CN114891652B - Acid-resistant saccharomyces cerevisiae and application thereof - Google Patents

Acid-resistant saccharomyces cerevisiae and application thereof Download PDF

Info

Publication number
CN114891652B
CN114891652B CN202210296692.3A CN202210296692A CN114891652B CN 114891652 B CN114891652 B CN 114891652B CN 202210296692 A CN202210296692 A CN 202210296692A CN 114891652 B CN114891652 B CN 114891652B
Authority
CN
China
Prior art keywords
ser
pro
leu
gln
asn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210296692.3A
Other languages
Chinese (zh)
Other versions
CN114891652A (en
Inventor
刘龙
陈坚
吕雪芹
堵国成
李江华
刘延峰
孙利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210296692.3A priority Critical patent/CN114891652B/en
Publication of CN114891652A publication Critical patent/CN114891652A/en
Application granted granted Critical
Publication of CN114891652B publication Critical patent/CN114891652B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses acid-resistant saccharomyces cerevisiae and application thereof, and belongs to the technical field of metabolic engineering. The invention takes Saccharomyces cerevisiae S288C as an initial strain, knocks out a domain HMG in a ROX1 transcription regulatory factor of the Saccharomyces cerevisiae S288C, or mutates G158A in the ROX1 transcription regulatory factor, thereby obtaining the acid-resistant Saccharomyces cerevisiae. According to the invention, 5 mutations with different degrees are carried out on ROX1, and experimental data show that when the ROX1 structural domain HMG is damaged with different degrees, the good acid resistance effect can be achieved as well: at pH2.32, the growth phenotype (maximum OD 600 ) The improvement is 14-15 times.

Description

Acid-resistant saccharomyces cerevisiae and application thereof
Technical Field
The invention belongs to the technical field of metabolic engineering, and particularly relates to acid-resistant saccharomyces cerevisiae and application thereof.
Background
Saccharomyces cerevisiae is one of the main chassis cells for microbial fermentation production because of the advantages of short growth cycle, strong fermentation capacity, good mass production performance and the like. In recent years, researchers have focused on increasing the tolerance of Saccharomyces cerevisiae to various stresses, such as temperature, pH, osmotic pressure (salts, alcohols), etc., to increase the tolerance of cells in different environments. For example, to obtain a strain of Saccharomyces cerevisiae that is tolerant to high temperatures and produces ethanol, a homotype strain having high ethanol productivity is crossed with a heterotype strain exhibiting a high temperature resistant phenotype to obtain hybrid TJ14, which can synthesize ethanol efficiently at high temperatures. In order to increase the tolerance of cells to ethanol, which is the most common stress of yeast cells, the mechanism of ethanol tolerance has been reported to be mainly related to changes in membrane composition, as well as to stabilization or repair of denatured proteins.
Furthermore, the ability to design cell stress resistance based on specific circumstances may find application in basic research and biological manufacturing, while Saccharomyces cerevisiae has received high attention from researchers. For example, strains capable of tolerating aromatic acids (pH 3.5) were obtained by laboratory adaptive evolution, and further analysis indicated that overexpression of the aromatic acid transporter ESBP6 was a key factor in improving tolerance to low pH. Meanwhile, previous reports indicate that overexpression of proton pumps PMA1 and PMA2 can increase acid resistance of yeast, and that Pdr18 (ABC transporter) participates in the reaction of yeast to acetic acid stress. However, proton pumps or other ABC transporters can enhance the acid resistance of the strain, but only the tolerance to weak acids (ph 4.0-5.8). Thus, the acid resistance of yeast is still far from meeting the needs of the lower pH environment created by industrial production.
The organic acid produced by the microorganism reported at present is mainly prepared by adding a neutralizer (such as calcium carbonate) to adjust the low pH value of the fermentation process to form organic acid salt, and then carrying out complex procedures such as acidolysis, separation, purification and the like. On the one hand, the cost and the working procedure of product separation and purification are increased, and on the other hand, if the neutralizing agent is added in the earlier stage, the waste of resources and the pollution of the environment are also caused.
Disclosure of Invention
In order to solve the technical problems, the invention provides acid-resistant saccharomyces cerevisiae and application thereof. Therefore, the invention provides a novel acid-resistant mechanism and a construction method, and provides a theoretical basis for the construction of acid-resistant chassis cells.
The first object of the invention is to provide an acid-resistant saccharomyces cerevisiae, which is obtained by taking saccharomyces cerevisiae S288C as an initial strain, knocking out a domain HMG in a ROX1 transcription regulatory factor of saccharomyces cerevisiae S288C or mutating G158A in the ROX1 transcription regulatory factor; the amino acid sequence of the ROX1 transcription regulating factor is shown as SEQ ID NO. 11.
In one embodiment of the invention, the nucleotide sequence of the G158A mutated site is shown as SEQ ID NO.1, and the encoded amino acid sequence is shown as SEQ ID NO. 2.
In one embodiment of the invention, one or more of the 8aa-91aa fragment, 54aa-368aa fragment, 1aa-53aa fragment, 1aa-7aa fragment, or 92aa-368aa fragment in the ROX1 is knocked out.
In one embodiment of the invention, after the 8aa-91aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID NO.3, and the encoded amino acid sequence is shown as SEQ ID NO. 4.
In one embodiment of the invention, after 54aa-368aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID NO.5, and the encoded amino acid sequence is shown as SEQ ID NO. 6.
In one embodiment of the invention, after 1aa-53aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID NO.7, and the encoded amino acid sequence is shown as SEQ ID NO. 8.
In one embodiment of the invention, after the 1aa-7aa fragment and the 92aa-368aa fragment are knocked out simultaneously, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID NO.9, and the encoded amino acid sequence is shown as SEQ ID NO. 10.
A second object of the present invention is to provide a product comprising said acid-tolerant Saccharomyces cerevisiae.
The third object of the invention is to provide the acid-resistant saccharomyces cerevisiae, or the application of the product in the fermentation production of L-malic acid.
In one embodiment of the invention, the conditions of the fermentation: the fermentation temperature is 28-32 ℃ and the fermentation time is 60-108h.
In order to solve the problem that the acid-resistant saccharomyces cerevisiae which is obtained at present tolerates extremely low pH, the invention firstly provides a transcription regulatory factor ROX1 and a mutant mROX1 thereof, wherein the 158 th position of the mROX1 base is mutated from G to A, the corresponding amino acid is mutated from tryptophan Trp to a stop codon, and the mutation site is positioned in the structure of ROX1Domain HMG (8 aa-91 aa). By reverse engineering, the corresponding point mutation G158A is carried out in the ROX1 of the wild-type Saccharomyces cerevisiae, and the important role of the ROX1 mutant in the acid-resistant process of the yeast is verified: at pH2.32, the growth phenotype (maximum OD 600 ) The growth rate is increased by 15.41 times and the maximum growth rate is 0.37h -1 The method comprises the steps of carrying out a first treatment on the surface of the Meanwhile, in order to further analyze the function of ROX1 in the acid-resistant process and whether other mutations have acid-resistant effect, in the invention, the ROX1 is subjected to other 5 different degrees of mutations, and experimental data show that when the ROX1 structural domain HMG is damaged to different degrees, the good acid-resistant effect can be achieved as well: at pH2.32, the growth phenotype (maximum OD 600 ) The improvement is 14-15 times.
Compared with the prior art, the technical scheme of the invention has the following advantages:
in the invention, the transcriptional regulation ROX1 and the mutant gene thereof are found to be capable of effectively improving the tolerance to low pH in Saccharomyces cerevisiae. Experimental data shows that compared with wild Saccharomyces cerevisiae, different mutants of transcription regulatory factor ROX1 can improve acid resistance phenotype by about 15 times. Meanwhile, the acid-resistant strain WT delta ROX1 is taken as chassis cells, the metabolic transformation is performed to synthesize the L-malic acid, and the yield of the acid-resistant strain WT delta ROX1 malic acid is 2.5 times that of the strain WT under the condition that a neutralizing agent is not added in the fermentation process. Therefore, the method has higher application value for constructing the acid-resistant saccharomyces cerevisiae.
Drawings
In order that the invention may be more readily understood, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings, in which
FIG. 1 shows an acid resistance verification analysis of the transcription regulatory factor ROX1 and its mutant mROX1 of the present invention.
FIG. 2 shows an acid-resistant function analysis of other mutants of the transcription regulatory factor ROX1 of the invention.
FIG. 3 is an analysis of the synthesis of L-malic acid by Saccharomyces cerevisiae, which is resistant to acid according to the present invention.
Detailed Description
The present invention will be further described with reference to the accompanying drawings and specific examples, which are not intended to be limiting, so that those skilled in the art will better understand the invention and practice it.
Example 1 transcription regulatory factor ROX1 and acid resistance verification of mutant mROX1 thereof
(1) The original ROX1 gene is replaced in the original strain WT by using a wild Saccharomyces cerevisiae S288C genome template and adopting primers (mROX 1-up-F, mROX1-up-R, mROX1-His-F, mROX1-His-R, ROX1-down-F, ROX 1-down-R).
Primer sequence:
mROX1-up-F:ACGAAGTAGAAGGGCTTACAAC
mROX1-up-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
mROX1-His-F:CAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATGA
mROX1-His-R:AATATAACGGAAAGAAGAAATGGAAAAAAAAAATAAAACGACGGCCAGTGCCAA
mROX1-down-F:TCGACCTTGGCACTGGCCGTCGTTTTATTTTTTTTTTCCATTTCTTCTTTCCGTT
mROX1-down-R:GAACTGGAAGTCTTTGTAAAAGCT
(2) And (3) replacing the original gene of the original strain S288C by using the gene fragment obtained in the step (1) by using a homologous recombination method, wherein the strain is named as WT-mROX1.
(3) To verify the effect of mROX1 on yeast acid resistance, growth of yeast WT-mROX1 was measured at pH2.32 and compared to the starting strain WT. As shown in FIG. 1, the growth of WT-mROX1 was significantly improved over WT (15.41-fold increase in OD600 maximum, 0.37h maximum growth rate) -1 )。
Example 2 analysis of acid-proof function of other mutants of transcription regulatory factor ROX1
(1) To verify the effect of other mutations of ROX1 on acid resistance, 5 different degrees of mutation were selected, and different mutants of ROX1 were constructed in wild saccharomyces cerevisiae S288C using the primers shown below, wherein part of the sequences were universal primers as follows:
primer sequence:
ROX1-up-F:ACAAATCCCCTGGATATCATTG
ROX1-His-R:AATATAACGGAAAGAAGAAATGGAAAAAAAAAATAAAACGACGGCCAG TGCCAA
ROX1-down-F:TCGACCTTGGCACTGGCCGTCGTTTTATTTTTTTTTTCCATTTCTTCTTTC CGTT
ROX1-down-R:GAACTGGAAGTCTTTGTAAAAGCT
(1) wherein the WT-DeltaROX 1 strain was constructed by completely knocking out ROX1 (1 aa-368 aa) in the WT strain using general primers (ROX 1-up-F, ROX1-His-R, ROX1-down-F and ROX 1-down-R) and the following primers (DeltaROX 1-up-R, deltaROX 1-His-F).
Primer sequence:
ΔROX1-up-R:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGTGTTGATTGTCTAACTGCG TTCT
ΔROX1-His-F:CACACAAAAGAACGCAGTTAGACAATCAACACAGGAAACAGCTATGACCATGA
(2) wherein the WT-DeltaROX 1-1 strain was constructed by knocking out a partial sequence of ROX1 (1 aa-53 aa) in the WT strain using a general primer (ROX 1-up-F, ROX1-His-R, ROX1-down-F, ROX 1-down-R) and the following primer (DeltaROX 1-1-up-R, deltaROX 1-1-His-F).
Primer sequence:
ΔROX1-1-up-R:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
ΔROX1-1-His-F:CATAATTCAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATG
(3) wherein the WT-DeltaROX 1 strain was constructed by knocking out a partial sequence of ROX1 (54 aa-368 aa) in the WT strain using a general primer (ROX 1-up-F, ROX1-His-R, ROX1-down-F, ROX 1-down-R) and the following primer (DeltamROX 1-R, deltamROX 1-His-F).
Primer sequence:
ΔmROX1-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
ΔmROX1-His-F:CAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATGA
(4) wherein the WT-. DELTA.ROX 1 (HMG) strain was constructed by knocking out a partial sequence of ROX1 (1 aa-7aa,92aa-368 aa) in the WT strain using a general primer (ROX 1-His-R, ROX1-down-F, ROX 1-down-R) and the following primers (ROX 1 (HMG) -F1, ROX1 (HMG) -R1, ROX1 (HMG) -F2, ROX1 (HMG) -His-F).
Primer sequence:
ROX1(HMG)-F1:ACAAATCCCCTGGATATCATTG
ROX1(HMG)-R1:AACAGAATAAATGCGTTCTTGGGTCTTGGAATCTTTGTTGATTGTCTAAC TGCGTTC
ROX1(HMG)-F2:TCACACAAAAGAACGCAGTTAGACAATCAACAAAGATTCCAAGACCCA AGAAC
ROX1(HMG)-R2:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGTTCCTTCAAAAGTAGTTG CTTCT
ROX1(HMG)-His-F:AGTCTAAGAAGAAGCAACTACTTTTGAAGGAACAGGAAACAGCTATGA CCATGA
(5) wherein the WT-. DELTA.HMG strain was constructed by knocking out a part of the ROX1 sequence (8 aa-91 aa) in the WT strain using the general primer (ROX 1-up-F) and the following primers (. DELTA.HMG-R,. DELTA.HMG-His-F,. DELTA.HMG-His-R,. DELTA.HMG-down-F,. DELTA.HMG-down-R).
Primer sequence:
ΔHMG-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAA ATGTT
ΔHMG-His-F:ATTCAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACC ATGA
ΔHMG-His-R:GTTGCTCGATTTCCTTCAAAAGTAGTTGCTTCTTTAAAACGACGGCCAGT GCCAA
ΔHMG-down-F:AAGTCGACCTTGGCACTGGCCGTCGTTTTAAAGAAGCAACTACTTTTGA AGGAA
ΔHMG-down-R:TCATTTCGGAGAAACTAGGCT
(2) The 5 ROX1 mutants obtained in the above step (1) were subjected to growth measurement at pH2.32 and compared with the starting strain WT. As shown in FIG. 2, the ROX1 mutant strains showed remarkable effects on acid resistance, and the mutant strains showed a growth phenotype (maximum OD) as compared with the wild-type strain WT, except for the strain WT-. DELTA.ROX1 (HMG) having the complete HMG domain 600 ) The improvement of 14-15 times indicates that the mutation of the domain HMG has a remarkable improvement on the acid-resistant growth of yeast.
The results show that in the invention, the transcription regulating factor and the mutant thereof play an important role in the acid-resistant process of the yeast, the influence of other sites on the acid-resistant growth of cells is further analyzed, and the mutation of the domain HMG is found to be the key of acid resistance of the yeast.
Test case
The strain obtained is subjected to L-malic acid synthesis application experiment
(1) To verify the productivity of the resulting acid-tolerant strain, the malate dehydrogenase mdh3Δskl (malate dehydrogenase, MDH 3) gene, the pyruvate carboxylase PYC2 (pyruvate carboxylase, PYC 2) gene, which is the 3 amino acids SKL from which the malate dehydrogenase MDH3 was removed at the end, was ligated to the pY26TEF-GPD plasmid using the following primers, as an example; the resulting recombinant vector pY26TEF-GPD-mdh3ΔSKL-pyc2. The recombinant vector pY26TEF-GPD-mdh3ΔSKL-pyc2 prepared is respectively introduced into acid-resistant saccharomyces cerevisiae WT- ΔROX1 and wild-type saccharomyces cerevisiae WT to prepare genetically engineered bacterium CT-M1, and meanwhile, the genetically engineered bacterium CT-M1 is subjected to the same transformation in the wild-type yeast and named as WT-M1.
Primer sequence:
Scepyc2+mdh3-F1:
TCTGGCGAAGAATTGTGGTGGTGGTGGTGGTGTCAAGAGTCTAGGA TGAAACTCTTG
Scepyc2+mdh3-R1:
ATAGCAATCTAATCTAAGTTTTCTAGAACTAGATGGTCAAAGTCGCA ATTCTTGG
Scemdh3+pyc2-F2:
GGGCTGCAGGAATTCGATATCAAATGAGCAGTAGCAAGAAATTGG
Scemdh3+pyc2-R2:
ACATGACTCGAGGTCGACGGTATCGATAAGCTTACTTTTTTTGGGAT GGGGGTAGG
Scepyc2+mdh3-F3:
CCAAGAATTGCGACTTTGACCATCTAGTTCTAGAAAACTTAGATTAG ATTGCT
Scepyc2+mdh3-R3:
CTAAGACCGGCCAATTTCTTGCTACTGCTCATTTGATATCGAATTCCT GCAGCC
Scepyc2+mdh3-F4:
GAAACCCTACCCCCATCCCAAAAAAAGTAAGCTTATCGATACCGTC GACCT
Scepyc2+mdh3-R4:
AATATTGAAAAAGGCAAGAGTTTCATCCTAGACTCTTGACACCACC ACCACCACCACAA
(2) The following primers are adopted to overexpress the SpMAE1 which is derived from the schizosaccharomyces pombe malic acid transporter, and the primers are introduced into the saccharomyces cerevisiae CT-M1 by utilizing the homologous recombination technology to prepare the genetically engineered bacterium CT-M2. Meanwhile, the control strain is the same modified wild yeast WT-M1 and is named as WT-M2.
Primer sequence:
SpMae1-F1:CAGAAAAACAGATGTGCCCAAATC
SpMae1-R1:TCCTAGGCGTAATCATGGTCATAGCTGTTTCCTGGATCCTAAACTGCGTC ATAGTAAG
SpMae1-F2:AGTATCAAAGAAACTTACTATGACGCAGTTTAGGATCCAGGAAACAGCT ATGACCATG
SpMae1-R2:AAGAGTAAAAAAGGAGTAGAAACATTTTGGAGCTCTAAAACGACGGCC AGTGCCAA
SpMae1-F3:TGCAAGTCGACCTTGGCACTGGCCGTCGTTTTAGAGCTCCAAAATGTTT CTACTCC
SpMae1-R3:AATAAACAAGGGGCTTTACGATGGAGTAGTAGACCTGCAAATTAAAGCC TTCGAGC
SpMae1-F4:GAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCAGGTCTACTACTC CATCGTAAAG
SpMae1-R4:TGAGGAATTTACAATAAGGTGGTTCC
(3) And (3) carrying out fermentation verification on the engineering strain CT-M2 in a 250mL shaking flask, wherein the fermentation temperature is 30 ℃, the fermentation time is 96 hours, and the adopted fermentation culture medium is as follows: 10g/L corn steep liquor, 50g/L soybean peptone, 100g/L glucose, 2.5g/L K 2 HPO 4 ,1.5g/L KH 2 PO 4 ,0.75g/LMgSO 4 ·7H 2 O. No addition of neutralizing agent CaCO 3 On the premise of measuring the L-malic acid yield, and comparing and analyzing with the strain WT-M2. As a result, FIG. 3 shows that the yield of CT-M2 (14.03 g/L) was 2.5 times that of WT-M2 (5.61 g/L).
Sequence:
SEQ ID NO.1
atgaatcctaaatcctctacacctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaagtagaagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacatgaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaagaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.2
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTK*KGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.3
atgaatcctaaatcctctacaaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.4
MNPKSSTKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.5
atgaatcctaaatcctctacacctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaag
SEQ ID NO.6
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTK
SEQ ID NO.7
aagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacatgaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaagaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.8
KGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.9
cctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaagtggaagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacataaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaag
SEQ ID NO.10
PKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTKWKGLQ PEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSK
SEQ ID NO.11
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTKWKGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
it is apparent that the above examples are given by way of illustration only and are not limiting of the embodiments. Other variations and modifications of the present invention will be apparent to those of ordinary skill in the art in light of the foregoing description. It is not necessary here nor is it exhaustive of all embodiments. And obvious variations or modifications thereof are contemplated as falling within the scope of the present invention.
SEQUENCE LISTING
<110> university of Jiangnan
<120> an acid-resistant Saccharomyces cerevisiae and application thereof
<130> 11
<160> 11
<170> PatentIn version 3.3
<210> 1
<211> 1107
<212> DNA
<213> (Synthesis)
<400> 1
atgaatccta aatcctctac acctaagatt ccaagaccca agaacgcatt tattctgttc 60
agacagcact accacaggat cttaatagac gaatggaccg ctcaaggtgt ggaaataccc 120
cataattcaa acatttctaa aattattggt acgaagtaga agggcttaca accggaagat 180
aaggcacact gggaaaatct agcggagaag gagaaactag aacatgaaag gaagtatcct 240
gaatacaaat acaagccggt aagaaagtct aagaagaagc aactactttt gaaggaaatc 300
gagcaacagc agcagcaaca acagaaagaa cagcagcagc agaaacagtc acaaccgcaa 360
ttacaacagc cctttaacaa caatatagtt cttatgaaaa gagcacattc tctttcacca 420
tcttcctcgg tgtcaagctc gaacagctat cagttccaat tgaacaatga tcttaagagg 480
ttgcctattc cttctgttaa tacttctaac tatatggtct ccagatcttt aagtggacta 540
cctttgacgc atgataagac ggcaagagac ctaccacagc tgtcatctca actaaattct 600
attccatatt actcagctcc acacgaccct tcaacgagac atcattacct caacgtcgct 660
caagctcaac caagggctaa ctcgacccct caattgccct ttatttcatc cattatcaac 720
aacagcagtc aaacaccggt aactacaact accacatcca caacaactgc gacatcttct 780
cctgggaaat tctcctcttc tccgaactcc tctgtactgg agaacaacag attaaacagt 840
atcaacaatt caaatcaata tttacctccc cctctattac cttctctgca agattttcaa 900
ctggatcagt accagcagct aaagcagatg ggaccaactt atattgtcaa accactgtct 960
cacaccagga acaatctatt gtccacaact acccctacgc atcatcacat tcctcatata 1020
ccaaaccaaa acattcctct acatcaaatt ataaactcaa gcaacactga ggtcaccgct 1080
aaaactagcc tagtttctcc gaaatga 1107
<210> 2
<211> 367
<212> PRT
<213> (Synthesis)
<400> 2
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp Glu
50 55 60
Asn Leu Ala Glu Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro Glu
65 70 75 80
Tyr Lys Tyr Lys Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu Leu
85 90 95
Lys Glu Ile Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln
100 105 110
Gln Lys Gln Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile
115 120 125
Val Leu Met Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser
130 135 140
Ser Ser Asn Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu
145 150 155 160
Pro Ile Pro Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu
165 170 175
Ser Gly Leu Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln
180 185 190
Leu Ser Ser Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp
195 200 205
Pro Ser Thr Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg
210 215 220
Ala Asn Ser Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn
225 230 235 240
Ser Ser Gln Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala
245 250 255
Thr Ser Ser Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu
260 265 270
Glu Asn Asn Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro
275 280 285
Pro Pro Leu Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln
290 295 300
Gln Leu Lys Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His
305 310 315 320
Thr Arg Asn Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile
325 330 335
Pro His Ile Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser
340 345 350
Ser Asn Thr Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
355 360 365
<210> 3
<211> 855
<212> DNA
<213> (Synthesis)
<400> 3
atgaatccta aatcctctac aaagaagcaa ctacttttga aggaaatcga gcaacagcag 60
cagcaacaac agaaagaaca gcagcagcag aaacagtcac aaccgcaatt acaacagccc 120
tttaacaaca atatagttct tatgaaaaga gcacattctc tttcaccatc ttcctcggtg 180
tcaagctcga acagctatca gttccaattg aacaatgatc ttaagaggtt gcctattcct 240
tctgttaata cttctaacta tatggtctcc agatctttaa gtggactacc tttgacgcat 300
gataagacgg caagagacct accacagctg tcatctcaac taaattctat tccatattac 360
tcagctccac acgacccttc aacgagacat cattacctca acgtcgctca agctcaacca 420
agggctaact cgacccctca attgcccttt atttcatcca ttatcaacaa cagcagtcaa 480
acaccggtaa ctacaactac cacatccaca acaactgcga catcttctcc tgggaaattc 540
tcctcttctc cgaactcctc tgtactggag aacaacagat taaacagtat caacaattca 600
aatcaatatt tacctccccc tctattacct tctctgcaag attttcaact ggatcagtac 660
cagcagctaa agcagatggg accaacttat attgtcaaac cactgtctca caccaggaac 720
aatctattgt ccacaactac ccctacgcat catcacattc ctcatatacc aaaccaaaac 780
attcctctac atcaaattat aaactcaagc aacactgagg tcaccgctaa aactagccta 840
gtttctccga aatga 855
<210> 4
<211> 284
<212> PRT
<213> (Synthesis)
<400> 4
Met Asn Pro Lys Ser Ser Thr Lys Lys Gln Leu Leu Leu Lys Glu Ile
1 5 10 15
Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln Gln Lys Gln
20 25 30
Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile Val Leu Met
35 40 45
Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser Ser Ser Asn
50 55 60
Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu Pro Ile Pro
65 70 75 80
Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu Ser Gly Leu
85 90 95
Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln Leu Ser Ser
100 105 110
Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp Pro Ser Thr
115 120 125
Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg Ala Asn Ser
130 135 140
Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn Ser Ser Gln
145 150 155 160
Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala Thr Ser Ser
165 170 175
Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu Glu Asn Asn
180 185 190
Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro Pro Pro Leu
195 200 205
Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln Gln Leu Lys
210 215 220
Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His Thr Arg Asn
225 230 235 240
Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile Pro His Ile
245 250 255
Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser Ser Asn Thr
260 265 270
Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
275 280
<210> 5
<211> 156
<212> DNA
<213> (Synthesis)
<400> 5
atgaatccta aatcctctac acctaagatt ccaagaccca agaacgcatt tattctgttc 60
agacagcact accacaggat cttaatagac gaatggaccg ctcaaggtgt ggaaataccc 120
cataattcaa acatttctaa aattattggt acgaag 156
<210> 6
<211> 52
<212> PRT
<213> (Synthesis)
<400> 6
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys
50
<210> 7
<211> 948
<212> DNA
<213> (Synthesis)
<400> 7
aagggcttac aaccggaaga taaggcacac tgggaaaatc tagcggagaa ggagaaacta 60
gaacatgaaa ggaagtatcc tgaatacaaa tacaagccgg taagaaagtc taagaagaag 120
caactacttt tgaaggaaat cgagcaacag cagcagcaac aacagaaaga acagcagcag 180
cagaaacagt cacaaccgca attacaacag ccctttaaca acaatatagt tcttatgaaa 240
agagcacatt ctctttcacc atcttcctcg gtgtcaagct cgaacagcta tcagttccaa 300
ttgaacaatg atcttaagag gttgcctatt ccttctgtta atacttctaa ctatatggtc 360
tccagatctt taagtggact acctttgacg catgataaga cggcaagaga cctaccacag 420
ctgtcatctc aactaaattc tattccatat tactcagctc cacacgaccc ttcaacgaga 480
catcattacc tcaacgtcgc tcaagctcaa ccaagggcta actcgacccc tcaattgccc 540
tttatttcat ccattatcaa caacagcagt caaacaccgg taactacaac taccacatcc 600
acaacaactg cgacatcttc tcctgggaaa ttctcctctt ctccgaactc ctctgtactg 660
gagaacaaca gattaaacag tatcaacaat tcaaatcaat atttacctcc ccctctatta 720
ccttctctgc aagattttca actggatcag taccagcagc taaagcagat gggaccaact 780
tatattgtca aaccactgtc tcacaccagg aacaatctat tgtccacaac tacccctacg 840
catcatcaca ttcctcatat accaaaccaa aacattcctc tacatcaaat tataaactca 900
agcaacactg aggtcaccgc taaaactagc ctagtttctc cgaaatga 948
<210> 8
<211> 315
<212> PRT
<213> (Synthesis)
<400> 8
Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp Glu Asn Leu Ala Glu
1 5 10 15
Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro Glu Tyr Lys Tyr Lys
20 25 30
Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu Leu Lys Glu Ile Glu
35 40 45
Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln Gln Lys Gln Ser
50 55 60
Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile Val Leu Met Lys
65 70 75 80
Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser Ser Ser Asn Ser
85 90 95
Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu Pro Ile Pro Ser
100 105 110
Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu Ser Gly Leu Pro
115 120 125
Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln Leu Ser Ser Gln
130 135 140
Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp Pro Ser Thr Arg
145 150 155 160
His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg Ala Asn Ser Thr
165 170 175
Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn Ser Ser Gln Thr
180 185 190
Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala Thr Ser Ser Pro
195 200 205
Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu Glu Asn Asn Arg
210 215 220
Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro Pro Pro Leu Leu
225 230 235 240
Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln Gln Leu Lys Gln
245 250 255
Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His Thr Arg Asn Asn
260 265 270
Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile Pro His Ile Pro
275 280 285
Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser Ser Asn Thr Glu
290 295 300
Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
305 310 315
<210> 9
<211> 252
<212> DNA
<213> (Synthesis)
<400> 9
cctaagattc caagacccaa gaacgcattt attctgttca gacagcacta ccacaggatc 60
ttaatagacg aatggaccgc tcaaggtgtg gaaatacccc ataattcaaa catttctaaa 120
attattggta cgaagtggaa gggcttacaa ccggaagata aggcacactg ggaaaatcta 180
gcggagaagg agaaactaga acataaaagg aagtatcctg aatacaaata caagccggta 240
agaaagtcta ag 252
<210> 10
<211> 84
<212> PRT
<213> (Synthesis)
<400> 10
Pro Lys Ile Pro Arg Pro Lys Asn Ala Phe Ile Leu Phe Arg Gln His
1 5 10 15
Tyr His Arg Ile Leu Ile Asp Glu Trp Thr Ala Gln Gly Val Glu Ile
20 25 30
Pro His Asn Ser Asn Ile Ser Lys Ile Ile Gly Thr Lys Trp Lys Gly
35 40 45
Leu Gln Pro Glu Asp Lys Ala His Trp Glu Asn Leu Ala Glu Lys Glu
50 55 60
Lys Leu Glu His Glu Arg Lys Tyr Pro Glu Tyr Lys Tyr Lys Pro Val
65 70 75 80
Arg Lys Ser Lys
<210> 11
<211> 368
<212> PRT
<213> (Synthesis)
<400> 11
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys Trp Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp
50 55 60
Glu Asn Leu Ala Glu Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro
65 70 75 80
Glu Tyr Lys Tyr Lys Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu
85 90 95
Leu Lys Glu Ile Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln
100 105 110
Gln Gln Lys Gln Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn
115 120 125
Ile Val Leu Met Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val
130 135 140
Ser Ser Ser Asn Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg
145 150 155 160
Leu Pro Ile Pro Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser
165 170 175
Leu Ser Gly Leu Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro
180 185 190
Gln Leu Ser Ser Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His
195 200 205
Asp Pro Ser Thr Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro
210 215 220
Arg Ala Asn Ser Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn
225 230 235 240
Asn Ser Ser Gln Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr
245 250 255
Ala Thr Ser Ser Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val
260 265 270
Leu Glu Asn Asn Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu
275 280 285
Pro Pro Pro Leu Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr
290 295 300
Gln Gln Leu Lys Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser
305 310 315 320
His Thr Arg Asn Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His
325 330 335
Ile Pro His Ile Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn
340 345 350
Ser Ser Asn Thr Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
355 360 365

Claims (8)

1. The acid-resistant saccharomyces cerevisiae is characterized in that saccharomyces cerevisiae S288C is taken as an initial strain, and 8aa-91aa fragments, 54aa-368aa fragments and 1aa-53aa fragments in a ROX1 transcription regulatory factor of the saccharomyces cerevisiae S288C are knocked out to obtain the acid-resistant saccharomyces cerevisiae; the amino acid sequence of the ROX1 transcription regulating factor is shown as SEQ ID NO. 11.
2. The acid-resistant saccharomyces cerevisiae is characterized in that saccharomyces cerevisiae S288C is taken as an initial strain, and G158A in a ROX1 transcription regulatory factor is mutated to obtain the acid-resistant saccharomyces cerevisiae; the nucleotide sequence of the G158A mutated site is shown as SEQ ID NO.1, and the encoded amino acid sequence is shown as SEQ ID NO. 2.
3. The acid-resistant saccharomyces cerevisiae according to claim 1, wherein after the 8aa-91aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID NO.3, and the encoded amino acid sequence is shown as SEQ ID NO. 4.
4. The acid-resistant saccharomyces cerevisiae according to claim 1, wherein the nucleotide sequence of the ROX1 transcription regulating factor is shown in SEQ ID No.5 and the encoded amino acid sequence is shown in SEQ ID No.6 after the 54aa-368aa fragment is knocked out.
5. The acid-resistant saccharomyces cerevisiae according to claim 1, wherein after knocking out 1aa-53aa fragment, the nucleotide sequence of the ROX1 transcription regulator is shown as SEQ ID No.7, and the encoded amino acid sequence is shown as SEQ ID No. 8.
6. A product comprising the acid-tolerant saccharomyces cerevisiae according to any of claims 1-5.
7. Use of the acid-tolerant saccharomyces cerevisiae according to any of claims 1-5, or the product of claim 6, for the fermentative production of L-malic acid.
8. The use according to claim 7, characterized in that the conditions of the fermentation: the fermentation temperature is 28-32 ℃, and the fermentation time is 60-108h.
CN202210296692.3A 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof Active CN114891652B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210296692.3A CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210296692.3A CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Publications (2)

Publication Number Publication Date
CN114891652A CN114891652A (en) 2022-08-12
CN114891652B true CN114891652B (en) 2023-09-08

Family

ID=82715504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210296692.3A Active CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Country Status (1)

Country Link
CN (1) CN114891652B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676146A (en) * 2020-07-03 2020-09-18 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof
CN113249238A (en) * 2021-05-07 2021-08-13 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof in preparation of organic acid
CN113293107A (en) * 2021-03-02 2021-08-24 绍兴文理学院 Saccharomyces cerevisiae for industrial production with high organic acid tolerance and construction method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676146A (en) * 2020-07-03 2020-09-18 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof
CN113293107A (en) * 2021-03-02 2021-08-24 绍兴文理学院 Saccharomyces cerevisiae for industrial production with high organic acid tolerance and construction method thereof
CN113249238A (en) * 2021-05-07 2021-08-13 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof in preparation of organic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes;Ouyang et al.;《RSC Advances》;第9卷;30171-30181 *

Also Published As

Publication number Publication date
CN114891652A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
JP5321320B2 (en) Yeast with improved fermentation ability and use thereof
WO2009011591A2 (en) Novel arabinose-fermenting eukaryotic cells
EP2495304A1 (en) Dicarboxylic acid production in a yeast cell
CA2684762C (en) Vector with codon-optimised genes for an arabinose metabolic pathway for arabinose conversion in yeast for ethanol production
JP6027559B2 (en) Protein having xylose isomerase activity and use thereof
JP2009502191A (en) Expression of xylose active transporter in genetically modified yeast
US20120329112A1 (en) Microorganisms Having Enhanced Tolerance To Inhibitors and Stress
Xi et al. Characterization of JEN family carboxylate transporters from the acid‐tolerant yeast Pichia kudriavzevii and their applications in succinic acid production
WO2012125027A1 (en) Yeast strains that ferment uronic acids
CN113684198B (en) Method for improving cellulase catalytic efficiency and mutant 5I77-M2
CN114891652B (en) Acid-resistant saccharomyces cerevisiae and application thereof
CN111295446B (en) Mutant microorganism for producing succinic acid by introducing highly active malate dehydrogenase and method for producing succinic acid using the same
US9506088B2 (en) Genes related to xylose fermentation and methods of using same for enhanced biofuel production
CN114410562B (en) Klebsiella engineering bacterium and application thereof in ethanol production
CN115976005A (en) Xylose isomerase obtained based on ancestral sequence construction method and application thereof
US8772000B2 (en) Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain
CN113373073B (en) Method for improving transport capacity and utilization capacity of levoglucosan of saccharomyces cerevisiae strain
CN114891774A (en) Xylose isomerase expressed in yeast cell with high activity and application thereof
CN113025506B (en) Recombinant filamentous fungus for producing ethanol and construction and application thereof
WO2020078474A1 (en) New mutant protein for improving malic acid yield
JP7078887B2 (en) Mutant genes involved in improving ethanol productivity by ethanol fermentation and methods for producing ethanol using them
WO2023213294A1 (en) Xylose isomerase and use thereof
CN114634946B (en) Construction of Pichia pastoris genetically engineered bacteria and application of pichia pastoris genetically engineered bacteria in improving methanol assimilation rate and fixing carbon dioxide
CN116536298A (en) Protein sequence N-terminal modified xylose isomerase and application thereof
US9085781B2 (en) Acetate resistance in yeast based on introduction of a mutant HAA1 allele

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant