CN114888067A - 一种天然稳定剂高效修复铅镉复合污染红壤的方法 - Google Patents

一种天然稳定剂高效修复铅镉复合污染红壤的方法 Download PDF

Info

Publication number
CN114888067A
CN114888067A CN202210365771.5A CN202210365771A CN114888067A CN 114888067 A CN114888067 A CN 114888067A CN 202210365771 A CN202210365771 A CN 202210365771A CN 114888067 A CN114888067 A CN 114888067A
Authority
CN
China
Prior art keywords
soil
cadmium
lead
stabilizer
red soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210365771.5A
Other languages
English (en)
Inventor
张萌
陆友伟
姚娜
周慜
姜成名
刘足根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Academy Of Eco Environmental Science And Planning
Original Assignee
Jiangxi Academy Of Eco Environmental Science And Planning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Academy Of Eco Environmental Science And Planning filed Critical Jiangxi Academy Of Eco Environmental Science And Planning
Priority to CN202210365771.5A priority Critical patent/CN114888067A/zh
Publication of CN114888067A publication Critical patent/CN114888067A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2101/00Agricultural use

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种天然稳定剂高效修复铅镉复合污染红壤的方法,涉及资源与环境工程技术领域。本发明提供的天然稳定剂是一种来源于我国江西省红壤重金属铅镉的含碳稳定剂,将其施用在特定含量的铅镉污染土壤中,对土壤中的铅镉等重金属元素具有良好的稳定效果,同时对土壤的扰动小,甚至可提供一定肥力。

Description

一种天然稳定剂高效修复铅镉复合污染红壤的方法
本申请是申请日为2016年1月12日、申请号为201610018792.4、发明名称为《高效修复铅镉复合污染红壤的天然稳定剂及其方法》的分案申请。
技术领域
本发明涉及资源与环境工程技术领域,尤其涉及一种天然稳定剂高效修复铅镉复合污染红壤的方法。
背景技术
Pb、Cd均不是人体必需的微量元素,且都具有累积性的特点。其中Cd 是已知目前的最易在生物体内蓄积的毒物,会造成动物性食品的污染,对人类健康造成极大的威胁[1]。Pb则在人体内蓄积后会随着在人体内积蓄量的增加而对人体正常生理功能和健康造成极大的危害[2],尤其是会威胁人体的神经和消化系统等。具体表现为引起铅性贫血、消化不良、腹绞痛和高血压,对神经系统的损害可引起中毒性脑病,长期低剂量接触会诱发肿瘤的发生等等[3]
与本发明相关的现有的技术方案:
常用于土壤重金属污染的修复技术可分为物理修复法、化学修复法和生物修复法。目前,在众多重金属修复技术当中,固化/稳定化修复技术具有费用低、修复时间短、可处理多种复合重金属污染、易操作等优点,成为一种较成熟且经济有效的重金属污染土壤的修复治理技术[4]
目前国家知识产权局能检索到的固化剂专利超过20余项,但是专门针对红壤重金属治理的稳定剂的相关专利仍比较少见。稳定化技术的运用在一定程度上改变了原土壤结构,造成原土壤肥力破坏,对土壤微生物或植物生长产生抑制[5]。固化/稳定化制剂可分为人工合成稳定剂和天然稳定剂。相对于人工合成稳定剂而言,天然稳定剂一般来源较为广泛、加工简单、使用便捷、不会存在二次污染等问题,且具有不可替代的生态安全优势,对土壤扰动较小和土壤结构破坏不大,甚至还能增加土壤肥力等一系列的优点。但是已报道的天然稳定剂种类还较少,天然稳定剂的机理复杂,还有待深入研究,如:王永强等[6]利用骨炭+沸石对重金属污染土壤进行修复。
基于天然稳定剂各项优点,筛选和开发出适合我国南方红壤壤质的、适合Pb、Cd复合稳定化的天然稳定剂,具有较高的现实价值以及广阔的应用前景。通过多手段表征分析,探索天然稳定剂的稳定机理具有较高的研究价值。
参考文献
[1]杨自军.镉的污染及对动物危害和防治[J].中国动物保健,2008, 5(111):55-60.
[2]汪晔君.铅污染对人体健康的危害及防治措施[J].沈阳大学学报, 2004,16(6):103-106.
[3]杨国营.铅的环境生物化学[J].河北工业科技,2002,19(3):31-35.
[4]赵术华,陈志良,张太平,等.重金属污染土壤的固化/稳定化处理技术研究进展[J].土壤通报,2013,44(6):1531-1536.
[5]Boisson J,Ruttens A,Mencha M,et al.Evaluation ofhydroxyapatite asa metal immobilizing soil additive for the remediation of polluted soils.PartI: Influence of hydroxyapatite on metal exchangeability in soil,plant growthand plant metal accumulation[J].Environmental Pollution,1999,104:225-233.
[6]王永强,肖中立,李伯威,等.骨炭+沸石对重金属污染土壤的修复效果及评价[J].农业环境与发展,2010,3:90-93.
发明内容
本发明的目的就是基于天然稳定剂各项优点,同时结合江西红壤重金属污染特点,提供一种天然稳定剂高效修复铅镉复合污染红壤的方法,本发明采用的天然稳定剂对红壤中铅镉的复合稳定效果理想,施入土壤中对土壤扰动较小,甚至可提供一定肥力。
本发明的目的是这样实现的:
一、高效修复铅镉复合污染红壤的天然稳定剂(简称PA)
所述的天然稳定剂PA是一种来源于我国江西省红壤重金属铅镉的含碳稳定剂(作为稳定剂用于稳定化技术中的含碳物料)。
二、天然稳定剂实现稳定化目标的方法(简称方法)
本方法包括下列步骤:
①土壤预处理
将采集回土样在自然条件下风干,用机械辅助破碎过2mm筛,备用;
测定其本底值:pH(6.16±0.03)、含水率(2.53±0.01%)、有机质含量(1.85±0.04%)、有效铅(71.15±1.13mg/kg)、有效镉(1.26±0.01mg/kg)、 (过100目测)总铅(308.14±3.24mg/kg)和总镉(1.87±0.05mg/kg);
土壤含水率过低不利于后续稳定剂拌合和反应,因此需调节含水率到 30%后备用;
②稳定化实验
选取天然物料PA的9个浓度梯度(质量分数分别为:0%、4%、8%、 12%、16%、20%、24%、28%和32%)1.0kg受试土壤开展单因子多水平的随机实验,取3个0%组做空白对照组(CK),其余各组按照投加比浓度梯度,依次添加天然物料PA;
A、考虑到土壤的污染状况和本试验具体情况等因素,确定拌合方式采用人工拌合的方式;
B、稳定剂采用撒布方式进行投加,将药剂均匀摊铺在土壤表层,摊铺完毕后,人工进行拌合,多次拌合摊铺的药剂与土壤拌合后的颜色能够保持均匀一致;
C、实验期间,需每隔3d用去离子水给土壤补充水分,加水后需再混匀,保持在田间持水量的70%左右,保持空气湿度60~80%、室温15~25℃;此外,稳定化处理后期对处理土壤的田间持水度和翻动晾晒等继续进行人工维护;
D、按时间梯度0d、2d、4d、8d、16d、24d和32d分别取样进行分析,其中,0d梯度样品为土样中加入稳定剂、调节水分后的半小时内采集的样品;取样后的土壤样品放在室内通风处风干后收集以备后续处理使用。
三、天然稳定剂的应用(简称应用)
主要应用于重金属铅镉污染土壤,尤其针对重金属铅镉污染红壤,针对性稳定红壤中有效态的铅镉,减少有效态重金属含量以达到稳定重金属目的。
本发明具有下列优点和积极效果:
①发现了一种高效的天然含碳稳定剂——天然物料PA,确定了PA的稳定化效果:Pb和Cd的最快稳定化时间、投加比和稳定化率分别为4d、 32%和70.80%;2d、20%和45.07%;且各处理组中铅与镉在稳定化过程存在显著的协同效应,呈极显著相关性(P<0.01,P代表统计分析上的显著性水平);PA对土壤中铅镉的复合稳定效果比较理想,且由于其本身是天然物料,施入土壤中对土壤扰动较小,甚至还能提供一定的肥力,值得在原位修复上推广;
②通过多手段表征分析,系统解析了其主要稳定化机理,对土壤重金属稳定化——尤其是我国南方红壤铅镉复合稳定化及未来天然稳定剂的筛选开发,都具有较大的理论与实践指导意义。
附图说明
图1是原土样SEM系列图;
图2是PA物料的SEM系列图;
图3是PA投加组土壤SEM系列图;
图1~3中:
A—250倍SEM图,
B—500倍SEM图,
C—1000倍SEM图,
D—2000倍SEM图,
E—5000倍SEM图,
F—10000倍SEM图,
G—20000倍SEM图;
图4是原土XRD波峰图;
图5是PA的XRD波峰图;
图6是PA投加组土壤XRD波峰图;
图7是PA和PA投加组土壤红外对比图;
图8是CK与PA投加组土壤红外对比图。
英译汉:
1、Pb:铅;
2、Cd:镉;
3、SEM:扫描电子显微镜;
4、XRD:X射线衍射;
5、FTIR:透射红外光谱;
6、Spearman:一种相关性分析方法;
7、PA:天然稳定剂;
8、CK:空白对照组;
9、DTPA:二乙基三胺五乙酸。
具体实施方式
下面结合附图和实施例详细说明:
一、实验评估与表征
1、采用DTPA提取法测定的红壤铅和镉有效态为评估指标,对本发明所述稳定剂进行稳定化效果的评估;选取原土、天然物料PA和稳定化效果最好的处理组,运用SEM、XRD、FTIR等表征手段对稳定化机理进行解析,所得图谱如图1~8所示。
2、结果分析
1)由单因子多水平实验结果可知,天然物料PA对土壤重金属Pb、Cd 稳定化效果比较好:
Pb的最快稳定时间、投加比和稳定化率分别为4d、32%和70.80%,稳定化率随时间的增加有所降低但降低幅度很小,32d稳定化率为58.49%;
Cd的最快稳定时间、投加比和稳定化率分别为2d、20%和45.07%,稳定化率随时间的增加呈现微幅波动,32d稳定化率为45.89%。
2)Spearman分析可知,在所施用的天然稳定剂后,所处理组的土壤重金属Pb、Cd稳定化率之间呈极显著相关性(P<0.01),这表明施加天然稳定剂后,红壤重金属铅和镉在稳定转化过程存在显著的协同效应。
二、天然稳定剂的稳定化机理分析
运用SEM、XRD、FTIR等表征手段进行分析,有以下结果:
1、SEM结果:图1所示为原土的SEM系列图,由A~G系列图可看出原土颗粒状较大,表面粗糙,空状结构小,比表面积小;与图2和图3比较可看出,PA颗粒物小,表面粗糙,空状结构发达,由图1-G和图3-G比较可知,Pb、Cd稳定化之后土壤样品中颗粒物明显变大,并呈明显的集聚态,表面变地更光滑。
2、XRD结果:对比图4~6分析发现,PA投加组中出现了两种在原土和PA都没有的沉淀物质Cd(OH)2、CdCO3,生成大量的PbCO3·SiO2,的验证了PA能够与红壤形成碳酸镉/铅沉淀,同时也说明PA能提供-OH官能团;
3、FTIR结果:由图7可看出在波段786.76cm-1、1426.09cm-1、1031.29cm-1和3621.65cm-1处PA比PA投加组波峰高,且出现明显峰差;根据PA原有成分,判断786.76cm-1多是形成磷酸盐沉淀;参照图6出现PbCO3·SiO2,结合1000cm-1左右是SiO2的判断,可推断出PA投加组中出现了大量的 PbCO3·SiO2沉淀物。结合图6分析,1400cm-1左右多为CO3 2-,由于形成 CdCO3沉淀,CO3 2-减少造成出现明显波峰;3600cm-1左右是为游离和缔合 -OH的特征吸收频率范围,推断3621.65cm-1处与土壤中铅、镉形成氢氧化物沉淀有关,这和图6分析中出现Cd(OH)2的结果一致。
4、由图8可以看出,在波段3623.54cm-1与787.83cm-1、691.95cm-1处CK比PA投加组波峰高,并出现明显峰差;3623.54cm-1--波段是由于生成氢氧化铅/镉等造成的,787.83cm-1波段是由于生成碳酸盐造成的,691.95 cm-1波段由于生成磷酸铅等磷酸盐造成的。表明施加PA后红壤有效态铅镉结合/生成以PbCO3·SiO2、Cd(OH)2、CdCO3为主,外加少量磷酸盐的Pb、 Cd化合沉淀物。

Claims (1)

1.一种天然稳定剂高效修复铅镉复合污染红壤的方法,其特征在于:
所述的天然稳定剂为含碳物料稳定剂PA;
所述天然稳定剂采用撒布方式进行投加,均匀摊铺在重金属铅镉污染红壤表层后,进行人工拌和;所述重金属铅镉污染红壤的含水率为30%;所述重金属铅镉污染红壤的本底值为:pH值为6.13~6.19,含水率为2.52~2.54%,有效铅为70.02~72.28mg/kg,有效镉为1.25~1.27mg/kg,过100目筛后的总铅为304.90~311.38mg/kg,总镉为1.82~1.92mg/kg;
所述天然稳定剂的投加量为重金属铅镉污染红壤质量分数的20或32%;所述天然稳定剂投加后每隔3d用去离子水给土壤补充水分,加水后再混匀,保持在田间持水量的70%,保持空气湿度60~80%、温度15~25℃。
CN202210365771.5A 2016-01-12 2016-01-12 一种天然稳定剂高效修复铅镉复合污染红壤的方法 Pending CN114888067A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210365771.5A CN114888067A (zh) 2016-01-12 2016-01-12 一种天然稳定剂高效修复铅镉复合污染红壤的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610018792.4A CN106040732A (zh) 2016-01-12 2016-01-12 高效修复铅镉复合污染红壤的天然稳定剂及其方法
CN202210365771.5A CN114888067A (zh) 2016-01-12 2016-01-12 一种天然稳定剂高效修复铅镉复合污染红壤的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610018792.4A Division CN106040732A (zh) 2016-01-12 2016-01-12 高效修复铅镉复合污染红壤的天然稳定剂及其方法

Publications (1)

Publication Number Publication Date
CN114888067A true CN114888067A (zh) 2022-08-12

Family

ID=57484140

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610018792.4A Pending CN106040732A (zh) 2016-01-12 2016-01-12 高效修复铅镉复合污染红壤的天然稳定剂及其方法
CN202210365771.5A Pending CN114888067A (zh) 2016-01-12 2016-01-12 一种天然稳定剂高效修复铅镉复合污染红壤的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610018792.4A Pending CN106040732A (zh) 2016-01-12 2016-01-12 高效修复铅镉复合污染红壤的天然稳定剂及其方法

Country Status (1)

Country Link
CN (2) CN106040732A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058566A1 (en) * 2002-11-27 2006-03-16 Shulgin Alexander I Humic mineral reagent and method for the production thereof, method for rehabilitating polluted soils, method for detoxification of wastes of extracted and processed mineral products and recultivating rock dumps and tailing storages, method for sewage water treatment and method for sludge utilisation
CN102757791A (zh) * 2012-07-16 2012-10-31 陕西科技大学 用于降低土壤中可交换态铅的重金属钝化剂及其制备方法和使用方法
CN104449745A (zh) * 2014-11-10 2015-03-25 中国环境科学研究院 一种用于重金属复合污染土壤的稳定剂及其制备方法
CN105170640A (zh) * 2015-08-31 2015-12-23 陕西科技大学 一种非添加外源组分土壤重金属原位钝化的生态方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107837A (zh) * 2015-09-14 2015-12-02 江苏隆昌化工有限公司 一种重金属污染土壤的稳定化修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058566A1 (en) * 2002-11-27 2006-03-16 Shulgin Alexander I Humic mineral reagent and method for the production thereof, method for rehabilitating polluted soils, method for detoxification of wastes of extracted and processed mineral products and recultivating rock dumps and tailing storages, method for sewage water treatment and method for sludge utilisation
CN102757791A (zh) * 2012-07-16 2012-10-31 陕西科技大学 用于降低土壤中可交换态铅的重金属钝化剂及其制备方法和使用方法
CN104449745A (zh) * 2014-11-10 2015-03-25 中国环境科学研究院 一种用于重金属复合污染土壤的稳定剂及其制备方法
CN105170640A (zh) * 2015-08-31 2015-12-23 陕西科技大学 一种非添加外源组分土壤重金属原位钝化的生态方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张从 等: "污染土壤生物修复技术", 中国环境科学出版社, pages: 33 - 34 *
李丽明: ""改性胡敏素钝化修复重金属污染土壤的研究", pages 027 - 136 *

Also Published As

Publication number Publication date
CN106040732A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Yang et al. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite
Liu et al. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land
CN108176707A (zh) 一种铅镉复合污染土壤原位钝化剂及其制备方法
CN108723081A (zh) 一种有机污染土壤无害化修复方法
Xenidis et al. Modifying alumina red mud to support a revegetation cover
CN107116096A (zh) 一种污泥热解碳与生物法联合的重金属土壤修复方法
Nie et al. Removel of uranium from aqueous solutions by spirodela punctata as the mechanism of biomineralization
CN106000284A (zh) 基于湖泊底泥制备的控氮材料及其制备方法、应用
Streubel Biochar: Its characterization and utility for recovering phosphorus from anaerobic digested dairy effluent
WO2020005760A1 (en) Ozonized biochar phosphorus sustainability and sand soilization
CN117361814A (zh) 一种水热转化污泥全组分为高品质再生土壤的方法
CN114888067A (zh) 一种天然稳定剂高效修复铅镉复合污染红壤的方法
Khan et al. Removal of cadmium from aqueous solution using bentonite clay
EP3947321A1 (de) Schwermetallabgereicherte düngergranulate aus sekundärphosphat und verfahren zu deren herstellung
CN104529101A (zh) 一种采用羟基磷灰石做钝化剂的城市污泥重金属钝化方法
Ladányi et al. Impact of low-dose municipal sewage sludge compost treatments on the nutrient and the heavy metal contents in a Chernozem Topsoil Near Újkígyós, Hungary: A 5-year comparison
Chittoo et al. Phosphate removal and recovery using lime-iron sludge: adsorption, desorption, fractal analysis, modeling and optimization using artificial neural network-genetic algorithm
Villabona-Ortiz et al. Effect of temperature in removing of anions in solution on biochar using Zea mays stalks as a precursor
Silas et al. AASCIT Journal of Environment
Gao et al. Remediation of Hg, Cd, Pb Contaminated Soil by Biochar from Corn Straw Pyrolyzed Combined with Potassium Dihydrogen Phosphate: Adsorption Potential, Speciation Transformation, and Risk Assessment
Syamsuddin et al. Effect of operating conditions on the efficiency of adsorption of Manganese (Mn) metals using Nano Zeolite adsorbents
CN113695374B (zh) 一种土壤放射性污染的修复装置和修复方法
DE19603088A1 (de) Verfahren zur Gewinnung eines Recycling-Substrates aus Deponierückbaumaterial und Restmüll
Himawan et al. Remediation of Lead-contaminated Farmland Soil: Efficacy of Low-cost Natural Amendments in [Im] mobilization of Lead
Liu et al. Effects of granulated red mud on Lead-Zinc waste soil remediation and leeks growth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220812