gccgtgggtc tggcgcagaa catggccgcc 1740
atccgcgcgc tggcgaccga aggcatccag cgcggtcaca tgacccttca tgcgcgcaac 1800
atcgcgatca tggccggcgc aacaggcgcc gatatcgacc gcgtcacccg ggtcattgtc 1860
gaagcgggcg acgtcagcgt ggcccgtgca aaacaggtgc tggaaaacac ctgaagtgct 1920
tttaactaag aattattagt cttttctgct tattttttca tcatagttta gaacacttta 1980
tattaacgaa tagtttatga atctatttag gtttaaaaat tgatacagtt ttataagtta 2040
ctttttcaaa gactcgtgct gtctattgca taatgcactg gaaggggaaa aaaaaggtgc 2100
acacgcgtgg ctttttcttg aatttgcagt ttgaaaaata actacatgga tgataagaaa 2160
acatggagta cagtcacttt gagaaccttc aatcagctgg taacgtcttc gttaattgga 2220
tactcaaaaa agatggatag catgaatcac aagatggaag gaaatgcggg ccacgaccac 2280
agtgatatgc atatgggaga tggagatgat acctgatcca actggcaccg ctggcttgaa 2340
caacaatacc agccttccaa cttc 2364
<210> 6
<211> 2799
<212> DNA
<213> Artificial sequence
<400> 6
tgcgggccac gaccacagtg atatgcatat gggagatgga gatgatacct gatccaactg 60
gcaccgctgg cttgaacaac aataccagcc ttccaacttc tgtaaataac ggcggtacgc 120
cagtgccacc agtaccgtta cctttcggta tacctccttt ccccatgttt ccaatgccct 180
tcatgcctcc aacggctact atcacaaatc ctcatcaagc tgacgcaagc cctaagaaat 240
gaataacaat actgacagta ctaaataatt gcctacttgg cttcacatac gttgcatacg 300
tcgatataga taataatgat aatgacagca ggattatcgt aatacgtaat agttgaaaat 360
ctcaaaaatg tgtgggtcat tacgtaaata atgataggaa tgggattctt ctatttttcc 420
tttttccatt ctagcagccg tcgggaaaac gtggcatcct ctctttcggg ctcaattgga 480
gtcacgctgc cgtgagcatc ctctctttcc atatctaaca actgagcacg taaccaatgg 540
aaaagcatga gcttagcgtt gctccaaaaa agtattggat ggttaatacc atttgtctgt 600
tctcttctga ctttgactcc tcaaaaaaaa aaaatctaca atcaacagat cgcttcaatt 660
acgccctcac aaaaactttt ttccttcttc ttcgcccacg ttaaatttta tccctcatgt 720
tgtctaacgg atttctgcac ttgatttatt ataaaaagac aaagacataa tacttctcta 780
tcaatttcag ttattgttct tccttgcgtt attcttctgt tcttcttttt cttttgtcat 840
atataaccat aaccaagtaa tacatattca aaatgaaact ctcaactaaa ctttgttggt 900
gtggtattaa aggaagactt aggccgcaaa agcaacaaca attacacaat acaaacttgc 960
aaatgactga actaaaaaaa caaaagaccg ctgaacaaaa aaccagacct caaaatgtcg 1020
gtattaaagg tatccaaatt tacatcccaa ctcaatgtgt caaccaatct gagctagaga 1080
aatttgatgg cgtttctcaa ggtaaataca caattggtct gggccaaacc aacatgtctt 1140
ttgtcaatga cagagaagat atctactcga tgtccctaac tgttttgtct aagttgatca 1200
agagttacaa catcgacacc aacaaaattg gtagattaga agtcggtact gaaactctga 1260
ttgacaagtc caagtctgtc aagtctgtct tgatgcaatt gtttggtgaa aacactgacg 1320
tcgaaggtat tgacacgctt aatgcctgtt acggtggtac caacgcgttg ttcaactctt 1380
tgaactggat tgaatctaac gcatgggatg gtagagacgc cattgtagtt tgcggtgata 1440
ttgccatcta cgataagggt gccgcaagac caaccggtgg tgccggtact gttgctatgt 1500
ggatcggtcc tgatgctcca attgtatttg actctgtaag agcttcttac atggaacacg 1560
cctacgattt ttacaagcca gatttcacca gcgaatatcc ttacgtcgat ggtcattttt 1620
cattaacttg ttacgtcaag gctcttgatc aagtttacaa gagttattcc aagaaggcta 1680
tttctaaagg gttggttagc gatcccgctg gttcggatgc tttgaacgtt ttgaaatatt 1740
tcgactacaa cgttttccat gttccaacct gtaaattggt cacaaaatca tacggtagat 1800
tactatataa cgatttcaga gccaatcctc aattgttccc agaagttgac gccgaattag 1860
ctactcgcga ttatgacgaa tctttaaccg ataagaacat tgaaaaaact tttgttaatg 1920
ttgctaagcc attccacaaa gagagagttg cccaatcttt gattgttcca acaaacacag 1980
gtaacatgta caccgcatct gtttatgccg cctttgcatc tctattaaac tatgttggat 2040
ctgacgactt acaaggcaag cgtgttggtt tattttctta cggttccggt ttagctgcat 2100
ctctatattc ttgcaaaatt gttggtgacg tccaacatat tatcaaggaa ttagatatta 2160
ctaacaaatt agccaagaga atcaccgaaa ctccaaagga ttacgaagct gccatcgaat 2220
tgagagaaaa tgcccatttg aagaagaact tcaaacctca aggttccatt gagcatttgc 2280
aaagtggtgt ttactacttg accaacatcg atgacaaatt tagaagatct tacgatgtta 2340
aaaaataaat ttaactcctt aagttacttt aatgatttag tttttattat taataattca 2400
tgctcatgac atctcatata cacgtttata aaacttaaat agattgaaaa tgtattaaag 2460
attcctcagg gattcgattt ttttggaagt ttttgttttt ttttccttga gatgctgtag 2520
tatttgggaa caattataca atcgaaagat atatgcttac attcgaccgt tttagccgtg 2580
atcattatcc tatagtaaca taacctgaag cataactgac actactatca tcaatacttg 2640
tcacatgaga actctgtgaa taattaggcc actgaaattt gatgcctgaa ggaccggcat 2700
cacggatttt cgataaagca cttagtatca cactaattgg cttttcgcca tactagcgtt 2760
gaatgttagc gtcaacaaca agaagtttaa tgacgcgga 2799
<210> 7
<211> 2658
<212> DNA
<213> Artificial sequence
<400> 7
tcacggattt tcgataaagc acttagtatc acactaattg gcttttcgcc atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgtcagagt tgagagcctt cagtgcccca gggaaagcgt tactagctgg 900
tggatattta gttttagata caaaatatga agcatttgta gtcggattat cggcaagaat 960
gcatgctgta gcccatcctt acggttcatt gcaagggtct gataagtttg aagtgcgtgt 1020
gaaaagtaaa caatttaaag atggggagtg gctgtaccat ataagtccta aaagtggctt 1080
cattcctgtt tcgataggcg gatctaagaa ccctttcatt gaaaaagtta tcgctaacgt 1140
atttagctac tttaaaccta acatggacga ctactgcaat agaaacttgt tcgttattga 1200
tattttctct gatgatgcct accattctca ggaggatagc gttaccgaac atcgtggcaa 1260
cagaagattg agttttcatt cgcacagaat tgaagaagtt cccaaaacag ggctgggctc 1320
ctcggcaggt ttagtcacag ttttaactac agctttggcc tccttttttg tatcggacct 1380
ggaaaataat gtagacaaat atagagaagt tattcataat ttagcacaag ttgctcattg 1440
tcaagctcag ggtaaaattg gaagcgggtt tgatgtagcg gcggcagcat atggatctat 1500
cagatataga agattcccac ccgcattaat ctctaatttg ccagatattg gaagtgctac 1560
ttacggcagt aaactggcgc atttggttga tgaagaagac tggaatatta cgattaaaag 1620
taaccattta ccttcgggat taactttatg gatgggcgat attaagaatg gttcagaaac 1680
agtaaaactg gtccagaagg taaaaaattg gtatgattcg catatgccag aaagcttgaa 1740
aatatataca gaactcgatc atgcaaattc tagatttatg gatggactat ctaaactaga 1800
tcgcttacac gagactcatg acgattacag cgatcagata tttgagtctc ttgagaggaa 1860
tgactgtacc tgtcaaaagt atcctgaaat cacagaagtt agagatgcag ttgccacaat 1920
tagacgttcc tttagaaaaa taactaaaga atctggtgcc gatatcgaac ctcccgtaca 1980
aactagctta ttggatgatt gccagacctt aaaaggagtt cttacttgct taatacctgg 2040
tgctggtggt tatgacgcca ttgcagtgat tactaagcaa gatgttgatc ttagggctca 2100
aaccgctaat gacaaaagat tttctaaggt tcaatggctg gatgtaactc aggctgactg 2160
gggtgttagg aaagaaaaag atccggaaac ttatcttgat aaataagatt aatataatta 2220
tataaaaata ttatcttctt ttctttatat ctagtgttat gtaaaataaa ttgatgacta 2280
cggaaagctt ttttatattg tttctttttc attctgagcc acttaaattt cgtgaatgtt 2340
cttgtaaggg acggtagatt tacaagtgat acaacaaaaa gcaaggcgct ttttctaata 2400
aaaagaagaa aagcatttaa caattgaaca cctctatatc aacgaagaat attactttgt 2460
ctctaaatcc ttgtaaaatg tgtacgatct ctatatgggt tactcataag tgtaccgaag 2520
actgcattga aagtttatgt tttttcactg gaggcgtcat tttcgcgttg agaagatgtt 2580
cttatccaaa tttcaactgt tatatagaag tgatccccca cacaccatag cttcaaaatg 2640
tttctactcc ttttttac 2658
<210> 8
<211> 2034
<212> DNA
<213> Artificial sequence
<400> 8
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtctcaga acgtttacat tgtatcgact gccagaaccc caattggttc attccagggt 540
tctctatcct ccaagacagc agtggaattg ggtgctgttg ctttaaaagg cgccttggct 600
aaggttccag aattggatgc atccaaggat tttgacgaaa ttatttttgg taacgttctt 660
tctgccaatt tgggccaagc tccggccaga caagttgctt tggctgccgg tttgagtaat 720
catatcgttg caagcacagt taacaaggtc tgtgcatccg ctatgaaggc aatcattttg 780
ggtgctcaat ccatcaaatg tggtaatgct gatgttgtcg tagctggtgg ttgtgaatct 840
atgactaacg caccatacta catgccagca gcccgtgcgg gtgccaaatt tggccaaact 900
gttcttgttg atggtgtcga aagagatggg ttgaacgatg cgtacgatgg tctagccatg 960
ggtgtacacg cagaaaagtg tgcccgtgat tgggatatta ctagagaaca acaagacaat 1020
tttgccatcg aatcctacca aaaatctcaa aaatctcaaa aggaaggtaa attcgacaat 1080
gaaattgtac ctgttaccat taagggattt agaggtaagc ctgatactca agtcacgaag 1140
gacgaggaac ctgctagatt acacgttgaa aaattgagat ctgcaaggac tgttttccaa 1200
aaagaaaacg gtactgttac tgccgctaac gcttctccaa tcaacgatgg tgctgcagcc 1260
gtcatcttgg tttccgaaaa agttttgaag gaaaagaatt tgaagccttt ggctattatc 1320
aaaggttggg gtgaggccgc tcatcaacca gctgatttta catgggctcc atctcttgca 1380
gttccaaagg ctttgaaaca tgctggcatc gaagacatca attctgttga ttactttgaa 1440
ttcaatgaag ccttttcggt tgtcggtttg gtgaacacta agattttgaa gctagaccca 1500
tctaaggtta atgtatatgg tggtgctgtt gctctaggtc acccattggg ttgttctggt 1560
gctagagtgg ttgttacact gctatccatc ttacagcaag aaggaggtaa gatcggtgtt 1620
gccgccattt gtaatggtgg tggtggtgct tcctctattg tcattgaaaa gatatgaccg 1680
ctgatcctag agggccgcat catgtaatta gttatgtcac gcttacattc acgccctccc 1740
cccacatccg ctctaaccga aaaggaagga gttagacaac ctgaagtcta ggtccctatt 1800
tattttttta tagttatgtt agtattaaga acgttattta tatttcaaat ttttcttttt 1860
tttctgtaca gacgcgtgta cgcatgtaac attatactga aaaccttgct tgagaaggtt 1920
ttgggacgct cgaaggcttt aatttgcaag ctgcggccct gcattaatga atcggccaac 1980
gcgcggatgc aggtatcaga actggtgatt taggtggttc caacagtacc accg 2034
<210> 9
<211> 2241
<212> DNA
<213> Artificial sequence
<400> 9
tactaacctt tcattaaaga gaaataacaa tattataaaa agcgcttaaa acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggggagct tggggacgat gctgagatat ccggatgaca 840
tatatccgct cctgaagatg aaacgagcga ttgagaaagc ggagaagcag atccctcctg 900
agccacactg gggtttctgc tattcgatgc tccacaaggt ttctcgaagc ttttctctcg 960
ttattcagca actcaacacc gagctccgta acgccgtgtg tgtgttctac ttggttctcc 1020
gagctcttga tactgttgag gatgatacta gcataccaac tgatgaaaag gttcccatcc 1080
tgatagcttt tcaccggcac atatacgata ctgattggca ttattcatgt ggtacgaagg 1140
agtacaagat tctaatggac caatttcacc atgtttctgc agcttttttg gaacttgaaa 1200
aagggtatca agaggctatc gaggaaatta ctagaagaat gggtgcaggg atggccaagt 1260
ttatctgcca agaggtagaa actgttgatg actacgatga atactgccac tatgttgctg 1320
ggcttgttgg tttaggtttg tcgaaactct tcctcgctgc aggatcagag gttttgacac 1380
cagattggga ggcgatttcc aattcaatgg gtttatttct gcagaaaaca aacattatca 1440
gagattatct tgaggacatt aatgagatac caaaatcccg catgttttgg cctcgcgaga 1500
tttggggcaa atatgctgac aagcttgagg atttaaaata cgaggagaac acaaacaaat 1560
ccgtacagtg cttaaatgaa atggttacca atgcgttgat gcatattgaa gattgcctga 1620
aatacatggt ttccttgcgt gatccttcca tatttcggtt ctgtgccatc cctcagatca 1680
tggcgattgg aacacttgca ttatgctata acaatgaaca agtattcaga ggcgttgtga 1740
aactgaggcg aggtcttact gctaaagtca ttgatcgtac aaagacaatg gctgatgtct 1800
atggtgcttt ctatgatttt tcctgcatgc tgaagacaaa ggttgacaag aacgatccaa 1860
atgccagtaa gacactaaac cgacttgaag ccgttcagaa actctgcaga gacgctggag 1920
ttcttcaaaa cagaaaatct tatgttaatg acaaaggaca accaaacagt gtctttatta 1980
taatggttgt gattctactg gccatagtct ttgcatatct cagagcaaac tgaagttata 2040
aaaaaaataa gtgtatacaa attttaaagt gactcttagg ttttaaaacg aaaattctta 2100
ttcttgagta actctttcct gtaggtcagg ttgctttctc aggtatagca tgaggtcgct 2160
cttattgacc acacctctac cggcatgccg aatactagcg ttgaatgtta gcgtcaacaa 2220
caagaagttt aatgacgcgg a 2241
<210> 10
<211> 2793
<212> DNA
<213> Artificial sequence
<400> 10
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgtctgctg ttaacgttgc acctgaattg attaatgccg acaacacaat 900
tacctacgat gcgattgtca tcggtgctgg tgttatcggt ccatgtgttg ctactggtct 960
agcaagaaag ggtaagaaag ttcttatcgt agaacgtgac tgggctatgc ctgatagaat 1020
tgttggtgaa ttgatgcaac caggtggtgt tagagcattg agaagtctgg gtatgattca 1080
atctatcaac aacatcgaag catatcctgt taccggttat accgtctttt tcaacggcga 1140
acaagttgat attccatacc cttacaaggc cgatatccct aaagttgaaa aattgaagga 1200
cttggtcaaa gatggtaatg acaaggtctt ggaagacagc actattcaca tcaaggatta 1260
cgaagatgat gaaagagaaa ggggtgttgc ttttgttcat ggtagattct tgaacaactt 1320
gagaaacatt actgctcaag agccaaatgt tactagagtg caaggtaact gtattgagat 1380
attgaaggat gaaaagaatg aggttgttgg tgccaaggtt gacattgatg gccgtggcaa 1440
ggtggaattc aaagcccact tgacatttat ctgtgacggt atcttttcac gtttcagaaa 1500
ggaattgcac ccagaccatg ttccaactgt cggttcttcg tttgtcggta tgtctttgtt 1560
caatgctaag aatcctgctc ctatgcacgg tcacgttatt cttggtagtg atcatatgcc 1620
aatcttggtt taccaaatca gtccagaaga aacaagaatc ctttgtgctt acaactctcc 1680
aaaggtccca gctgatatca agagttggat gattaaggat gtccaacctt tcattccaaa 1740
gagtctacgt ccttcatttg atgaagccgt cagccaaggt aaatttagag ctatgccaaa 1800
ctcctacttg ccagctagac aaaacgacgt cactggtatg tgtgttatcg gtgacgctct 1860
aaatatgaga catccattga ctggtggtgg tatgactgtc ggtttgcatg atgttgtctt 1920
gttgattaag aaaataggtg acctagactt cagcgaccgt gaaaaggttt tggatgaatt 1980
actagactac catttcgaaa gaaagagtta cgattccgtt attaacgttt tgtcagtggc 2040
tttgtattct ttgttcgctg ctgacagcga taacttgaag gcattacaaa aaggttgttt 2100
caaatatttc caaagaggtg gcgattgtgt caacaaaccc gttgaatttc tgtctggtgt 2160
cttgccaaag cctttgcaat tgaccagggt tttcttcgct gtcgcttttt acaccattta 2220
cttgaacatg gaagaacgtg gtttcttggg attaccaatg gctttattgg aaggtattat 2280
gattttgatc acagctatta gagtattcac cccatttttg tttggtgagt tgattggtta 2340
agattaatat aattatataa aaatattatc ttcttttctt tatatctagt gttatgtaaa 2400
ataaattgat gactacggaa agctttttta tattgtttct ttttcattct gagccactta 2460
aatttcgtga atgttcttgt aagggacggt agatttacaa gtgatacaac aaaaagcaag 2520
gcgctttttc taataaaaag aagaaaagca tttaacaatt gaacacctct atatcaacga 2580
agaatattac tttgtctcta aatccttgta aaatgtgtac gatctctata tgggttactc 2640
ataagtgtac cgaagactgc attgaaagtt tatgtttttt cactggaggc gtcattttcg 2700
cgttgagaag atgttcttat ccaaatttca actgttatat agaagtgatc ccccacacac 2760
catagcttca aaatgtttct actccttttt tac 2793
<210> 11
<211> 1880
<212> DNA
<213> Artificial sequence
<400> 11
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctaatt tgaatggtga atctgctgat ttgagagcaa catttttggg tgtttactct 540
gttttgaagt cagaattgtt gaatgatcca gcatttgaat ggacagatgg ttcaagacaa 600
tgggttgaaa gaatgttgga ttacaacgtt ccaggtggta aattgaacag aggtttgtct 660
gttattgatt catacaaatt gttgaagggt ggtaaagatt tgactgatga tgaagttttc 720
ttggcttctg cattaggttg gtgtgttgaa tggttacaag catacttttt ggttttggat 780
gatatcatgg ataactcaca tacaagaaga ggtcaaccat gttggtttag agttccaaaa 840
gttggtatga tcgcaattaa tgatggtatc atcttgagaa atcatattcc aagaattttg 900
aagaaacatt ttagaactaa accatactac gttgatttgt tggatttgtt taatgaagtt 960
gaattccaaa cagcttctgg tcaaatgatc gatttgatca ctacaatcga aggtgaaaag 1020
gatttgtcta agtactcatt gccattgcat agaagaatcg ttcaatacaa gactgcttat 1080
tactcatttt acttgccagt tgcttgtgca ttgttaatgg caggtgaaga tttggaaaaa 1140
catccaacag ttaaggatgt tttgattaat atgggtatct atttccaagt tcaagatgat 1200
tacttagatt gttttggtga accagaaaag attggtaaaa tcggtactga tatcgaagat 1260
ttcaagtgtt cttggttggt tgttaaagca ttggaattgt gtaacgaaga acaaaagaaa 1320
actttatttg aacattatgg taaagaagat ccagctgatg ttgcaaagat taaagttttg 1380
tacaacgaaa ttaatttgca aggtgttttc gcagaattcg aatctaagtc atacgaaaaa 1440
ttgaattctt caattgaagc tcatccatct aagtcagttc aagcagtttt gaaatcattt 1500
ttgggtaaaa tctataaaag acaaaaatga ccgctgatcc tagagggccg catcatgtaa 1560
ttagttatgt cacgcttaca ttcacgccct ccccccacat ccgctctaac cgaaaaggaa 1620
ggagttagac aacctgaagt ctaggtccct atttattttt ttatagttat gttagtatta 1680
agaacgttat ttatatttca aatttttctt ttttttctgt acagacgcgt gtacgcatgt 1740
aacattatac tgaaaacctt gcttgagaag gttttgggac gctcgaaggc tttaatttgc 1800
aagctgcggc cctgcattaa tgaatcggcc aacgcgcata aactaatgat tttaaatcgt 1860
taaaaaaata tgcgaattct 1880
<210> 12
<211> 2553
<212> DNA
<213> Artificial sequence
<400> 12
gaattcaacg agtttcctat tttggtattc tatatttttt catacaccta acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atggatttgc catctgcttc agctgctgtt gctgctgcta 840
ctgctgcagt tattttcttg ttgactatct acctgctgcc aaagaaaaaa tctccagctt 900
ctactggtaa gaacggttct acttctttgg aatcttaccc agttattggt aacttgccac 960
acttcgttaa gaacagaaac agattcttgg attgggttgc cgaaatcatt tctcaatctc 1020
caactggtac tgttattgct gctccattgg tttttacttc taacccagaa aacgttgaac 1080
ataccgctaa gtctagattt gatgcttatg ctagaggtcc agctgctaca gctgttttac 1140
atgatttttt aggttccggc atcttgaacg ttgatggtga tagttggagg gctcaaagaa 1200
agactgcttc ttctgaattc actaccagat ctttgagagc cttcattttg gatgctgttg 1260
acggtgaagc tgctggtaga ttattgccat tattgtctag agctgctgct tctggtgaag 1320
tttttgactt gcaagatgtc ttggaaagat tcgccttcga taacatttgc tccattattt 1380
tcgatgccga tccaaactgt ttgaacgata ctcatgatgg tgttggtgaa agattctacc 1440
atgcttttca tgatgctacc ttgttgtcta ctggcagata ttactatcca ttccattggg 1500
tttggaggtt gttgagatgg ttgaatttgg gtactgaaaa gcgtttgaga gatgccgttt 1560
ctgatgttca taaggccatt gatgaattgg tcggttctag aaaaactgaa gttggtacta 1620
ctgttagaag gcaaggtggt ggttctgatt tgttgtcaag atttgctgaa ggtggtgatt 1680
actccgatga tgttttaagg gatgtcttga tcaacttcgt tttggctggt agagatacaa 1740
ctccatcagc tttgacttgg tttttcttta tgatctcctc cagaccagat gttgttgatc 1800
aaattttgga cgagatcagg tccatcagag atcatcaaga tagatctaat ccaaacggtg 1860
gtggtggcgg ttttactttg gaagaattga gagaaatgaa ctacttgcat gctgccatta 1920
ccgaatcctt gagattgaat ccaccagttc cattgatgcc aaagatgtgt atggaagatg 1980
atgtattgcc agatggtact gtagttagaa gaggttggac tgttatgtac tctgcttttg 2040
ctatgggtag aaaggctgaa atttggggtg aagattgcat ggaattcaaa ccagaaagat 2100
ggttggatga tggtggttgt tttaaatctg cttccgctta tagattgcca gcatttcatg 2160
ctggtcctag aatttgtttg ggtaaagata tggcctacat tcagatgaag gctgttgctt 2220
catctttgtt ggaaaggttc gaagttgaag tcgttgaaaa aagaggtaag ccagaattgt 2280
ccatcaccat gagaatggac agaggtttgc cagttagagt gaaagaaaga aagcgtggtt 2340
gttaaagtta taaaaaaaat aagtgtatac aaattttaaa gtgactctta ggttttaaaa 2400
cgaaaattct tattcttgag taactctttc ctgtaggtca ggttgctttc tcaggtatag 2460
catgaggtcg ctcttattga ccacacctct accggcatgc cgaatactag cgttgaatgt 2520
tagcgtcaac aacaagaagt ttaatgacgc gga 2553
<210> 13
<211> 2304
<212> DNA
<213> Artificial sequence
<400> 13
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt gtttattggt 540
gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg tttgaatatc 600
cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag aaagttgcat 660
ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg taagatctac 720
aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt gaacagattc 780
gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt tgccgatatt 840
ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat gaagtctttg 900
tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga ttccgagagg 960
tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc taaagaagaa 1020
gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa tccaggtgaa 1080
ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt tattgccatg 1140
ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc cactatcttg 1200
aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg tactgataat 1260
attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga tgctgaacaa 1320
ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc taccgctatt 1380
actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt gagagaagaa 1440
catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt gacgtgggaa 1500
gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag attgggtaac 1560
atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg ttacgatatt 1620
ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc tactgtttac 1680
gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc tactgccaga 1740
atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt ggaattggct 1800
aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg ggaattagct 1860
gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt gccaatcaag 1920
gtcagaaagt tgtctatttt ggagtaaccg ctgatcctag agggccgcat catgtaatta 1980
gttatgtcac gcttacattc acgccctccc cccacatccg ctctaaccga aaaggaagga 2040
gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt agtattaaga 2100
acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta cgcatgtaac 2160
attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt aatttgcaag 2220
ctgcggccct gcattaatga atcggccaac gcgctgcgat actgccgtag cgggccttcg 2280
tatagctcgg ccgagctcgt acaa 2304
<210> 14
<211> 3414
<212> DNA
<213> Artificial sequence
<400> 14
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgcaatcat cctccgtaaa ggtatcccca ttcgacttaa tgtcagcaat 900
catcaagggt tctatggacc aatcaaacgt atcatcagaa tcaggtggtg ctgcagccat 960
ggttttggaa aacagagaat tcattatgat cttgactaca tccattgctg ttttgatcgg 1020
ttgtgttgtc gtattgatat ggagaagatc aggtcaaaaa caatccaaga ctccagaacc 1080
acctaaacct ttgattgtta aggatttgga agtagaagtt gatgacggta aacaaaaggt 1140
tacaatattt ttcggtacac aaaccggtac tgctgaaggt ttcgcaaaag ccttggctga 1200
agaagcaaag gccagatacg aaaaggcaat ttttaaggtt gtcgatttgg atgactatgc 1260
cggtgacgac gatgaatacg aagaaaaatt gaaaaaggaa actttggcct ttttcttttt 1320
ggctacatat ggtgacggtg aaccaaccga caatgctgca agattctaca aatggtttgc 1380
tgagggtaaa gaacgtggtg aatggttgca aaacttaaag tatggtgttt tcggtttggg 1440
taacagacaa tacgaacatt tcaacaaagt tgcaaaggta gttgacgata taatcacaga 1500
acaaggtggt aaaagaatcg tcccagtagg tttgggtgac gatgaccaat gtattgaaga 1560
tgacttcgcc gcttggagag aattattatg gcctgaatta gatcaattgt taagagacga 1620
agatgacgct accactgtat ctacaccata taccgcagcc gttttggaat acagagtcgt 1680
atttcatgat cctgaaggtg catcattaca agacaagtca tggggttccg ccaatggtca 1740
tactgttcac gatgctcaac acccatgtag agccaacgtt gctgtcagaa aagaattgca 1800
tactcctgct agtgatagat cttgcacaca cttggaattc gacatttctg gtactggttt 1860
aacatatgaa accggtgacc atgtaggtgt ttactgtgaa aatttgccag aaacagtcga 1920
agaagcagaa agattgttag gtttctcacc tgatgtatat ttttccatac acaccgaaag 1980
agaagacggt actccattaa gtggttcttc attgtctcca ccttttccac cttgcacttt 2040
gagaacagca ttaaccagat acgccgatgt tttgtccagt cctaaaaagt ctgcattggt 2100
cgccttagct gcacatgcat cagatccatc cgaagccgac agattgaaat atttggctag 2160
tccttctggt aaagatgaat acgctcaatg ggttgtcgca agtcaaagat ctttgttaga 2220
aattatggcc gaatttccat ctgctaagcc acctttgggt gtcttctttg ccgctgtagc 2280
tccaagattg caacctagat actacagtat ctcttcatcc ccaaagatgg ttccttctag 2340
aatacatgtt acctgtgcat tggtctgcga taaaatgcca actggtagaa tccacaaggg 2400
tatttgttca acatggatga aatatgccgt tccattagaa gaatcacaag attgctcctg 2460
ggcacctatc ttcgttagac aatcaaactt caaattgcca gctgatacct ccgtccctat 2520
cattatgatt ggtccaggta caggtttagc tcctttcaga ggtttcttgc aagaaagatt 2580
tgcattgaag gaagctggtg cagaattggg tagttctatc ttgttctttg gttgtagaaa 2640
cagaaagatg gattacatct acgaagacga attgaacggt ttcgtagaaa gtggtgcttt 2700
gtctgaattg atcgttgcat tttcaagaga aggtccaact aaggaatacg ttcaacataa 2760
gatgatggaa aaggctagtg atatctggaa cgtcatctct caaggtggtt atatatacgt 2820
atgcggtgac gctaagggta tggcaagaga cgttcataga actttgcaca caatcttaca 2880
agaacaaggt tctttagatt catccaaggc tgaatcaatg gtaaagaact tacaaatgac 2940
tggtagatac ttgagagatg tcgattaata taattatata aaaatattat cttcttttct 3000
ttatatctag tgttatgtaa aataaattga tgactacgga aagctttttt atattgtttc 3060
tttttcattc tgagccactt aaatttcgtg aatgttcttg taagggacgg tagatttaca 3120
agtgatacaa caaaaagcaa ggcgcttttt ctaataaaaa gaagaaaagc atttaacaat 3180
tgaacacctc tatatcaacg aagaatatta ctttgtctct aaatccttgt aaaatgtgta 3240
cgatctctat atgggttact cataagtgta ccgaagactg cattgaaagt ttatgttttt 3300
tcactggagg cgtcattttc gcgttgagaa gatgttctta tccaaatttc aactgttata 3360
tagaagtgat cccccacaca ccatagcttc aaaatgtttc tactcctttt ttac 3414
<210> 15
<211> 2325
<212> DNA
<213> Artificial sequence
<400> 15
ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatacg agccttaatt 60
aaacgcacag atattataac atctgcacaa taggcatttg caagaattac tcgtgagtaa 120
ggaaagagtg aggaactatc gcatacctgc atttaaagat gccgatttgg gcgcgaatcc 180
tttattttgg cttcaccctc atactattat cagggccaga aaaaggaagt gtttccctcc 240
ttcttgaatt gatgttaccc tcataaagca cgtggcctct tatcgagaaa gaaattaccg 300
tcgctcgtga tttgtttgca aaaagaacaa aactgaaaaa acccagacac gctcgacttc 360
ctgtcttcct attgattgca gcttccaatt tcgtcacaca acaaggtcct agcgacggct 420
cacaggtttt gtaacaagca atcgaaggtt ctggaatggc gggaaagggt ttagtaccac 480
atgctatgat gcccactgtg atctccagag caaagttcgt tcgatcgtac tgttactctc 540
tctctttcaa acagaattgt ccgaatcgtg tgacaacaac agcctgttct cacacactct 600
tttcttctaa ccaagggggt ggtttagttt agtagaacct cgtgaaactt acatttacat 660
atatataaac ttgcataaat tggtcaatgc aagaaataca tatttggtct tttctaattc 720
gtagtttttc aagttcttag atgctttctt tttctctttt ttacagatca tcaaggaagt 780
aattatctac tttttacaac aaatataaaa caatggccga atctcaattg gttcatccac 840
ctttgttcac ctacatttct atgttggctt tgttgacttt ggttccacca ttcgttattt 900
tgatgtggta cactaacgtt catgctgatg gttctgttct gcaaactttc aactacctga 960
aagaaaatgg cttgcaaggt ttgattgata tctggccaag accaactgct attgctggta 1020
agattattat ctgctacgct ttgtttgaag ccaccttgca attgctattg ccaggtaaaa 1080
gagttcaagg tccaatttct ccaactggtc atagacctgt ttacaaggct aatggtatgg 1140
ctgcttatac cgttactttg attacctact tgtctttgtg gtggttcggt attttcaacc 1200
caactgttgt ttacgatcac ttgggtgaaa ttctgtccac tttgaatttc ggctcactga 1260
ttttctgcct gttcttgtat attaagggtc atgttgctcc atcctctact gatcatggtt 1320
cttcaggtaa catcatcgtt gattattact ggggcatgga actgtatcca agaattggta 1380
aacacttcga catcaaggtt ttcaccaact gtagattcgg tatgatttct tggggtttgt 1440
tgccaattac ttactgcatc aagcagtacg aagaatacgg ttctttgtct gactctatgt 1500
tgatccatac catcatcacc ttggtttacg ttactaagtt tttctggtgg gaagctggtt 1560
attggaacac tatggatatt gctcatgata gagccggttt ctatatttgt tggggttgtt 1620
tggttttcct gccatgtatg tatacttctc caggtatgta cttggttaag cacccagtta 1680
atttgggtcc acaattggcc atttcaattt tggttgctgg tatcttgtgc gtctacatta 1740
actacgattg cgatagacag agacaagaat tcagaagaac taacggtaaa gctttggttt 1800
ggggtaaagc tccttctaaa atcgttgctt cttacactac tactaccggt gaaactaagt 1860
cctctttgtt gttaacttct ggttggtggg gtttgagcag acattttcat tatgttccag 1920
aaatcctggc ctcattcttt tggtctgttc cagctttgtt taaccacatc atgccatact 1980
tctacgtcat ctatttgacc ggtttgttgt tggatagagc taaaagggat gacgaaagat 2040
gcaaatccaa gtacggtaaa tactggaaga agtactgcga aaaggttcca tacagagtta 2100
ttccaggcat ctactgaagt tataaaaaaa ataagtgtat acaaatttta aagtgactct 2160
taggttttaa aacgaaaatt cttattcttg agtaactctt tcctgtaggt caggttgctt 2220
tctcaggtat agcatgaggt cgctcttatt gaccacacct ctaccggcat gccgaagtga 2280
tcccccacac accatagctt caaaatgttt ctactccttt tttac 2325
<210> 16
<211> 2416
<212> DNA
<213> Artificial sequence
<400> 16
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtcagctg tttggtcttt aggtgcaggt ttgttgttgt tgttgttgtg ggttagacat 540
agaggtttag aagctgtttt ggttcatcat agatggatct tcgtttgttt ctttttgatg 600
ccattgtcta tcttgttcga tgtttactac caattaagag cttgggcagt tagaagaatg 660
cattcagcac caagattgca tggtcaaaga gttagacata tccaagaaca agttagagaa 720
tggaaagaag aaggtggtag aagatatatg tgtactggta gaccaggatg gttaacagtt 780
tctttgagag ttggtaaata caagaaaact cataagaaca tcatgatcaa tttgatggat 840
gttttggaag ttgattcaga aagacaagtt gttagagttg aaccattggt tactatgggt 900
caattaacag cttatttgaa tccaatgggt tggactattc cagttgttcc agaattagat 960
gatttgactg ttggtggttt aattatgggt acaggtatcg aatcttcatc tcatatctat 1020
ggtttgttcc aacatacatg tatggcttac gaattggttt tagcagatgg ttcattagtt 1080
agatgttctc caactgaaaa ctcagatttg ttttatgctg ttccatggtc ttgtggtaca 1140
ttaggtttct tggttgctgc agaaattaaa atgatcccag ctaagaaata cattagatta 1200
cattacgaac cagttagagg tttgagatct atctgtgaaa agtttactga agaatctaaa 1260
aataaggaaa attcatttgt tgaaggttta gtttactctt tggaagaagc tgttattatg 1320
actggtgttt taacagatga agcagaacca tcaaagatta atagaatcgg taactactac 1380
aaaccatggt ttttcaagca tgttgaaaag tatttgaagg ctaataagac tggtatcgaa 1440
tacatcccat ctagacatta ctaccataga catacaagat caattttctg ggaattgcaa 1500
gatatcatcc cattcggtaa caatccagtt tttagatatt tgtttggttg gatggttcca 1560
ccaaagatct ctttgttgaa gttgactcaa ggtgaagcaa tcagaaaatt gtacgaacaa 1620
catcatgttg ttcaagatat gttggttcca atgaagtcat tggaaaaatc tatccaaaca 1680
ttccatgttg atttgaacgt ttacccattg tggttgtgtc catttttgtt gccaaacaac 1740
cctggtatgg ttcatccaaa aggtgacgaa actgaattgt atgttgatat tggtgcttac 1800
ggtgaaccaa aaacaaaaca atttgaagct agagcatcta tgagacaaat ggaaaagttc 1860
gttagatcag ttcatggttt ccaaatgttg tacgctgatt gttacatgac tagagaagaa 1920
ttctgggata tgttcgatgg ttcattgtac cattctttga gagaacaaat gaactgtaag 1980
gatgcattcc cagaagttta cgataagatc tgtaaggctg caagacatta accgctgatc 2040
ctagagggcc gcatcatgta attagttatg tcacgcttac attcacgccc tccccccaca 2100
tccgctctaa ccgaaaagga aggagttaga caacctgaag tctaggtccc tatttatttt 2160
tttatagtta tgttagtatt aagaacgtta tttatatttc aaatttttct tttttttctg 2220
tacagacgcg tgtacgcatg taacattata ctgaaaacct tgcttgagaa ggttttggga 2280
cgctcgaagg ctttaatttg caagctgcgg ccctgcatta atgaatcggc caacgcgccg 2340
tattacaatt cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgcgttg 2400
gccgattcat taatgc 2416
<210> 17
<211> 3120
<212> DNA
<213> Artificial sequence
<400> 17
ccagcgtata caatctcgat agttggtttc ccgttctttc cactcccgtc acgcacagat 60
attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg aaagagtgag 120
gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt tattttggct 180
tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt cttgaattga 240
tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc gctcgtgatt 300
tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct gtcttcctat 360
tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca caggttttgt 420
aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat gctatgatgc 480
ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc tctttcaaac 540
agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt tcttctaacc 600
aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat atataaactt 660
gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt agtttttcaa 720
gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa ttatctactt 780
tttacaacaa atataaaaca atgcaatcat cctccgtaaa ggtatcccca ttcgacttaa 840
tgtcagcaat catcaagggt tctatggacc aatcaaacgt atcatcagaa tcaggtggtg 900
ctgcagccat ggttttggaa aacagagaat tcattatgat cttgactaca tccattgctg 960
ttttgatcgg ttgtgttgtc gtattgatat ggagaagatc aggtcaaaaa caatccaaga 1020
ctccagaacc acctaaacct ttgattgtta aggatttgga agtagaagtt gatgacggta 1080
aacaaaaggt tacaatattt ttcggtacac aaaccggtac tgctgaaggt ttcgcaaaag 1140
ccttggctga agaagcaaag gccagatacg aaaaggcaat ttttaaggtt gtcgatttgg 1200
atgactatgc cggtgacgac gatgaatacg aagaaaaatt gaaaaaggaa actttggcct 1260
ttttcttttt ggctacatat ggtgacggtg aaccaaccga caatgctgca agattctaca 1320
aatggtttgc tgagggtaaa gaacgtggtg aatggttgca aaacttaaag tatggtgttt 1380
tcggtttggg taacagacaa tacgaacatt tcaacaaagt tgcaaaggta gttgacgata 1440
taatcacaga acaaggtggt aaaagaatcg tcccagtagg tttgggtgac gatgaccaat 1500
gtattgaaga tgacttcgcc gcttggagag aattattatg gcctgaatta gatcaattgt 1560
taagagacga agatgacgct accactgtat ctacaccata taccgcagcc gttttggaat 1620
acagagtcgt atttcatgat cctgaaggtg catcattaca agacaagtca tggggttccg 1680
ccaatggtca tactgttcac gatgctcaac acccatgtag agccaacgtt gctgtcagaa 1740
aagaattgca tactcctgct agtgatagat cttgcacaca cttggaattc gacatttctg 1800
gtactggttt aacatatgaa accggtgacc atgtaggtgt ttactgtgaa aatttgccag 1860
aaacagtcga agaagcagaa agattgttag gtttctcacc tgatgtatat ttttccatac 1920
acaccgaaag agaagacggt actccattaa gtggttcttc attgtctcca ccttttccac 1980
cttgcacttt gagaacagca ttaaccagat acgccgatgt tttgtccagt cctaaaaagt 2040
ctgcattggt cgccttagct gcacatgcat cagatccatc cgaagccgac agattgaaat 2100
atttggctag tccttctggt aaagatgaat acgctcaatg ggttgtcgca agtcaaagat 2160
ctttgttaga aattatggcc gaatttccat ctgctaagcc acctttgggt gtcttctttg 2220
ccgctgtagc tccaagattg caacctagat actacagtat ctcttcatcc ccaaagatgg 2280
ttccttctag aatacatgtt acctgtgcat tggtctgcga taaaatgcca actggtagaa 2340
tccacaaggg tatttgttca acatggatga aatatgccgt tccattagaa gaatcacaag 2400
attgctcctg ggcacctatc ttcgttagac aatcaaactt caaattgcca gctgatacct 2460
ccgtccctat cattatgatt ggtccaggta caggtttagc tcctttcaga ggtttcttgc 2520
aagaaagatt tgcattgaag gaagctggtg cagaattggg tagttctatc ttgttctttg 2580
gttgtagaaa cagaaagatg gattacatct acgaagacga attgaacggt ttcgtagaaa 2640
gtggtgcttt gtctgaattg atcgttgcat tttcaagaga aggtccaact aaggaatacg 2700
ttcaacataa gatgatggaa aaggctagtg atatctggaa cgtcatctct caaggtggtt 2760
atatatacgt atgcggtgac gctaagggta tggcaagaga cgttcataga actttgcaca 2820
caatcttaca agaacaaggt tctttagatt catccaaggc tgaatcaatg gtaaagaact 2880
tacaaatgac tggtagatac ttgagagatg tcagttataa aaaaaataag tgtatacaaa 2940
ttttaaagtg actcttaggt tttaaaacga aaattcttat tcttgagtaa ctctttcctg 3000
taggtcaggt tgctttctca ggtatagcat gaggtcgctc ttattgacca cacctctacc 3060
ggcatgccga agtgatcccc cacacaccat agcttcaaaa tgtttctact ccttttttac 3120
<210> 18
<211> 1988
<212> DNA
<213> Artificial sequence
<400> 18
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctccaa tggaattgct gttgatagtt tctccattgg ttttggccct gatcatcttt 540
tttagcttca ggggtacttc taaaggtggt gataaggctg aaaaaattcc tccaggtact 600
atgggttggc cattgattgg tcatacaatt ccttttatgc aaccccattc ttctgcttca 660
ttgggtttgt ttgttgacca gaatattgct aagcacggta gaatcttcag gatgaatttg 720
ttgggtaagc caactatcgt ttctgctgat gctgatttca acagattcat cttgcaatcc 780
gaaggtagga tgttcgaaaa ttcttgtcca acctccattg ccgaaattat gggtagatgg 840
tctatgttgg ctttggctgg tgatgttcat agagaaatga gatccattgc tgtcaacttc 900
atgtccaacg ttaagttgag aacttacttc ttgccagacg ttgaacaaca agccattaag 960
attttgtctg cttggagaca tggttctact ttctctgctc aagaagaagg taagaagttc 1020
gcttttaact tgatggtcaa gcacttgatg tctatggatc caggtatgcc agaaactgaa 1080
caattgagaa aagagtacat cacgttcatg aagggtatgg cttctattcc attgaatttg 1140
ccaggtactg cttacagaaa ggcattgcaa tctagatcca tcatcttgaa gatcatgggt 1200
caaaagttgg acgaaagagt tgaaaaagtt aagagaggtt gcgaaggttt ggaagaagat 1260
gatttgttag cttctgttgc tgcccaatct aacattacca gagatcaaat tctggacctg 1320
atcctgtcta tgttatttgc tggtcacgaa acttcatctg ctgctatttg tttggctatc 1380
tacttcttgg aatcttctcc aaaagccttg caacagttga gagaagaaca tatcaacata 1440
gccaagatga aggaagaaaa aggcgaaact ggtttgactt gggatgatta caaacagatg 1500
gaattcaccc attgcgttat caacgaaact ttgagattgg gtaacatcgt caagttcttg 1560
catagaaagg ccattaagga tgttcagtac aagggttacg atattccatg tggttgggaa 1620
gttgttccaa ttatttcttc cgctcatttg gacccatcta tctatgatga tccacaatct 1680
tacaatcctt ggagatggca aactatttct actgctactt ccaagaacaa caacatcatg 1740
tctttttcag gtggtccaag agtttgtcca ggtgctgaat tggctaaaat ggaaatggct 1800
gttttcttgc atcacttggt ccaaaagttc aactgggaat tagctgaaca tgactaccca 1860
gtttcttttc cattcttggg tttcccaaaa cacttgccaa tcaaggttca tgccattgat 1920
cataaggctt ccgcttaaaa gcatcttgcc ctgtgcttgg cccccagtgc agcgaacgtt 1980
ataaaaac 1988
<210> 19
<211> 2292
<212> DNA
<213> Artificial sequence
<400> 19
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggctatgg aattgttgtt gttgatccca gcttttattg ttgcaatcat cattttcttt 540
tcttttaaat caactaacgg tacttctaca aagccattga agttgcctcc aggtcaaatg 600
ggttggcctt ttattggtca tacaatccct tttatgcaac cacattcttc agcttctttg 660
ggtccataca tcgatttgaa cactgcaaga tacggtacaa tttttagaat gaatttgttg 720
gctaagccaa ctatcgtttc agcagatcca gaattcaata gatacatctt gcaaaacgaa 780
ggtagattgt tcgaaaactc ttgtccaact tcaattgctg aaattatggg tagatggtct 840
atgttggcat taacaggtga cgttcataga gaaatgagat caatcgctgt ttcttttatg 900
tcaaacgtta agttgagaac atacttcatc ggtgacatcg aacaacaagc aattaaagtt 960
ttggcttctt gggcaggtag agatgctcca ttttcagcac aagatgaagg taaaaagttc 1020
gcttttaatt tgatggttaa acatttgatg tctatggaac caggaatgaa ggaaactgaa 1080
caattgagat ctgaatacca tgcttttatg aagggtatgg catcaattcc aattaatttg 1140
ccaggtacag cttacagaaa agcattgcaa tctagatcaa tcatcttgaa gattatgggt 1200
gaaaaattag atgaaagaat taaacaagtt aaagaaggtt gtgaaggttt ggaacaagat 1260
gatttgttag cttctgtttc aaagcatcca aatttggcaa aggaacaaat cttggatttg 1320
atcttgtcta tgttgtttgc tggtcatgaa acttcttcag ctgcaatcgc tttggcaata 1380
tactttttgg aatcatgtcc aaaagctgtt gaacaattga gagaagaaca taaggaaatc 1440
gcaagacaaa agaaagaaag aggtgaaaca ggtttgaact gggatgatta caagaaaatg 1500
gaattcactc attgtgttat taatgaaaca ttgagaatgg gtaacatcgt taagttctta 1560
catagaagag ctattaaaga tgttcaattc aaaggttacg atatcccatg tggttgggaa 1620
gttgttccaa ttatttctgc tgcacatttg gattcttcaa tctatgatga tccacaaaga 1680
tacgatccat ggagatggca agctatttta gctggtaaca ctaaaaataa caacgttaca 1740
tcaattatgt ctttttcagg tggtccaaga ttgtgtccag gtgctgaatt ggcaaagttg 1800
gaaatcgctg ttttcttgca tcatttggtt caaaagtacc aatgggaaat ggcagaacat 1860
gattacccag tttctttccc atttttaggt ttcccaaaga gattgccaat taaagttaga 1920
ccattgggtg actaaccgct gatcctagag ggccgcatca tgtaattagt tatgtcacgc 1980
ttacattcac gccctccccc cacatccgct ctaaccgaaa aggaaggagt tagacaacct 2040
gaagtctagg tccctattta tttttttata gttatgttag tattaagaac gttatttata 2100
tttcaaattt ttcttttttt tctgtacaga cgcgtgtacg catgtaacat tatactgaaa 2160
accttgcttg agaaggtttt gggacgctcg aaggctttaa tttgcaagct gcggccctgc 2220
attaatgaat cggccaacgc gcaagcatct tgccctgtgc ttggccccca gtgcagcgaa 2280
cgttataaaa ac 2292
<210> 20
<211> 2379
<212> DNA
<213> Artificial sequence
<400> 20
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgttcgaaa ccgaacatca taccttgttg cctttgttgt tgttgccatc tttgctgtcc 540
ttgctgttgt tcttgattct gttgaagaga agaaaccgta agaccagatt caatttgcct 600
ccaggtaaat ctggttggcc atttttgggt gaaactatcg gttatttgaa gccatacact 660
gctactactt tgggtgattt catgcaacaa cacgtttcta agtacggtaa gatctacagg 720
tctaatttgt tcggtgaacc tactatcgtt tctgctgatg ctggtttgaa tagattcatc 780
ttgcaaaacg aaggcaggtt gttcgaatgt tcttacccaa gatctatcgg tggtatttta 840
ggtaagtggt ccatgttggt tttggttggt gatatgcata gagatatgag gtccatctcc 900
ttgaatttct tgtctcatgc tagattgagg accatcttgt tgaaggatgt tgaaagacac 960
accttgttcg ttttggattc ttggcaacaa aactccattt tctccgctca agatgaagct 1020
aagaagttca cttttaactt gatggccaag cacatcatgt ctatggatcc aggtgaagaa 1080
gaaactgagc aactgaagaa agaatacgtc actttcatga agggtgttgt ttctgctcca 1140
ttgaatttgc caggtactgc ttatcataag gccttgcaat ctagagctac catcttgaag 1200
ttcatcgaac gtaagatgga agagagaaag ttggacatca aagaagagga ccaagaggaa 1260
gaagaggtta agactgaaga tgaggctgaa atgtctaagt ccgatcatgt tagaaagcaa 1320
agaaccgatg atgacttgtt aggttgggtt ttgaagcact ctaacttgtc cactgaacaa 1380
atcttggacc tgatcttgtc tttgttattt gctggtcacg aaacctcatc tgttgctatt 1440
gctttggcta tattcttctt gcaagcttgt ccaaaagccg tcgaagaatt gagagaagaa 1500
catttggaaa ttgccagggc caaaaaagaa ttgggtgaat ctgaattgaa ctgggacgat 1560
tacaagaaga tggatttcac tcaatgcgtc atcaacgaaa ctttgagatt gggtaacgtt 1620
gtcagattct tgcatagaaa ggccttgaaa gatgtcagat acaagggtta cgatattcca 1680
tcaggttgga aagttttgcc agttatttct gccgttcact tggataactc tagatacgat 1740
caacccaatt tgttcaatcc ttggagatgg cagcagcaaa acaatggtgc ttcttcttct 1800
ggttctggtt cattttctac ttggggtaac aattacatgc catttggtgg tggtcctaga 1860
ttgtgtgctg gttcagaatt ggctaaattg gaaatggccg ttttcatcca tcatctggtg 1920
ttgaagttta actgggaatt agccgaagat gataagccat ttgctttccc atttgttgat 1980
ttcccaaacg gtttgccaat cagagtttcc agaattttgt gaccgctgat cctagagggc 2040
cgcatcatgt aattagttat gtcacgctta cattcacgcc ctccccccac atccgctcta 2100
accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt ttttatagtt 2160
atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct gtacagacgc 2220
gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg acgctcgaag 2280
gctttaattt gcaagctgcg gccctgcatt aatgaatcgg ccaacgcgca agcatcttgc 2340
cctgtgcttg gcccccagtg cagcgaacgt tataaaaac 2379
<210> 21
<211> 2313
<212> DNA
<213> Artificial sequence
<400> 21
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atgtctgatt tggaattttt cttgtttttg attccaccaa tcttagcagt tttgatcatc 540
ttgaatttgt ttaaaagaaa acataatttt caaaatttgc caccaggaga tatgggttgg 600
ccatttttag gtgaaactat cggttatttg agaccatact ctgctactac aattggtgac 660
ttcatgcaag atcatatctc tagatacggt aaaattttta agtcaaattt gtttggtgaa 720
ccaacaattg tttcagctga tgcaggtttg aacagataca tcttgcaaaa cgaaggtaga 780
ttgttcgaat gtaactaccc aagatctatt ggtggtattt tgggtaaatg gtcaatgttg 840
gttcaagttg gtcaaatgca tagagatatg agaatgatcc cattgaattt cttgtctaac 900
gctagattga gaaatcaatt gttatctgaa gttgaaaagc atactttgtt ggttttgggt 960
tcttggaaac aagattcagt tgtttgtgct caagatgaag ctaagaaatt gacttttaat 1020
ttcatggcag aacatattat gtctttacaa ccaggaaatc cagaaactga aaagttgaag 1080
aaagaataca tcacttttat gaaaggtgtt gtttcagctc cattaaattt tccaggtact 1140
gcttacagaa aggcattgca atctagatca acaatcttgg gttttattga aagaaagatg 1200
gaagaaagat tgaaagaaat gaatagaaac gaaaacgatt tgttgggttg ggttttgaaa 1260
aattctaatt tgtcaaagga acaaatctta gatttgttat tgtctttatt gtttgcaggt 1320
catgaaactt cttcagttgc tattgcattg tctattttct tgttggaatc atgtccagct 1380
gcagttcaac aattgactga agaacatttg gaaatctcta gagctaagaa acaatcaggt 1440
gaaacagaat tgaactggga tgattacaag aaaatggaat tcactcaatg tgttattaat 1500
gaaacattga gattgggtaa cgttgttaga tttttacata gaaaagcagt taaggatgtt 1560
agatacaagg gttacgatat cccatgtggt tggaaagttt tgccagttat ttctgctgca 1620
catttggatc catcattgtt tgatagacca catgattttg atccatggag atggcaaaat 1680
gctgaagaat ctccatctgg taaaggtggt tctactggta catcttcaac tacaaagtct 1740
tcaaacaact tcatgccatt tggtggtggt ccaagattgt gtgctggttc agaattggca 1800
aagttggaaa tggctatttt cattcattac ttagttttga acttccattg gaagttggct 1860
gcaacagatc aagcttttgc atatccatac gttgatttcc caaacgcttt gccaattaat 1920
atccaacata gatctttaaa taagttgcat gattaaccgc tgatcctaga gggccgcatc 1980
atgtaattag ttatgtcacg cttacattca cgccctcccc ccacatccgc tctaaccgaa 2040
aaggaaggag ttagacaacc tgaagtctag gtccctattt atttttttat agttatgtta 2100
gtattaagaa cgttatttat atttcaaatt tttctttttt ttctgtacag acgcgtgtac 2160
gcatgtaaca ttatactgaa aaccttgctt gagaaggttt tgggacgctc gaaggcttta 2220
atttgcaagc tgcggccctg cattaatgaa tcggccaacg cgcaagcatc ttgccctgtg 2280
cttggccccc agtgcagcga acgttataaa aac 2313
<210> 22
<211> 2413
<212> DNA
<213> Artificial sequence
<400> 22
acgcacagat attataacat ctgcacaata ggcatttgca agaattactc gtgagtaagg 60
aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc gcgaatcctt 120
tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt ttccctcctt 180
cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga aattaccgtc 240
gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc tcgacttcct 300
gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag cgacggctca 360
caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt agtaccacat 420
gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg ttactctctc 480
tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca cacactcttt 540
tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac atttacatat 600
atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt tctaattcgt 660
agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc aaggaagtaa 720
ttatctactt tttacaacaa atataaaaca atggctatgg aattgttgtt gttgatccca 780
gcttttattg ttgcaatcat cattttcttt tcttttaaat caactaacgg tacttctaca 840
aagccattga agttgcctcc aggtcaaatg ggttggcctt ttattggtca tacaatccct 900
tttatgcaac cacattcttc agcttctttg ggtccataca tcgatttgaa cactgcaaga 960
tacggtacaa tttttagaat gaatttgttg gctaagccaa ctatcgtttc agcagatcca 1020
gaattcaata gatacatctt gcaaaacgaa ggtagattgt tcgaaaactc ttgtccaact 1080
tcaattgctg aaattatggg tagatggtct atgttggcat taacaggtga cgttcataga 1140
gaaatgagat caatcgctgt ttcttttatg tcaaacgtta agttgagaac atacttcatc 1200
ggtgacatcg aacaacaagc aattaaagtt ttggcttctt gggcaggtag agatgctcca 1260
ttttcagcac aagatgaagg taaaaagttc gcttttaatt tgatggttaa acatttgatg 1320
tctatggaac caggaatgaa ggaaactgaa caattgagat ctgaatacca tgcttttatg 1380
aagggtatgg catcaattcc aattaatttg ccaggtacag cttacagaaa agcattgcaa 1440
tctagatcaa tcatcttgaa gattatgggt gaaaaattag atgaaagaat taaacaagtt 1500
aaagaaggtt gtgaaggttt ggaacaagat gatttgttag cttctgtttc aaagcatcca 1560
aatttggcaa aggaacaaat cttggatttg atcttgtcta tgttgtttgc tggtcatgaa 1620
acttcttcag ctgcaatcgc tttggcaata tactttttgg aatcatgtcc aaaagctgtt 1680
gaacaattga gagaagaaca taaggaaatc gcaagacaaa agaaagaaag aggtgaaaca 1740
ggtttgaact gggatgatta caagaaaatg gaattcactc attgtgttat taatgaaaca 1800
ttgagaatgg gtaacatcgt taagttctta catagaagag ctattaaaga tgttcaattc 1860
aaaggttacg atatcccatg tggttgggaa gttgttccaa ttatttctgc tgcacatttg 1920
gattcttcaa tctatgatga tccacaaaga tacgatccat ggagatggca agctatttta 1980
gctggtaaca ctaaaaataa caacgttaca tcaattatgt ctttttcagg tggtccaaga 2040
ttgtgtccag gtgctgaatt ggcaaagttg gaaatcgctg ttttcttgca tcatttggtt 2100
caaaagtacc aatgggaaat ggcagaacat gattacccag tttctttccc atttttaggt 2160
ttcccaaaga gattgccaat taaagttaga ccattgggtg actaaagtta taaaaaaaat 2220
aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag 2280
taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga 2340
ccacacctct accggcatgc cgaatactag cgttgaatgt tagcgtcaac aacaagaagt 2400
ttaatgacgc gga 2413
<210> 23
<211> 2382
<212> DNA
<213> Artificial sequence
<400> 23
attttcgcgt tgagaagatg ttcttatcca aatttcaact gttatataga agtgatcccc 60
cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat tttctcggac 120
tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat ttcccctctt 180
tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa aaaagagacc 240
gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg tttctttttc 300
ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga tatttaagtt 360
aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta ttacaacttt 420
ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt taattacaaa 480
atggatttgc catctgcttc agctgctgtt gctgctgcta ctgctgcagt tattttcttg 540
ttgactatct acctgctgcc aaagaaaaaa tctccagctt ctactggtaa gaacggttct 600
acttctttgg aatcttaccc agttattggt aacttgccac acttcgttaa gaacagaaac 660
agattcttgg attgggttgc cgaaatcatt tctcaatctc caactggtac tgttattgct 720
gctccattgg tttttacttc taacccagaa aacgttgaac ataccgctaa gtctagattt 780
gatgcttatg ctagaggtcc agctgctaca gctgttttac atgatttttt aggttccggc 840
atcttgaacg ttgatggtga tagttggagg gctcaaagaa agactgcttc ttctgaattc 900
actaccagat ctttgagagc cttcattttg gatgctgttg acggtgaagc tgctggtaga 960
ttattgccat tattgtctag agctgctgct tctggtgaag tttttgactt gcaagatgtc 1020
ttggaaagat tcgccttcga taacatttgc tccattattt tcgatgccga tccaaactgt 1080
ttgaacgata ctcatgatgg tgttggtgaa agattctacc atgcttttca tgatgctacc 1140
ttgttgtcta ctggcagata ttactatcca ttccattggg tttggaggtt gttgagatgg 1200
ttgaatttgg gtactgaaaa gcgtttgaga gatgccgttt ctgatgttca taaggccatt 1260
gatgaattgg tcggttctag aaaaactgaa gttggtacta ctgttagaag gcaaggtggt 1320
ggttctgatt tgttgtcaag atttgctgaa ggtggtgatt actccgatga tgttttaagg 1380
gatgtcttga tcaacttcgt tttggctggt agagatacaa ctccatcagc tttgacttgg 1440
tttttcttta tgatctcctc cagaccagat gttgttgatc aaattttgga cgagatcagg 1500
tccatcagag atcatcaaga tagatctaat ccaaacggtg gtggtggcgg ttttactttg 1560
gaagaattga gagaaatgaa ctacttgcat gctgccatta ccgaatcctt gagattgaat 1620
ccaccagttc cattgatgcc aaagatgtgt atggaagatg atgtattgcc agatggtact 1680
gtagttagaa gaggttggac tgttatgtac tctgcttttg ctatgggtag aaaggctgaa 1740
atttggggtg aagattgcat ggaattcaaa ccagaaagat ggttggatga tggtggttgt 1800
tttaaatctg cttccgctta tagattgcca gcatttcatg ctggtcctag aatttgtttg 1860
ggtaaagata tggcctacat tcagatgaag gctgttgctt catctttgtt ggaaaggttc 1920
gaagttgaag tcgttgaaaa aagaggtaag ccagaattgt ccatcaccat gagaatggac 1980
agaggtttgc cagttagagt gaaagaaaga aagcgtggtt gttaaccgct gatcctagag 2040
ggccgcatca tgtaattagt tatgtcacgc ttacattcac gccctccccc cacatccgct 2100
ctaaccgaaa aggaaggagt tagacaacct gaagtctagg tccctattta tttttttata 2160
gttatgttag tattaagaac gttatttata tttcaaattt ttcttttttt tctgtacaga 2220
cgcgtgtacg catgtaacat tatactgaaa accttgcttg agaaggtttt gggacgctcg 2280
aaggctttaa tttgcaagct gcggccctgc attaatgaat cggccaacgc gcaagcatct 2340
tgccctgtgc ttggccccca gtgcagcgaa cgttataaaa ac 2382
<210> 24
<211> 2769
<212> DNA
<213> Artificial sequence
<400> 24
ggtatagcat gaggtcgctc ttattgacca cacctctacc ggcatgccga atactagcgt 60
tgaatgttag cgtcaacaac aagaagttta atgacgcgga ggccaaggca aaaagattcc 120
ttgattacgt aagggagtta gaatcatttt gaataaaaaa cacgcttttt cagttcgagt 180
ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt agtgattttc 240
ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt acatgcccaa 300
aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga acagtttatt 360
cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag aaaaaaaaag 420
aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt ccattctctt 480
agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac ctcaatggag 540
tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc atgtatctat 600
ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa agctgaaaaa 660
aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt atataaagac 720
ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat tctactttta 780
tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata aacacacata 840
aacaaacaaa atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt 900
gtttattggt gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg 960
tttgaatatc cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag 1020
aaagttgcat ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg 1080
taagatctac aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt 1140
gaacagattc gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt 1200
tgccgatatt ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat 1260
gaagtctttg tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga 1320
ttccgagagg tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc 1380
taaagaagaa gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa 1440
tccaggtgaa ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt 1500
tattgccatg ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc 1560
cactatcttg aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg 1620
tactgataat attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga 1680
tgctgaacaa ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc 1740
taccgctatt actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt 1800
gagagaagaa catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt 1860
gacgtgggaa gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag 1920
attgggtaac atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg 1980
ttacgatatt ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc 2040
tactgtttac gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc 2100
tactgccaga atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt 2160
ggaattggct aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg 2220
ggaattagct gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt 2280
gccaatcaag gtcagaaagt tgtctatttt ggagtaagat taatataatt atataaaaat 2340
attatcttct tttctttata tctagtgtta tgtaaaataa attgatgact acggaaagct 2400
tttttatatt gtttcttttt cattctgagc cacttaaatt tcgtgaatgt tcttgtaagg 2460
gacggtagat ttacaagtga tacaacaaaa agcaaggcgc tttttctaat aaaaagaaga 2520
aaagcattta acaattgaac acctctatat caacgaagaa tattactttg tctctaaatc 2580
cttgtaaaat gtgtacgatc tctatatggg ttactcataa gtgtaccgaa gactgcattg 2640
aaagtttatg ttttttcact ggaggcgtca ttttcgcgtt gagaagatgt tcttatccaa 2700
atttcaactg ttatatagaa gtgatccccc acacaccata gcttcaaaat gtttctactc 2760
cttttttac 2769
<210> 25
<211> 2081
<212> DNA
<213> Artificial sequence
<400> 25
tcctctaatc aggttccacc aaacagatac cccggtgttt cacggaatgg tacgtttgat 60
atcgctgatt tgagaggagg ttacacttga agaatcacag tcttgcgacc ggctattcaa 120
caaggcattc ccccaagttt gaattctttg aaatagattg ctattagcta gtaatccacc 180
aaatccttcg ctgctcacca atggaatcgc aagatgccca cgatgagact gttcaggtta 240
aacgcaaaag aaacacactc tgggaatttc ttcccaaatt gtatctctca atacgcatca 300
acccatgtca attaaacacg ctgtatagag actaggcaga tctgacgatc acctagcgac 360
tctctccacc gtttgacgag gccatttaca aaaacataac gaacgacaag cctactcgaa 420
ttcgtttcca aactcttttc gaacttgtct tcaactgctt tcgcatgaag tacctcccaa 480
ctacttttcc tcacacttgt actccatgac taaacccccc ctcccattac aaactaaaat 540
cttactttta ttttcttttg ccctctctgt cgctctgcct taactacgta tttctcgccg 600
agaaaaactt caatttaagc tattctccaa aaatcttagc gtatattttt tttccaaagt 660
gacaggtgcc ccgggtaacc cagttcatgt ctgcccctaa gaagatcgtc gttttgccag 720
gtgaccacgt tggtcaagaa atcacagccg aagccattaa ggttcttaaa gctatttctg 780
atgttcgttc caatgtcaag ttcgatttcg aaaatcattt aattggtggt gctgctatcg 840
atgctacagg tgttccactt ccagatgagg cgctggaagc ctccaagaag gctgatgccg 900
ttttgttagg tgctgtgggt ggtcctaaat ggggtaccgg tagtgttaga cctgaacaag 960
gtttactaaa aatccgtaaa gaacttcaat tgtacgccaa cttaagacca tgtaactttg 1020
catccgactc tcttttagac ttatctccaa tcaagccaca atttgctaaa ggtactgact 1080
tcgttgttgt cagagaatta gtgggaggta tttactttgg taagagaaag gaagacgatg 1140
gtgatggtgt cgcttgggat agtgaacaat acaccgttcc agaagtgcaa agaatcacaa 1200
gaatggccgc tttcatggcc ctacaacatg agccaccatt gcctatttgg tccttggata 1260
aagctaatgt tttggcctct tcaagattat ggagaaaaac tgtggaggaa accatcaaga 1320
acgaattccc tacattgaag gttcaacatc aattgattga ttctgccgcc atgatcctag 1380
ttaagaaccc aacccaccta aatggtatta taatcaccag caacatgttt ggtgatatca 1440
tctccgatga agcctccgtt atcccaggtt ccttgggttt gttgccatct gcgtccttgg 1500
cctctttgcc agacaagaac accgcatttg gtttgtacga accatgccac ggttctgctc 1560
cagatttgcc aaagaataag gtcaacccta tcgccactat cttgtctgct gcaatgatgt 1620
tgaaattgtc attgaacttg cctgaagaag gtaaggccat tgaagatgca gttaaaaagg 1680
ttttggatgc aggtatcaga actggtgatt taggtggttc caacagtacc accgaagtcg 1740
gtgatgctgt cgccgaagaa gttaagaaaa tccttgctta aatactagcg ttgaatgtta 1800
gcgtcaacaa caagaagttt aatgacgcgg aggccaaggc aaaaagattc cttgattacg 1860
taagggagtt agaatcattt tgaataaaaa acacgctttt tcagttcgag tttatcatta 1920
tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt cctaacttta 1980
tttagtcaaa aaattagcct tttaattctg ctgtaacccg tacatgccca aaataggggg 2040
cgggttacac agaatatata acatcgtagg tgtctgggtg a 2081
<210> 26
<211> 705
<212> DNA
<213> Artificial sequence
<400> 26
agtctaggtc cctatttatt tttttatagt tatgttagta ttaagaacgt tatttatatt 60
tcaaattttt cttttttttc tgtacagacg cgtgtacgca tgtaacatta tactgaaaac 120
cttgcttgag aaggttttgg gacgctcgaa ggctttaatt tgcaagctgc ggccctgcat 180
taatgaatcg gccaacgcgc ctcactattt tttactgcgg aagcggaagc ggaaaatacg 240
gaaacgcgcg ggaacataca aaacatacaa aatatacctt tctcacacaa gaaatatatg 300
ctacttgcaa aatatcatac caaaaaactt ttcacaaccg aaaccaaaac caacggatat 360
catacattac actaccacca ttcaaacttt actactatcc tcccttcagt ttcccttttt 420
ctgccttttt cggtgacgga aatacgcttc agagacccta aagggaaatc catgccataa 480
caggaaagta acatcccaat gcggactata ccaccccacc acactcctac caataacggt 540
aactattcta tgttttctta ctcctatgtc tattcatctt tcatctgact acctaatact 600
atgcaaaaat gtaaaatcat cacacaaaac ataaacaatc aaaatcagcc atttccgcac 660
cttttcctct gtccactttc aaccgtccct ccaaatgtaa aatgg 705
<210> 27
<211> 5337
<212> DNA
<213> Artificial sequence
<400> 27
aactgcggtc aagatatttc ttgaatcagg cgccttagac cgctcggcca aacaaccaat 60
tacttgttga gaaatagagt ataattatcc tataaatata acgtttttga acacacatga 120
acaaggaagt acaggacaat tgattttgaa gagaatgtgg attttgatgt aattgttggg 180
attccatttt taataaggca ataatattag gtatgtggat atactagaag ttctcctcga 240
ccgtcgatat gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcagga 300
aattgtaaac gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tcagctcatt 360
ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat agaccgagat 420
agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tggactccaa 480
cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac catcacccta 540
atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc 600
ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag ggaagaaagc 660
gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac 720
acccgccgcg cttaatgcgc cgctacaggg cgcgtcgcgc cattcgccat tcaggctgcg 780
caactgttgg gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg 840
gggatgtgct gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg 900
taaaacgacg gccagtgagc gcgcgtaata cgactcacta tagggcgaat tgggtaccgg 960
gccccccctc gaggtcgacg gtatcgataa gcttgatatc gaattcctgc agcccggggg 1020
atccactagt tctagagcgg ccgccaccgc ggtggagctc cagcttttgt tccctttagt 1080
gagggttaat tgcgcgcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt 1140
atccgctcac aattccacac aacataggag ccggaagcat aaagtgtaaa gcctggggtg 1200
cctaatgagt gaggtaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg 1260
gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc 1320
gtattgggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 1380
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1440
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1500
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1560
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1620
gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc 1680
tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 1740
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 1800
ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 1860
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 1920
tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 1980
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 2040
ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 2100
aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 2160
aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa 2220
aatgaagttt taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat 2280
gcttaatcag tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct 2340
gactccccgt cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg 2400
caatgatacc gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag 2460
ccggaagggc cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta 2520
attgttgccg ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg 2580
ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg 2640
gttcccaacg atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct 2700
ccttcggtcc tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta 2760
tggcagcact gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg 2820
gtgagtactc aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc 2880
cggcgtcaat acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg 2940
gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga 3000
tgtaacccac tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg 3060
ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat 3120
gttgaatact catactcttc ctttttcaat attattgaag catttatcag ggttattgtc 3180
tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca 3240
catttccccg aaaagtgcca cctgaacgaa gcatctgtgc ttcattttgt agaacaaaaa 3300
tgcaacgcga gagcgctaat ttttcaaaca aagaatctga gctgcatttt tacagaacag 3360
aaatgcaacg cgaaagcgct attttaccaa cgaagaatct gtgcttcatt tttgtaaaac 3420
aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag 3480
aacagaaatg caacgcgaga gcgctatttt accaacaaag aatctatact tcttttttgt 3540
tctacaaaaa tgcatcccga gagcgctatt tttctaacaa agcatcttag attacttttt 3600
ttctcctttg tgcgctctat aatgcagtct cttgataact ttttgcactg taggtccgtt 3660
aaggttagaa gaaggctact ttggtgtcta ttttctcttc cataaaaaaa gcctgactcc 3720
acttcccgcg tttactgatt actagcgaag ctgcgggtgc attttttcaa gataaaggca 3780
tccccgatta tattctatac cgatgtggat tgcgcatact ttgtgaacag aaagtgatag 3840
cgttgatgat tcttcattgg tcagaaaatt atgaacggtt tcttctattt tgtctctata 3900
tactacgtat aggaaatgtt tacattttcg tattgttttc gattcactct atgaatagtt 3960
cttactacaa tttttttgtc taaagagtaa tactagagat aaacataaaa aatgtagagg 4020
tcgagtttag atgcaagttc aaggagcgaa aggtggatgg gtaggttata tagggatata 4080
gcacagagat atatagcaaa gagatacttt tgagcaatgt ttgtggaagc ggtattcgca 4140
atattttagt agctcgttac agtccggtgc gtttttggtt ttttgaaagt gcgtcttcag 4200
agcgcttttg gttttcaaaa gcgctctgaa gttcctatac tttctagaga ataggaactt 4260
cggaatagga acttcaaagc gtttccgaaa acgagcgctt ccgaaaatgc aacgcgagct 4320
gcgcacatac agctcactgt tcacgtcgca cctatatctg cgtgttgcct gtatatatat 4380
atacatgaga agaacggcat agtgcgtgtt tatgcttaaa tgcgtactta tatgcgtcta 4440
tttatgtagg atgaaaggta gtctagtacc tcctgtgata ttatcccatt ccatgcgggg 4500
tatcgtatgc ttccttcagc actacccttt agctgttcta tatgctgcca ctcctcaatt 4560
ggattagtct catccttcaa tgctatcatt tcctttgata ttggatcata ctaagaaacc 4620
attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtctcgcg 4680
cgtttcggtg atgacggtga aaacctctga cacatgcagc tcccggagac ggtcacagct 4740
tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg gcgcgtcagc gggtgttggc 4800
gggtgtcggg gctggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat 4860
atcgactacg tcgtaaggcc gtttctgaca gagtaaaatt cttgagggaa ctttcaccat 4920
tatgggaaat gcttcaagaa ggtattgact taaactccat caaatggtca ggtcattgag 4980
tgttttttat ttgttgtatt tttttttttt tagagaaaat cctccaatat caaattagga 5040
atcgtagttt catgattttc tgttacacct aactttttgt gtggtgccct cctccttgtc 5100
aatattaatg ttaaagtgca attctttttc cttatcacgt tgagccatta gtatcaattt 5160
gcttacctgt attcctttac tatcctcctt tttctccttc ttgataaatg tatgtagatt 5220
gcgtatatag tttcgtctac cctatgaaca tattccattt tgtaatttcg tgtcgtttct 5280
attatgaatt tcatttataa agtttatgta caaatatcat aaaaaaagag aatcttt 5337
<210> 28
<211> 1120
<212> DNA
<213> Artificial sequence
<400> 28
atttcattta taaagtttat gtacaaatat cataaaaaaa gagaatcttt ttagttttgc 60
tggccgcatc ttctcaaata tgcttcccag cctgcttttc tgtaacgttc accctctacc 120
ttagcatccc ttccctttgc aaatagtcct cttccaacaa taataatgtc agatcctgta 180
gagaccacat catccacggt tctatactgt tgacccaatg cgtctccctt gtcatctaaa 240
cccacaccgg gtgtcataat caaccaatcg taaccttcat ctcttccacc catgtctctt 300
tgagcaataa agccgataac aaaatctttg tcgctcttcg caatgtcaac agtaccctta 360
gtatattctc cagtagatag ggagcccttg catgacaatt ctgctaacat caaaaggcct 420
ctaggttcct ttgttacttc ttctgccgcc tgcttcaaac cgctaacaat acctgggccc 480
accacaccgt gtgcattcgt aatgtctgcc cattctgcta ttctgtatac acccgcagag 540
tactgcaatt tgactgtatt accaatgtca gcaaattttc tgtcttcgaa gagtaaaaaa 600
ttgtacttgg cggataatgc ctttagcggc ttaactgtgc cctccatgga aaaatcagtc 660
aagatatcca catgtgtttt tagtaaacaa attttgggac ctaatgcttc aactaactcc 720
agtaattcct tggtggtacg aacatccaat gaagcacaca agtttgtttg cttttcgtgc 780
atgatattaa atagcttggc agcaacagga ctaggatgag tagcagcacg ttccttatat 840
gtagctttcg acatgattta tcttcgtttc ctgcaggttt ttgttctgtg cagttgggtt 900
aagaatactg ggcaatttca tgtttcttca acactacata tgcgtatata taccaatcta 960
agtctgtgct ccttccttcg ttcttccttc tgttcggaga ttaccgaatc aaaaaaattt 1020
caaagaaacc gaaatcaaaa aaaagaataa aaaaaaaatg atgaattgaa agtgatcccc 1080
cacacaccat agcttcaaaa tgtttctact ccttttttac 1120
<210> 29
<211> 2204
<212> DNA
<213> Artificial sequence
<400> 29
agtgatcccc cacacaccat agcttcaaaa tgtttctact ccttttttac tcttccagat 60
tttctcggac tccgcgcatc gccgtaccac ttcaaaacac ccaagcacag catactaaat 120
ttcccctctt tcttcctcta gggtgtcgtt aattacccgt actaaaggtt tggaaaagaa 180
aaaagagacc gcctcgtttc tttttcttcg tcgaaaaagg caataaaaat ttttatcacg 240
tttctttttc ttgaaaattt ttttttttga tttttttctc tttcgatgac ctcccattga 300
tatttaagtt aataaacggt cttcaatttc tcaagtttca gtttcatttt tcttgttcta 360
ttacaacttt ttttacttct tgctcattag aaagaaagca tagcaatcta atctaagttt 420
taattacaaa atgttcccat tggccattat cgttttgttg ttcccaactc tgctgttgtt 480
gtttattggt gttgctttgg gtttgagatc tggtgctaat gaatcttgga aaaagagggg 540
tttgaatatc cctccaggtt ctatgggttg gcctttgttg ggtgaaacta ttgcttttag 600
aaagttgcat ccatgcacat ctttgggtga gtatatggaa gatagattgc agagatacgg 660
taagatctac aggtctaatt tgtttggtgc tccaactgtt gtttctgctg atgctgaatt 720
gaacagattc gttttgatga acgatggcaa gttgtttgaa ccatcttggc caaaatctgt 780
tgccgatatt ttgggtaaga cctccatgtt ggttttgact ggtgaaatgc acaggtacat 840
gaagtctttg tctgttaact tcatgggtat cgccagattg agaaatcatt tcttgggtga 900
ttccgagagg tacattttgg aaaatttggc tacttggaaa gagggtgttc catttccagc 960
taaagaagaa gcttgtaaga tcacctttaa cctgatggtc aagaacatct tgtctatgaa 1020
tccaggtgaa ccagaaaccg aaagattgag gatcttgtac atgtctttca tgaagggtgt 1080
tattgccatg ccattgaatt ttccaggtac tgcttacaga aaggccattc aatctagagc 1140
cactatcttg aaaaccatcg aacacttgat ggaagatcgt ttggaaaaaa agaaggccgg 1200
tactgataat attggtgaag ctgatttgtt gggcttcatc ttggaacaat ctaacttgga 1260
tgctgaacaa ttcggtgact tgttgttggg tttgttattt ggtggtcacg aaacatcttc 1320
taccgctatt actttggcta tctacttctt ggaaggttgt ccaaaagctg tccaagaatt 1380
gagagaagaa catttgaact tggtcaggat gaagaaacag agaggtgaat ctaaagcttt 1440
gacgtgggaa gattacaagt ctatggattt cgctcaatgc gttgtctctg aaactttgag 1500
attgggtaac atcatcaagt tcgttcacag aaaagctaac accgatgtcc aattcaaggg 1560
ttacgatatt ccatctggtt ggtctgttat tccagttttt gctgctgctc atttggatcc 1620
tactgtttac gataatccac aaaagttcga tccttggaga tggcaaacta tctcttcatc 1680
tactgccaga atcgataact acatgccatt tggtcaaggt ttgagaaatt gtgctggttt 1740
ggaattggct aagatggaaa ttgctgtttt cttgcaccac ttggtcttga atttcgattg 1800
ggaattagct gaaccagatc atccattggc ttatgctttt ccagaattcg aaaaaggctt 1860
gccaatcaag gtcagaaagt tgtctatttt ggagtaaccg ctgatcctag agggccgcat 1920
catgtaatta gttatgtcac gcttacattc acgccctccc cccacatccg ctctaaccga 1980
aaaggaagga gttagacaac ctgaagtcta ggtccctatt tattttttta tagttatgtt 2040
agtattaaga acgttattta tatttcaaat ttttcttttt tttctgtaca gacgcgtgta 2100
cgcatgtaac attatactga aaaccttgct tgagaaggtt ttgggacgct cgaaggcttt 2160
aatttgcaag ctgcggccct gcattaatga atcggccaac gcgc 2204
Claims (10)
1. A recombinant bacterium is obtained by carrying out the following 1) transformation on a base yeast containing a relevant gene of a diosgenin synthesis path:
1) allowing the saccharomyces cerevisiae with the chassis to express a steroid 22 hydroxylase gene;
or allowing the saccharomyces cerevisiae chassis to express a steroid 22-hydroxylase gene and increasing the expression of a nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase SvvCPR gene in the genome of the saccharomyces cerevisiae chassis;
the genes related to the dioscin synthetic pathway are 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1, alpha-aminooxalate reductase gene Lys2, mevalonate kinase gene ERG12, isopentenyl pyrophosphate isomerase gene IDI1, mevalonate decarboxylase gene ERG19, 3-hydroxy-3-methylglutaryl coenzyme A reductase gene HMGR, 3-hydroxy-3-methylglutaryl coenzyme A gene ERG13, mevalonate kinase gene ERG8, acetyl coenzyme A acyl transferase gene ERG10, squalene synthase gene AtSQS, farnesyl pyrophosphate synthase gene SmFPS, squalene epoxide gene ERG1, sterol 26-position nicotinamide hydroxylase gene CYP94N, adenine dinucleotide phosphate-cytochrome P450 reductase gene SvvvvvvvvvVsQS, sterol 16, 22 dihydroxy oxidase gene DG 90G, and alpha-aminoglutaryl reductase gene Lys2, Sterol 7-position reductase gene StDWF5 and/or sterol 24-position reductase gene GgDHCR 24.
2. The recombinant bacterium according to claim 1, wherein: the steroid 22-hydroxylase gene is derived from rhizoma et radix Veratri, Arabidopsis thaliana, tomato or dioscorea zingiberensis.
3. The recombinant bacterium according to claim 1 or 2, wherein:
the steroid 22-hydroxylase gene is any one of the following 1) -3):
1) a protein encoded by the nucleotide shown in the 482-1937 position of the sequence 19 in the sequence table;
2) protein derived from the protein with the same function as 1) obtained by substituting and/or deleting and/or adding 1) one or more amino acid residues;
3) a protein having 95% or more identity to 1) and having the same function as 1).
4. The recombinant bacterium according to any one of claims 1 to 3, wherein:
the recombinant bacteria are obtained by carrying out the transformation of the step 1) and the step 2) in the Chassis yeast containing the relevant genes of the diosgenin synthesis path:
2) and improving the expression of sterol 26 hydroxylase genes VcCYP94N, sterol 16, 22 dioxygenase genes DGCYP90G and steroid 22 hydroxylase genes in the genome of the saccharomyces cerevisiae with the chassis.
5. The recombinant bacterium according to claim 4, wherein:
the sterol 26-site hydroxylase gene VcCYP94N, sterol 16, 22-site dioxygenase gene DGCYP90G and the expression of the steroid 22-site hydroxylase gene in the genome of the saccharomyces cerevisiae with the improved chassis are obtained by integrating an expression cassette of the sterol 26-site reductase gene VcCYP94N, an expression cassette of the sterol 16, 22-site dioxygenase gene DGCYP90G and an expression cassette of the steroid 22-site hydroxylase gene into the genome of the saccharomyces cerevisiae containing the tHMG1 and Lys2 genes;
the expression cassette of the VcCYP94N comprises a TEF1 promoter, a VcCYP94N gene derived from veratrum mongolicum and a CYC1 terminator;
the DGCYP90G expression cassette comprises a TDH3 promoter, a dioscorea zingiberensis-derived DGCYP90G gene and a TPI1 terminator;
the expression cassette of the steroid 22-position hydroxylase gene comprises a PGK1 promoter, a rhizoma et radix Veratri-derived VcCYP90B27 gene and an ADH1 terminator.
6. The recombinant bacterium according to claim 4 or 5, wherein:
the recombinant bacteria are obtained by carrying out the transformation of 1), 2) and 3) in the base yeast containing the relevant genes of the diosgenin synthesis path:
3) expressing the sterol 16, 22 dioxygenase gene DGCYP90G in a plasmid form in saccharomyces cerevisiae of the chassis in high copy.
7. The recombinant bacterium according to any one of claims 1 to 6, wherein:
the saccharomyces cerevisiae on the chassis is obtained by modifying according to at least one of the following A) to D):
A) increasing the expression of 3-hydroxy-3-methylglutaryl-coa reductase 1 gene tmg 1, mevalonate kinase gene ERG12, isopentenyl pyrophosphate isomerase gene IDI1, mevalonate decarboxylase gene ERG19, 3-hydroxy-3-methylglutaryl-coa reductase gene HMGR, 3-hydroxy-3-methylglutaryl-coa gene ERG13, mevalonate kinase gene ERG8 and acetyl-coa acyl transferase gene ERG10 in the genome of said s.cerevisiae containing 3-hydroxy-3-methylglutaryl-coa reductase 1 gene tmg 1 and said α -aminooxalate reductase gene Lys 2;
B) increasing the expression of squalene synthase gene AtSQS, farnesyl pyrophosphate synthase gene SmFPS and squalene epoxidase gene ERG1 in the Saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and the alpha-aminooxalate reductase gene Lys 2;
C) expressing sterol 26 hydroxylase gene VcCYP94N, nicotinamide adenine dinucleotide phosphate-cytochrome P450 reductase gene SvvCPR, sterol 16, 22 dihydroxyoxidase gene DGCYP90G, sterol 7 reductase gene StDWF5 and/or sterol 24 reductase gene GgDHCR24 in the Saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and the alpha-aminooxalate reductase gene Lys 2;
D) knocking out alcohol acetylase gene ATF2 in the saccharomyces cerevisiae genome containing 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 gene tHMG1 and the alpha-aminooxalate reductase gene Lys 2.
8. The recombinant bacterium according to claim 7, wherein:
in the B, the improvement is obtained by integrating a VcCYP94N expression cassette, a SvvCPR expression cassette, a DGCYP90G expression cassette, a StDWF5 expression cassette and/or a GgDHCR24 expression cassette into the saccharomyces cerevisiae genome containing the tHMG1 and Lys2 genes;
the VcCYP94N expression cassette comprises a PGK1 promoter, a VcCYP94N gene derived from veratrum nigrum and an ADH1 terminator;
the SvvCPR expression cassette comprises a TDH3 promoter, a SvvCPR gene derived from grapes and a TPI1 terminator;
the DGCYP90G expression cassette comprises a TEF1 promoter, a DGCYP90G gene derived from dioscorea zingiberensis and a CYC1 terminator;
the StDWF5 expression cassette comprises a PGK1 promoter, a StDWF5 gene derived from potatoes and an ADH1 terminator;
the GgDHCR24 expression cassette comprises a TEF1 promoter, a GgDHCR24 gene derived from a chicken and a CYC1 terminator.
9. A method for preparing the recombinant bacterium of any one of claims 1 to 8, which is prepared by the method for modifying the recombinant bacterium of any one of claims 1 to 8.
10. A recombinant bacterium obtained by the method according to any one of claims 4 to 9;
or, the recombinant bacterium or the recombinant bacterium obtained by the method of claim 9 is applied to producing diosgenin or improving the yield of diosgenin;
or, a method for producing diosgenin, comprising the following steps: fermenting and culturing the recombinant bacteria to obtain the diosgenin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110176223.3A CN114907997B (en) | 2021-02-07 | 2021-02-07 | Construction and application of diosgenin synthetic strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110176223.3A CN114907997B (en) | 2021-02-07 | 2021-02-07 | Construction and application of diosgenin synthetic strain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114907997A true CN114907997A (en) | 2022-08-16 |
CN114907997B CN114907997B (en) | 2024-02-06 |
Family
ID=82761954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110176223.3A Active CN114907997B (en) | 2021-02-07 | 2021-02-07 | Construction and application of diosgenin synthetic strain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114907997B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547868A (en) * | 1993-06-09 | 1996-08-20 | Regents Of The University Of California | Cholesterol disposal fusion enzymes |
CN106967775A (en) * | 2017-04-05 | 2017-07-21 | 中国医学科学院医药生物技术研究所 | Living things catalysis prepares the method and its microbial inoculum used of diosgenin |
CN109097342A (en) * | 2018-08-09 | 2018-12-28 | 中国科学院天津工业生物技术研究所 | Mould middle 11 B-hydroxylase of steroid of Absidia and its encoding gene and application |
CN109097343A (en) * | 2018-08-09 | 2018-12-28 | 中国科学院天津工业生物技术研究所 | 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata |
EP3699282A1 (en) * | 2017-10-19 | 2020-08-26 | Ajinomoto Co., Inc. | Method for producing sterol |
-
2021
- 2021-02-07 CN CN202110176223.3A patent/CN114907997B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5547868A (en) * | 1993-06-09 | 1996-08-20 | Regents Of The University Of California | Cholesterol disposal fusion enzymes |
CN106967775A (en) * | 2017-04-05 | 2017-07-21 | 中国医学科学院医药生物技术研究所 | Living things catalysis prepares the method and its microbial inoculum used of diosgenin |
EP3699282A1 (en) * | 2017-10-19 | 2020-08-26 | Ajinomoto Co., Inc. | Method for producing sterol |
CN109097342A (en) * | 2018-08-09 | 2018-12-28 | 中国科学院天津工业生物技术研究所 | Mould middle 11 B-hydroxylase of steroid of Absidia and its encoding gene and application |
CN109097343A (en) * | 2018-08-09 | 2018-12-28 | 中国科学院天津工业生物技术研究所 | 11 B-hydroxylase of steroid and its encoding gene and application in Curvuluria Iunata |
Non-Patent Citations (5)
Title |
---|
LIPING XU ET AL.: "Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production", 《METABOLIC ENGINEERING》, vol. 70, pages 115 - 128 * |
SHANHUI XU ET AL.: "Engineering of Phytosterol-Producing Yeast Platforms for Functional Reconstitution of Downstream Biosynthetic Pathways", 《ACS SYNTH. BIOL.》, pages 1 - 14 * |
SHANHUI XU ET AL.: "Yeast as a promising heterologous host for steroid bioproduction", 《JOURNAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY》, vol. 47, no. 10, pages 829 - 843, XP037289197, DOI: 10.1007/s10295-020-02291-7 * |
YAN YIN ET AL.: "A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway", 《PHYTOCHEMISTRY》, pages 116 - 123 * |
YUEHAO GU ET AL.: "etabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast", 《BIORESOURCES AND BIOPROCESSING》, vol. 8, no. 1, pages 1 - 14 * |
Also Published As
Publication number | Publication date |
---|---|
CN114907997B (en) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102021914B1 (en) | Production of acetyl-coenzyme a derived isoprenoids | |
CN109777761B (en) | Construction and application of engineering bacteria for secretory expression of chitobiose deacetylase | |
CN106795484B (en) | Alpha (1,2) fucosyltransferase variants for use in the production of fucosylated oligosaccharides | |
CA2714592C (en) | A pentose sugar fermenting cell | |
CA2794817C (en) | Cell suitable for fermentation of a mixed sugar composition | |
CN111556873A (en) | Fermentative production of N-acetylneuraminic acid | |
CN107429269A (en) | The method for being used to produce at least one metabolin interested by converting pentose in microorganism | |
CN107058404A (en) | Using restructuring yeast strains from glucose, galactolipin and arabinose fermentative production of ethanol | |
KR20120051705A (en) | Transformant and process for production thereof, and process for production of lactic acid | |
CN113862235B (en) | Chimeric enzyme and application and method thereof in one-step reaction synthesis of Cap0 mRNA in vitro | |
CN107604004A (en) | Tracer target practice plasmid for vaccinia virus Tiantan strain TK genes and preparation method thereof | |
CN110944656A (en) | Novel polynucleotides encoding human FKRP proteins | |
CN108718529B (en) | Mutant microorganism for producing L-cysteine and method for producing L-cysteine using the same | |
WO1992017581A1 (en) | Mammalian expression vector | |
CN114907997B (en) | Construction and application of diosgenin synthetic strain | |
DK3022290T3 (en) | MODIFIED ALGE STREAMS AND PROCEDURE FOR TRIACYLGYCLEROL ACCUMULATION WITH USING THESE STRAINS | |
CN113046369B (en) | Novel mRNA vaccine of coronavirus | |
CN114716520B (en) | Pichia kudriavzevii tricarboxylic acid transporter as well as encoding gene and application thereof | |
CN110607267B (en) | Sheep listeria balanced lethal system, construction method and application | |
CN111206024B (en) | Engineering bacterium for expressing pectate endo-hydrolase and application thereof | |
CN111560392B (en) | MiRNA expression vector and application thereof | |
CN112080439B (en) | Application of human apoptosis regulatory protein Bcl-2 in increasing yield of saccharomyces cerevisiae nerolidol | |
CN107557383A (en) | A kind of Cruciferae endogenous gene silencing methods of TYMV virus inductions and its application | |
KR102454110B1 (en) | Recombinant plasmids and mutant strains for screening inhibitors of ppGpp biosynthesis-related gene expression | |
CN114277047B (en) | Application of high-throughput screening tool for obtaining effective NHEJ system from escherichia coli in escherichia coli gene editing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |