CN114891652A - Acid-resistant saccharomyces cerevisiae and application thereof - Google Patents

Acid-resistant saccharomyces cerevisiae and application thereof Download PDF

Info

Publication number
CN114891652A
CN114891652A CN202210296692.3A CN202210296692A CN114891652A CN 114891652 A CN114891652 A CN 114891652A CN 202210296692 A CN202210296692 A CN 202210296692A CN 114891652 A CN114891652 A CN 114891652A
Authority
CN
China
Prior art keywords
ser
pro
leu
gln
rox1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210296692.3A
Other languages
Chinese (zh)
Other versions
CN114891652B (en
Inventor
刘龙
陈坚
吕雪芹
堵国成
李江华
刘延峰
孙利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202210296692.3A priority Critical patent/CN114891652B/en
Publication of CN114891652A publication Critical patent/CN114891652A/en
Application granted granted Critical
Publication of CN114891652B publication Critical patent/CN114891652B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses acid-resistant saccharomyces cerevisiae and application thereof, and belongs to the technical field of metabolic engineering. According to the invention, saccharomyces cerevisiae S288C is taken as an original strain, and the HMG (high molecular weight molecule) in the ROX1 transcription regulatory factor of saccharomyces cerevisiae S288C is knocked out, or G158A in the ROX1 transcription regulatory factor is mutated, so that the acid-resistant saccharomyces cerevisiae is obtained. The invention carries out 5 mutations with different degrees on ROX1, and experimental data show that when ROX1 domain HMG is damaged with different degrees, the acid-resistant effect can be well achieved: growth phenotype (maximum OD) at pH2.32, as compared with wild type strain WT 600 ) The improvement is 14-15 times.

Description

Acid-resistant saccharomyces cerevisiae and application thereof
Technical Field
The invention belongs to the technical field of metabolic engineering, and particularly relates to acid-resistant saccharomyces cerevisiae and application thereof.
Background
The saccharomyces cerevisiae becomes one of the main chassis cells for microbial fermentation production due to the advantages of short growth period, strong fermentation capacity, good large-scale production performance and the like. In recent years, researchers have focused on increasing the tolerance of s.cerevisiae to various stresses, such as temperature, pH, osmotic pressure (salts, alcohols), etc., to increase the tolerance of cells in different environments. For example, to obtain a strain of s.cerevisiae that is capable of tolerating high temperatures and producing ethanol, a homotypic strain with high ethanol productivity is crossed with a heterotypic strain exhibiting a thermostable phenotype, resulting in a cross of TJ14, which can synthesize ethanol that is effective at high temperatures. To increase the tolerance of cells to ethanol, which is the most common stress of yeast cells, the mechanisms reported for ethanol tolerance are mainly associated with changes in membrane composition, as well as stabilization or repair of denatured proteins.
In addition, the ability to design cellular stress tolerance based on specific circumstances may have applications in basic research and bio-manufacturing, and acid tolerance of saccharomyces cerevisiae has been of high interest to researchers. For example, strains that are tolerant to aromatic acids (pH3.5) were obtained by laboratory adaptive evolution and further analysis showed that overexpression of the aromatic acid transporter ESBP6 is a key factor in increasing tolerance to low pH. Meanwhile, previous reports indicate that overexpression of the proton pumps PMA1 and PMA2 can increase the acid resistance of yeast, and that Pdr18(ABC transporter) participates in the response of yeast to acetic acid stress. However, proton pumps or other ABC transporters can enhance the acid resistance of the strain, but only increase the tolerance to weak acids (pH 4.0-5.8). Thus, the acid resistance of yeast is far from meeting the demand of the lower pH environment formed by industrial production.
The currently reported microorganism production of organic acids is mainly to add a neutralizing agent (calcium carbonate and the like) to adjust the low pH value in the fermentation process to form organic acid salt, and then complicated procedures such as acidolysis, separation, purification and the like are carried out. On one hand, the cost and the working procedure of product separation and purification are increased, and on the other hand, if the neutralizing agent is added at the early stage, the waste of resources and the environmental pollution are also caused.
Disclosure of Invention
In order to solve the technical problems, the invention provides acid-resistant saccharomyces cerevisiae and application thereof. Therefore, the invention provides a novel acid-resistant mechanism and a construction method, and provides a theoretical basis for construction of acid-resistant underpan cells.
The invention aims to provide acid-resistant saccharomyces cerevisiae, which is obtained by taking saccharomyces cerevisiae S288C as an initial strain and knocking out the HMG (high molecular weight molecule) in the ROX1 transcription regulatory factor of saccharomyces cerevisiae S288C or mutating G158A in the ROX1 transcription regulatory factor; the amino acid sequence of the ROX1 transcription regulatory factor is shown in SEQ ID NO. 11.
In one embodiment of the invention, the nucleotide sequence of the G158A mutated site is shown as SEQ ID NO.1, and the encoded amino acid sequence is shown as SEQ ID NO. 2.
In one embodiment of the invention, one or more of an 8aa-91aa fragment, a 54aa-368aa fragment, a 1aa-53aa fragment, a 1aa-7aa fragment, or a 92aa-368aa fragment in the ROX1 is knocked out.
In one embodiment of the invention, after the 8aa-91aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID NO.3, and the coded amino acid sequence is shown as SEQ ID NO. 4.
In one embodiment of the invention, after the 54aa-368aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID NO. and the encoded amino acid sequence is shown as SEQ ID NO. 6.
In one embodiment of the invention, after the 1aa-53aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID NO.7, and the coded amino acid sequence is shown as SEQ ID NO. 8.
In one embodiment of the invention, after the 1aa-7aa fragment and the 92aa-368aa fragment are knocked out simultaneously, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID NO.9, and the encoded amino acid sequence is shown as SEQ ID NO. 10.
The second purpose of the invention is to provide the product containing the acid-resistant saccharomyces cerevisiae.
The third purpose of the invention is to provide the acid-resistant saccharomyces cerevisiae or the application of the product in the fermentation production of L-malic acid.
In one embodiment of the invention, the conditions of the fermentation are: the fermentation temperature is 28-32 ℃, and the fermentation time is 60-108 h.
In order to solve the problem that the acid-resistant saccharomyces cerevisiae obtained at present is resistant to extremely low pH, the invention firstly provides a transcription regulatory factor ROX1 and a mutant mROX1 thereof, wherein the 158 th position of mROX1 base is mutated from G to A, the corresponding amino acid is mutated from Trp to a stop codon, and the mutation site is positioned in a domain HMG (8aa-91aa) of ROX 1. Through reverse engineering, a corresponding point mutation G158A is carried out in ROX1 of wild saccharomyces cerevisiae, and the important role played by the ROX1 mutant in the acid-resistant process of yeast is verified: growth phenotype (maximum OD) at pH 2.32, as compared with wild type strain WT 600 ) The growth rate is increased by 15.41 times and the maximum growth rate is 0.37h -1 (ii) a Meanwhile, in order to further analyze the function of the ROX1 in the acid-resistant process and whether other mutations have the acid-resistant effect, other 5 mutations with different degrees are carried out on the ROX1 in the invention, and experimental data show that when the ROX1 domain HMG is damaged with different degrees, the excellent acid-resistant effect can be achieved: growth phenotype (maximum OD) at pH 2.32, as compared with wild type strain WT 600 ) The improvement is 14-15 times.
Compared with the prior art, the technical scheme of the invention has the following advantages:
in the invention, the transcriptional regulation ROX1 and the mutant gene thereof are found to be effective in improving the tolerance to low pH in saccharomyces cerevisiae. Experimental data show that compared with wild saccharomyces cerevisiae, different mutants of the transcription regulatory factor ROX1 can improve the acid-resistant phenotype by about 15 times. Meanwhile, an acid-resistant strain WT delta ROX1 is used as a chassis cell to synthesize L-malic acid through metabolic modification, and the yield of the acid-resistant strain WT delta ROX1 malic acid is 2.5 times that of the strain WT without adding a neutralizing agent in the fermentation process. Therefore, the method has higher application value for constructing the acid-resistant saccharomyces cerevisiae.
Drawings
In order that the present disclosure may be more readily and clearly understood, reference is now made to the following detailed description of the embodiments of the present disclosure taken in conjunction with the accompanying drawings, in which
FIG. 1 is acid-proof assay of the transcriptional regulatory factor ROX1 and its mutant mROX1 of the present invention.
FIG. 2 is the acid resistance function analysis of other mutants of the transcription regulatory factor ROX1 of the present invention.
FIG. 3 is the analysis of the acid-tolerant Saccharomyces cerevisiae synthesizing L-malic acid.
Detailed Description
The present invention is further described below in conjunction with the following figures and specific examples so that those skilled in the art may better understand the present invention and practice it, but the examples are not intended to limit the present invention.
Example 1 verification of acid-resistant function of transcriptional regulatory factor ROX1 and mutant mROX1 thereof
(1) The original ROX1 gene is replaced in the original strain WT by using a genome template of wild type Saccharomyces cerevisiae S288C and primers (mROX1-up-F, mROX1-up-R, mROX1-His-F, mROX1-His-R, ROX1-down-F and ROX 1-down-R).
The primer sequence is as follows:
mROX1-up-F:ACGAAGTAGAAGGGCTTACAAC
mROX1-up-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
mROX1-His-F:CAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATGA
mROX1-His-R:AATATAACGGAAAGAAGAAATGGAAAAAAAAAATAAAACGACGGCCAGTGCCAA
mROX1-down-F:TCGACCTTGGCACTGGCCGTCGTTTTATTTTTTTTTTCCATTTCTTCTTTCCGTT
mROX1-down-R:GAACTGGAAGTCTTTGTAAAAGCT
(2) and (2) replacing the original gene of the original strain S288C with the gene fragment obtained in the step (1) by using a homologous recombination method, and naming the strain as WT-mrOX 1.
(3) To verify the effect of mROX1 on yeast acid resistance, the growth of yeast WT-mROX1 was measured at pH 2.32 and compared to the starting strain WT. As shown in FIG. 2, the growth of WT-mROX1 was significantly improved compared to WT (maximum OD600 increased by 15.41 times and maximum growth rate of 0.37h -1 )。
Example 2 analysis of acid-resistant function of other mutants of the transcriptional regulatory factor ROX1
(1) In order to verify the influence of other mutations of ROX1 on acid resistance, 5 mutations with different degrees were selected, and different mutants of ROX1 were constructed in wild type S288C using the following primers, some of which were universal primers as follows:
the primer sequence is as follows:
ROX1-up-F:ACAAATCCCCTGGATATCATTG
ROX1-His-R:AATATAACGGAAAGAAGAAATGGAAAAAAAAAATAAAACGACGGCCAGTGCCAA
ROX1-down-F:TCGACCTTGGCACTGGCCGTCGTTTTATTTTTTTTTTCCATTTCTTCTTTCCGTT
ROX1-down-R:GAACTGGAAGTCTTTGTAAAAGCT
the method comprises the following steps of firstly, adopting universal primers (ROX1-up-F, ROX1-His-R, ROX1-down-F and ROX1-down-R) and the following primers (delta ROX1-up-R and delta ROX1-His-F) to completely knock out ROX1(1aa-368aa) in a WT strain to construct a WT-delta ROX1 strain.
The primer sequence is as follows:
ΔROX1-up-R:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGTGTTGATTGTCTAACTGCGTTCT
ΔROX1-His-F:CACACAAAAGAACGCAGTTAGACAATCAACACAGGAAACAGCTATGACCATGA
secondly, universal primers (ROX1-up-F, ROX1-His-R, ROX1-down-F and ROX1-down-R) and the following primers (delta ROX1-1-up-R and delta ROX1-1-His-F) are adopted to knock out partial sequences (1aa-53aa) of ROX1 in the WT strain to construct the WT-delta ROX1-1 strain.
The primer sequence is as follows:
ΔROX1-1-up-R:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
ΔROX1-1-His-F:CATAATTCAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATG
and thirdly, knocking out partial sequences (54aa-368aa) of ROX1 in the WT strain by adopting universal primers (ROX1-up-F, ROX1-His-R, ROX1-down-F and ROX1-down-R) and the following primers (delta mROX1-R and delta mROX1-His-F) to construct the WT-delta mROX1 strain.
The primer sequence is as follows:
ΔmROX1-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGT
ΔmROX1-His-F:CAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATGA
and wherein a partial sequence (1aa-7aa, 92aa-368aa) of ROX1 was knocked out in the WT strain to obtain a WT- Δ ROX1(HMG) strain, using a universal primer (ROX1-His-R, ROX1-down-F, ROX1-down-R) and the following primers (ROX1(HMG) -F1, ROX1(HMG) -R1, ROX1(HMG) -F2, ROX1(HMG) -R2, ROX1(HMG) -His-F).
The primer sequence is as follows:
ROX1(HMG)-F1:ACAAATCCCCTGGATATCATTG
ROX1(HMG)-R1:AACAGAATAAATGCGTTCTTGGGTCTTGGAATCTTTGTTGATTGTCTAACTGCGTTC
ROX1(HMG)-F2:TCACACAAAAGAACGCAGTTAGACAATCAACAAAGATTCCAAGACCCAAGAAC
ROX1(HMG)-R2:CTAGGCGTAATCATGGTCATAGCTGTTTCCTGTTCCTTCAAAAGTAGTTGCTTCT
ROX1(HMG)-His-F:AGTCTAAGAAGAAGCAACTACTTTTGAAGGAACAGGAAACAGCTATGACCATGA
and fifthly, knocking out partial sequence (8aa-91aa) of ROX1 in the WT strain by using a universal primer (ROX1-up-F) and the following primers (delta HMG-R, delta HMG-His-F, delta HMG-His-R, delta HMG-down-F and delta HMG-down-R) to construct the WT-delta HMG strain.
The primer sequence is as follows:
ΔHMG-R:GGCGTAATCATGGTCATAGCTGTTTCCTGCTTCGTACCAATAATTTTAGAAATGTT
ΔHMG-His-F:ATTCAAACATTTCTAAAATTATTGGTACGAAGCAGGAAACAGCTATGACCATGA
ΔHMG-His-R:GTTGCTCGATTTCCTTCAAAAGTAGTTGCTTCTTTAAAACGACGGCCAGTGCCAA
ΔHMG-down-F:AAGTCGACCTTGGCACTGGCCGTCGTTTTAAAGAAGCAACTACTTTTGAAGGAA
ΔHMG-down-R:TCATTTCGGAGAAACTAGGCT
(2) the 5 ROX1 mutants obtained in step (1) were tested for growth at pH 2.32 and compared with the original strain WT. As a result, as shown in FIG. 3, the ROX1 mutant strain series, except for the strain WT- Δ ROX1(HMG) having an intact HMG domain, had a remarkable effect on acid resistance, and the growth phenotype (maximum OD) was comparable to that of the wild-type strain WT 600 ) The improvement is 14-15 times, which shows that the mutation of the domain HMG has obvious improvement on the acid-resistant growth of the yeast.
The results show that the transcription regulation factor and the mutant thereof play an important role in the acid-resistant process of the yeast, the influence of other sites on the acid-resistant growth of cells is further analyzed, and the mutation of the HMG (human growth hormone) domain is found to be the key of the acid resistance of the yeast.
Test example
The obtained strain is subjected to an application experiment for synthesizing L-malic acid
(1) In order to verify the productivity of the acid-tolerant strain obtained, taking L-malate as an example, a malate dehydrogenase MDH3 Δ SKL (malate dehydrogenase3, MDH3) gene, a pyruvate carboxylase PYC2(pyruvate carboxylase, PYC2) gene, which is 3 amino acids SKL from which the end of malate dehydrogenase MDH3 was removed, was ligated to pY26TEF-GPD plasmid using the following primers; the resulting recombinant vector pY26TEF-GPD-mdh 3. delta. SKL-pyc 2. The prepared recombinant vector pY26TEF-GPD-mdh3 delta SKL-pyc2 is respectively introduced into acid-resistant saccharomyces cerevisiae WT-delta ROX1 and wild type saccharomyces cerevisiae WT to prepare the genetically engineered bacterium CT-M1, and the genetically engineered bacterium CT-M1 is transformed in the wild type yeast in the same way and is named as WT-M1.
The primer sequence is as follows:
Scepyc2+mdh3-F1:
TCTGGCGAAGAATTGTGGTGGTGGTGGTGGTGTCAAGAGTCTAGGATGAAACTCTTG
Scepyc2+mdh3-R1:
ATAGCAATCTAATCTAAGTTTTCTAGAACTAGATGGTCAAAGTCGCAATTCTTGG
Scemdh3+pyc2-F2:
GGGCTGCAGGAATTCGATATCAAATGAGCAGTAGCAAGAAATTGG
Scemdh3+pyc2-R2:
ACATGACTCGAGGTCGACGGTATCGATAAGCTTACTTTTTTTGGGATGGGGGTAGG
Scepyc2+mdh3-F3:
CCAAGAATTGCGACTTTGACCATCTAGTTCTAGAAAACTTAGATTAGATTGCT
Scepyc2+mdh3-R3:
CTAAGACCGGCCAATTTCTTGCTACTGCTCATTTGATATCGAATTCCTGCAGCC
Scepyc2+mdh3-F4:
GAAACCCTACCCCCATCCCAAAAAAAGTAAGCTTATCGATACCGTCGACCT
Scepyc2+mdh3-R4:
AATATTGAAAAAGGCAAGAGTTTCATCCTAGACTCTTGACACCACCACCACCACCACAA
(2) the following primers are adopted to over-express malic acid transporter SpMAE1 from Schizosaccharomyces pombe, and the malic acid transporter SpMAE1 is introduced into saccharomyces cerevisiae CT-M1 by utilizing a homologous recombination technology to prepare the genetically engineered bacterium CT-M2. Meanwhile, the control strain is a wild yeast WT-M1 which is subjected to the same transformation and is named as WT-M2.
The primer sequence is as follows:
SpMae1-F1:CAGAAAAACAGATGTGCCCAAATC
SpMae1-R1:TCCTAGGCGTAATCATGGTCATAGCTGTTTCCTGGATCCTAAACTGCGTCATAGTAAG
SpMae1-F2:AGTATCAAAGAAACTTACTATGACGCAGTTTAGGATCCAGGAAACAGCTATGACCATG
SpMae1-R2:AAGAGTAAAAAAGGAGTAGAAACATTTTGGAGCTCTAAAACGACGGCCAGTGCCAA
SpMae1-F3:TGCAAGTCGACCTTGGCACTGGCCGTCGTTTTAGAGCTCCAAAATGTTTCTACTCC
SpMae1-R3:AATAAACAAGGGGCTTTACGATGGAGTAGTAGACCTGCAAATTAAAGCCTTCGAGC
SpMae1-F4:GAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCAGGTCTACTACTCCATCGTAAAG
SpMae1-R4:TGAGGAATTTACAATAAGGTGGTTCC
(3) the engineered strain CT-M2 obtained above was shaken in 250mLFermentation verification is carried out in a bottle, the fermentation temperature is 30 ℃, the fermentation time is 96h, and the adopted fermentation medium is as follows: 10g/L corn steep liquor, 50g/L soybean peptone, 100g/L glucose, 2.5g/L K 2 HPO 4 ,1.5g/L KH 2 PO 4 ,0.75g/LMgSO 4 ·7H 2 And O. Without addition of neutralising agent CaCO 3 The L-malic acid production was determined and compared with the strain WT-M2. The results showed that CT-M2(14.03g/L) produced 2.5 times greater than WT-M2(5.61 g/L).
The sequence is as follows:
SEQ ID NO.1
atgaatcctaaatcctctacacctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaagtagaagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacatgaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaagaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.2
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTK*KGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.3
atgaatcctaaatcctctacaaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.4
MNPKSSTKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.5
atgaatcctaaatcctctacacctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaagSEQ ID NO.6
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTK
SEQ ID NO.7
aagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacatgaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaagaagaagcaactacttttgaaggaaatcgagcaacagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaacaacaatatagttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaattgaacaatgatcttaagaggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgcatgataagacggcaagagacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagacatcattacctcaacgtcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagtcaaacaccggtaactacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgtactggagaacaacagattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactggatcagtaccagcagctaaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacccctacgcatcatcacattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgctaaaactagcctagtttctccgaaatga
SEQ ID NO.8
KGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
SEQ ID NO.9
cctaagattccaagacccaagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtggaaataccccataattcaaacatttctaaaattattggtacgaagtggaagggcttacaaccggaagataaggcacactgggaaaatctagcggagaaggagaaactagaacataaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaag
SEQ ID NO.10
PKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTKWKGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSK
SEQ ID NO.11
MNPKSSTPKIPRPKNAFILFRQHYHRILIDEWTAQGVEIPHNSNISKIIGTKWKGLQPEDKAHWENLAEKEKLEHERKYPEYKYKPVRKSKKKQLLLKEIEQQQQQQQKEQQQQKQSQPQLQQPFNNNIVLMKRAHSLSPSSSVSSSNSYQFQLNNDLKRLPIPSVNTSNYMVSRSLSGLPLTHDKTARDLPQLSSQLNSIPYYSAPHDPSTRHHYLNVAQAQPRANSTPQLPFISSIINNSSQTPVTTTTTSTTTATSSPGKFSSSPNSSVLENNRLNSINNSNQYLPPPLLPSLQDFQLDQYQQLKQMGPTYIVKPLSHTRNNLLSTTTPTHHHIPHIPNQNIPLHQIINSSNTEVTAKTSLVSPK
it should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications of the invention may be made without departing from the spirit or scope of the invention.
SEQUENCE LISTING
<110> university in south of the Yangtze river
<120> acid-resistant saccharomyces cerevisiae and application thereof
<130> 11
<160> 11
<170> PatentIn version 3.3
<210> 1
<211> 1107
<212> DNA
<213> (Artificial Synthesis)
<400> 1
atgaatccta aatcctctac acctaagatt ccaagaccca agaacgcatt tattctgttc 60
agacagcact accacaggat cttaatagac gaatggaccg ctcaaggtgt ggaaataccc 120
cataattcaa acatttctaa aattattggt acgaagtaga agggcttaca accggaagat 180
aaggcacact gggaaaatct agcggagaag gagaaactag aacatgaaag gaagtatcct 240
gaatacaaat acaagccggt aagaaagtct aagaagaagc aactactttt gaaggaaatc 300
gagcaacagc agcagcaaca acagaaagaa cagcagcagc agaaacagtc acaaccgcaa 360
ttacaacagc cctttaacaa caatatagtt cttatgaaaa gagcacattc tctttcacca 420
tcttcctcgg tgtcaagctc gaacagctat cagttccaat tgaacaatga tcttaagagg 480
ttgcctattc cttctgttaa tacttctaac tatatggtct ccagatcttt aagtggacta 540
cctttgacgc atgataagac ggcaagagac ctaccacagc tgtcatctca actaaattct 600
attccatatt actcagctcc acacgaccct tcaacgagac atcattacct caacgtcgct 660
caagctcaac caagggctaa ctcgacccct caattgccct ttatttcatc cattatcaac 720
aacagcagtc aaacaccggt aactacaact accacatcca caacaactgc gacatcttct 780
cctgggaaat tctcctcttc tccgaactcc tctgtactgg agaacaacag attaaacagt 840
atcaacaatt caaatcaata tttacctccc cctctattac cttctctgca agattttcaa 900
ctggatcagt accagcagct aaagcagatg ggaccaactt atattgtcaa accactgtct 960
cacaccagga acaatctatt gtccacaact acccctacgc atcatcacat tcctcatata 1020
ccaaaccaaa acattcctct acatcaaatt ataaactcaa gcaacactga ggtcaccgct 1080
aaaactagcc tagtttctcc gaaatga 1107
<210> 2
<211> 367
<212> PRT
<213> (Artificial Synthesis)
<400> 2
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp Glu
50 55 60
Asn Leu Ala Glu Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro Glu
65 70 75 80
Tyr Lys Tyr Lys Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu Leu
85 90 95
Lys Glu Ile Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln
100 105 110
Gln Lys Gln Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile
115 120 125
Val Leu Met Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser
130 135 140
Ser Ser Asn Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu
145 150 155 160
Pro Ile Pro Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu
165 170 175
Ser Gly Leu Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln
180 185 190
Leu Ser Ser Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp
195 200 205
Pro Ser Thr Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg
210 215 220
Ala Asn Ser Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn
225 230 235 240
Ser Ser Gln Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala
245 250 255
Thr Ser Ser Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu
260 265 270
Glu Asn Asn Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro
275 280 285
Pro Pro Leu Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln
290 295 300
Gln Leu Lys Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His
305 310 315 320
Thr Arg Asn Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile
325 330 335
Pro His Ile Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser
340 345 350
Ser Asn Thr Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
355 360 365
<210> 3
<211> 855
<212> DNA
<213> (Artificial Synthesis)
<400> 3
atgaatccta aatcctctac aaagaagcaa ctacttttga aggaaatcga gcaacagcag 60
cagcaacaac agaaagaaca gcagcagcag aaacagtcac aaccgcaatt acaacagccc 120
tttaacaaca atatagttct tatgaaaaga gcacattctc tttcaccatc ttcctcggtg 180
tcaagctcga acagctatca gttccaattg aacaatgatc ttaagaggtt gcctattcct 240
tctgttaata cttctaacta tatggtctcc agatctttaa gtggactacc tttgacgcat 300
gataagacgg caagagacct accacagctg tcatctcaac taaattctat tccatattac 360
tcagctccac acgacccttc aacgagacat cattacctca acgtcgctca agctcaacca 420
agggctaact cgacccctca attgcccttt atttcatcca ttatcaacaa cagcagtcaa 480
acaccggtaa ctacaactac cacatccaca acaactgcga catcttctcc tgggaaattc 540
tcctcttctc cgaactcctc tgtactggag aacaacagat taaacagtat caacaattca 600
aatcaatatt tacctccccc tctattacct tctctgcaag attttcaact ggatcagtac 660
cagcagctaa agcagatggg accaacttat attgtcaaac cactgtctca caccaggaac 720
aatctattgt ccacaactac ccctacgcat catcacattc ctcatatacc aaaccaaaac 780
attcctctac atcaaattat aaactcaagc aacactgagg tcaccgctaa aactagccta 840
gtttctccga aatga 855
<210> 4
<211> 284
<212> PRT
<213> (Artificial Synthesis)
<400> 4
Met Asn Pro Lys Ser Ser Thr Lys Lys Gln Leu Leu Leu Lys Glu Ile
1 5 10 15
Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln Gln Lys Gln
20 25 30
Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile Val Leu Met
35 40 45
Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser Ser Ser Asn
50 55 60
Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu Pro Ile Pro
65 70 75 80
Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu Ser Gly Leu
85 90 95
Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln Leu Ser Ser
100 105 110
Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp Pro Ser Thr
115 120 125
Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg Ala Asn Ser
130 135 140
Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn Ser Ser Gln
145 150 155 160
Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala Thr Ser Ser
165 170 175
Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu Glu Asn Asn
180 185 190
Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro Pro Pro Leu
195 200 205
Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln Gln Leu Lys
210 215 220
Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His Thr Arg Asn
225 230 235 240
Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile Pro His Ile
245 250 255
Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser Ser Asn Thr
260 265 270
Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
275 280
<210> 5
<211> 156
<212> DNA
<213> (Artificial Synthesis)
<400> 5
atgaatccta aatcctctac acctaagatt ccaagaccca agaacgcatt tattctgttc 60
agacagcact accacaggat cttaatagac gaatggaccg ctcaaggtgt ggaaataccc 120
cataattcaa acatttctaa aattattggt acgaag 156
<210> 6
<211> 52
<212> PRT
<213> (Artificial Synthesis)
<400> 6
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys
50
<210> 7
<211> 948
<212> DNA
<213> (Artificial Synthesis)
<400> 7
aagggcttac aaccggaaga taaggcacac tgggaaaatc tagcggagaa ggagaaacta 60
gaacatgaaa ggaagtatcc tgaatacaaa tacaagccgg taagaaagtc taagaagaag 120
caactacttt tgaaggaaat cgagcaacag cagcagcaac aacagaaaga acagcagcag 180
cagaaacagt cacaaccgca attacaacag ccctttaaca acaatatagt tcttatgaaa 240
agagcacatt ctctttcacc atcttcctcg gtgtcaagct cgaacagcta tcagttccaa 300
ttgaacaatg atcttaagag gttgcctatt ccttctgtta atacttctaa ctatatggtc 360
tccagatctt taagtggact acctttgacg catgataaga cggcaagaga cctaccacag 420
ctgtcatctc aactaaattc tattccatat tactcagctc cacacgaccc ttcaacgaga 480
catcattacc tcaacgtcgc tcaagctcaa ccaagggcta actcgacccc tcaattgccc 540
tttatttcat ccattatcaa caacagcagt caaacaccgg taactacaac taccacatcc 600
acaacaactg cgacatcttc tcctgggaaa ttctcctctt ctccgaactc ctctgtactg 660
gagaacaaca gattaaacag tatcaacaat tcaaatcaat atttacctcc ccctctatta 720
ccttctctgc aagattttca actggatcag taccagcagc taaagcagat gggaccaact 780
tatattgtca aaccactgtc tcacaccagg aacaatctat tgtccacaac tacccctacg 840
catcatcaca ttcctcatat accaaaccaa aacattcctc tacatcaaat tataaactca 900
agcaacactg aggtcaccgc taaaactagc ctagtttctc cgaaatga 948
<210> 8
<211> 315
<212> PRT
<213> (Artificial Synthesis)
<400> 8
Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp Glu Asn Leu Ala Glu
1 5 10 15
Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro Glu Tyr Lys Tyr Lys
20 25 30
Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu Leu Lys Glu Ile Glu
35 40 45
Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln Gln Gln Lys Gln Ser
50 55 60
Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn Ile Val Leu Met Lys
65 70 75 80
Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val Ser Ser Ser Asn Ser
85 90 95
Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg Leu Pro Ile Pro Ser
100 105 110
Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser Leu Ser Gly Leu Pro
115 120 125
Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro Gln Leu Ser Ser Gln
130 135 140
Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His Asp Pro Ser Thr Arg
145 150 155 160
His His Tyr Leu Asn Val Ala Gln Ala Gln Pro Arg Ala Asn Ser Thr
165 170 175
Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn Asn Ser Ser Gln Thr
180 185 190
Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr Ala Thr Ser Ser Pro
195 200 205
Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val Leu Glu Asn Asn Arg
210 215 220
Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu Pro Pro Pro Leu Leu
225 230 235 240
Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr Gln Gln Leu Lys Gln
245 250 255
Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser His Thr Arg Asn Asn
260 265 270
Leu Leu Ser Thr Thr Thr Pro Thr His His His Ile Pro His Ile Pro
275 280 285
Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn Ser Ser Asn Thr Glu
290 295 300
Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
305 310 315
<210> 9
<211> 252
<212> DNA
<213> (Artificial Synthesis)
<400> 9
cctaagattc caagacccaa gaacgcattt attctgttca gacagcacta ccacaggatc 60
ttaatagacg aatggaccgc tcaaggtgtg gaaatacccc ataattcaaa catttctaaa 120
attattggta cgaagtggaa gggcttacaa ccggaagata aggcacactg ggaaaatcta 180
gcggagaagg agaaactaga acataaaagg aagtatcctg aatacaaata caagccggta 240
agaaagtcta ag 252
<210> 10
<211> 84
<212> PRT
<213> (Artificial Synthesis)
<400> 10
Pro Lys Ile Pro Arg Pro Lys Asn Ala Phe Ile Leu Phe Arg Gln His
1 5 10 15
Tyr His Arg Ile Leu Ile Asp Glu Trp Thr Ala Gln Gly Val Glu Ile
20 25 30
Pro His Asn Ser Asn Ile Ser Lys Ile Ile Gly Thr Lys Trp Lys Gly
35 40 45
Leu Gln Pro Glu Asp Lys Ala His Trp Glu Asn Leu Ala Glu Lys Glu
50 55 60
Lys Leu Glu His Glu Arg Lys Tyr Pro Glu Tyr Lys Tyr Lys Pro Val
65 70 75 80
Arg Lys Ser Lys
<210> 11
<211> 368
<212> PRT
<213> (Artificial Synthesis)
<400> 11
Met Asn Pro Lys Ser Ser Thr Pro Lys Ile Pro Arg Pro Lys Asn Ala
1 5 10 15
Phe Ile Leu Phe Arg Gln His Tyr His Arg Ile Leu Ile Asp Glu Trp
20 25 30
Thr Ala Gln Gly Val Glu Ile Pro His Asn Ser Asn Ile Ser Lys Ile
35 40 45
Ile Gly Thr Lys Trp Lys Gly Leu Gln Pro Glu Asp Lys Ala His Trp
50 55 60
Glu Asn Leu Ala Glu Lys Glu Lys Leu Glu His Glu Arg Lys Tyr Pro
65 70 75 80
Glu Tyr Lys Tyr Lys Pro Val Arg Lys Ser Lys Lys Lys Gln Leu Leu
85 90 95
Leu Lys Glu Ile Glu Gln Gln Gln Gln Gln Gln Gln Lys Glu Gln Gln
100 105 110
Gln Gln Lys Gln Ser Gln Pro Gln Leu Gln Gln Pro Phe Asn Asn Asn
115 120 125
Ile Val Leu Met Lys Arg Ala His Ser Leu Ser Pro Ser Ser Ser Val
130 135 140
Ser Ser Ser Asn Ser Tyr Gln Phe Gln Leu Asn Asn Asp Leu Lys Arg
145 150 155 160
Leu Pro Ile Pro Ser Val Asn Thr Ser Asn Tyr Met Val Ser Arg Ser
165 170 175
Leu Ser Gly Leu Pro Leu Thr His Asp Lys Thr Ala Arg Asp Leu Pro
180 185 190
Gln Leu Ser Ser Gln Leu Asn Ser Ile Pro Tyr Tyr Ser Ala Pro His
195 200 205
Asp Pro Ser Thr Arg His His Tyr Leu Asn Val Ala Gln Ala Gln Pro
210 215 220
Arg Ala Asn Ser Thr Pro Gln Leu Pro Phe Ile Ser Ser Ile Ile Asn
225 230 235 240
Asn Ser Ser Gln Thr Pro Val Thr Thr Thr Thr Thr Ser Thr Thr Thr
245 250 255
Ala Thr Ser Ser Pro Gly Lys Phe Ser Ser Ser Pro Asn Ser Ser Val
260 265 270
Leu Glu Asn Asn Arg Leu Asn Ser Ile Asn Asn Ser Asn Gln Tyr Leu
275 280 285
Pro Pro Pro Leu Leu Pro Ser Leu Gln Asp Phe Gln Leu Asp Gln Tyr
290 295 300
Gln Gln Leu Lys Gln Met Gly Pro Thr Tyr Ile Val Lys Pro Leu Ser
305 310 315 320
His Thr Arg Asn Asn Leu Leu Ser Thr Thr Thr Pro Thr His His His
325 330 335
Ile Pro His Ile Pro Asn Gln Asn Ile Pro Leu His Gln Ile Ile Asn
340 345 350
Ser Ser Asn Thr Glu Val Thr Ala Lys Thr Ser Leu Val Ser Pro Lys
355 360 365

Claims (10)

1. Acid-tolerant saccharomyces cerevisiae is characterized in that saccharomyces cerevisiae S288C is used as an original strain, and the HMG (high molecular weight molecule) in the ROX1 transcription regulatory factor of saccharomyces cerevisiae S288C is knocked out, or G158A in the ROX1 transcription regulatory factor is mutated to obtain the acid-tolerant saccharomyces cerevisiae; the amino acid sequence of the ROX1 transcription regulatory factor is shown in SEQ ID NO. 11.
2. The acid-tolerant Saccharomyces cerevisiae according to claim 1, wherein the nucleotide sequence of the G158A mutated site is shown as SEQ ID No.1, and the encoded amino acid sequence is shown as SEQ ID No. 2.
3. The acid-tolerant Saccharomyces cerevisiae of claim 1, wherein one or more of an 8aa-91aa fragment, a 54aa-368aa fragment, a 1aa-53aa fragment, a 1aa-7aa fragment, or a 92aa-368aa fragment of the ROX1 is knocked out.
4. The acid-tolerant Saccharomyces cerevisiae according to claim 3, wherein after the 8aa-91aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID No.3, and the encoded amino acid sequence is shown as SEQ ID No. 4.
5. The acid-tolerant Saccharomyces cerevisiae of claim 3, wherein the nucleotide sequence of the ROX1 transcription regulatory factor is shown in SEQ ID NO. and the encoded amino acid sequence is shown in SEQ ID NO.6 after the 54aa-368aa fragment is knocked out.
6. The acid-tolerant Saccharomyces cerevisiae according to claim 3, wherein after the 1aa-53aa fragment is knocked out, the nucleotide sequence of the ROX1 transcription regulatory factor is shown as SEQ ID No.7, and the encoded amino acid sequence is shown as SEQ ID No. 8.
7. The acid-tolerant Saccharomyces cerevisiae of claim 3, wherein the nucleotide sequence of the ROX1 transcription regulatory factor is shown in SEQ ID NO.9 and the encoded amino acid sequence is shown in SEQ ID NO.10 after the 1aa-7aa fragment and the 92aa-368aa fragment are knocked out simultaneously.
8. Product comprising the acid-tolerant Saccharomyces cerevisiae according to any of claims 1 to 7.
9. Use of an acid tolerant s.cerevisiae as claimed in any one of claims 1 to 7, or a product as claimed in claim 8, for the fermentative production of L-malic acid.
10. Use according to claim 9, characterized in that the conditions of the fermentation are: the fermentation temperature is 28-32 ℃, and the fermentation time is 60-108 h.
CN202210296692.3A 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof Active CN114891652B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210296692.3A CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210296692.3A CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Publications (2)

Publication Number Publication Date
CN114891652A true CN114891652A (en) 2022-08-12
CN114891652B CN114891652B (en) 2023-09-08

Family

ID=82715504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210296692.3A Active CN114891652B (en) 2022-03-24 2022-03-24 Acid-resistant saccharomyces cerevisiae and application thereof

Country Status (1)

Country Link
CN (1) CN114891652B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676146A (en) * 2020-07-03 2020-09-18 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof
CN113249238A (en) * 2021-05-07 2021-08-13 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof in preparation of organic acid
CN113293107A (en) * 2021-03-02 2021-08-24 绍兴文理学院 Saccharomyces cerevisiae for industrial production with high organic acid tolerance and construction method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676146A (en) * 2020-07-03 2020-09-18 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof
CN113293107A (en) * 2021-03-02 2021-08-24 绍兴文理学院 Saccharomyces cerevisiae for industrial production with high organic acid tolerance and construction method thereof
CN113249238A (en) * 2021-05-07 2021-08-13 江南大学 Acid-resistant saccharomyces cerevisiae and application thereof in preparation of organic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OUYANG ET AL.: "Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes", 《RSC ADVANCES》, vol. 9, pages 30171 - 30181 *
TADAS JAKOČIŪNAS ET AL.: "Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae", 《METABOLIC ENGINEERING》, pages 1 - 39 *

Also Published As

Publication number Publication date
CN114891652B (en) 2023-09-08

Similar Documents

Publication Publication Date Title
AU2009221104B2 (en) A pentose sugar fermenting cell
DK2313495T3 (en) Prokaryotic xylose isomerase for the construction of xylose-fermenting YEAST
US9556459B2 (en) Dicarboxylic acid production in a recombinant yeast
AU2011315572B2 (en) Polypeptides with permease activity
US8993301B2 (en) Vector with codon-optimised genes for an arabinose metabolic pathway for arabinose conversion in yeast for ethanol production
EP2495304A1 (en) Dicarboxylic acid production in a yeast cell
JP2009502191A (en) Expression of xylose active transporter in genetically modified yeast
EP2495306A1 (en) Specific arabinose transporter of the plant arabidosis thaliana for the construction of pentose-fermenting yeasts
BRPI0721283A2 (en) PICHI STIPITIS Yeast ARABINOSIS SPECIFIC CARRIER AND ITS APPLICATIONS
KR102129379B1 (en) A recombinant microorganism into which a high activity malate dehydrogenase for producing succinic acid and a method for producing succinic acid using the same
CN113249238B (en) Acid-resistant saccharomyces cerevisiae and application thereof in preparation of organic acid
CN114891652A (en) Acid-resistant saccharomyces cerevisiae and application thereof
WO2009008756A2 (en) DNA SEQUENCE ENCODING A SPECIFIC L-ARABINOSE TRANSPORTER, A cDNA MOLECULE, A PLASMID COMPRISING THE SAID DNA SEQUENCE, HOST CELL TRANSFORMED WITH SUCH PLASMID AND APPLICATION THEREOF
CN114891774A (en) Xylose isomerase expressed in yeast cell with high activity and application thereof
WO2020078474A1 (en) New mutant protein for improving malic acid yield
CN112062822B (en) Carbon catabolism regulatory protein CcpA mutant I42A
EP2995684B1 (en) Recombinant microorganism metabolizing 3,6-anhydride-l-galactose and a use thereof
CN114317636B (en) Preparation method of oligose
CN113736807B (en) Cellobiohydrolase, and coding gene and application thereof
CN112695051B (en) Genetically engineered bacterium for producing ethanol by using xylose and construction method and application thereof
WO2023213294A1 (en) Xylose isomerase and use thereof
CN111690628B (en) Exo-inulinase mutant MutQ23 delta 2 unstable at medium temperature
CN116536298A (en) Protein sequence N-terminal modified xylose isomerase and application thereof
JP3478410B2 (en) Hyperthermostable proteasome
WO2023093794A1 (en) Acid-resistant yeast strain for high-yield production of l-malic acid, and construction method therefor and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant