CN114887445A - Polonium removal system and method for lead bismuth cooled reactor - Google Patents
Polonium removal system and method for lead bismuth cooled reactor Download PDFInfo
- Publication number
- CN114887445A CN114887445A CN202210293734.8A CN202210293734A CN114887445A CN 114887445 A CN114887445 A CN 114887445A CN 202210293734 A CN202210293734 A CN 202210293734A CN 114887445 A CN114887445 A CN 114887445A
- Authority
- CN
- China
- Prior art keywords
- gas
- polonium
- adsorption
- removal system
- reactor vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052699 polonium Inorganic materials 0.000 title claims abstract description 159
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 18
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims 2
- 238000001179 sorption measurement Methods 0.000 claims abstract description 179
- 239000000443 aerosol Substances 0.000 claims abstract description 17
- 238000012806 monitoring device Methods 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims description 222
- 238000000746 purification Methods 0.000 claims description 20
- 239000011261 inert gas Substances 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000000274 adsorptive effect Effects 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 229910052755 nonmetal Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 7
- 230000002285 radioactive effect Effects 0.000 description 11
- 239000002826 coolant Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 229910001152 Bi alloy Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/82—Solid phase processes with stationary reactants
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/02—Treating gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
本发明的实施例公开了一种用于铅铋冷却反应堆的钋去除系统和方法。其中,所述钋去除系统与所述铅铋冷却反应堆的反应堆容器连接,用于去除所述反应堆容器中覆盖气体中的钋气溶胶。所述钋去除系统包括:吸附装置,所述吸附装置内安装有吸附模块,所述吸附模块用于吸附所述覆盖气体中的钋;气体循环管路,设置于所述吸附装置与所述反应堆容器之间,所述气体循环管路上设置有循环泵,所述循环泵用于将所述反应堆容器内的覆盖气体输送至所述吸附装置并将吸附净化后的覆盖气体输送回所述反应堆容器;钋监测装置,设置于所述气体循环管路上,用于监测所述覆盖气体中的钋含量。
Embodiments of the present invention disclose a polonium removal system and method for a lead-bismuth cooled reactor. Wherein, the polonium removal system is connected with the reactor vessel of the lead-bismuth cooling reactor, and is used for removing the polonium aerosol in the covering gas in the reactor vessel. The polonium removal system includes: an adsorption device, an adsorption module is installed in the adsorption device, and the adsorption module is used for adsorbing polonium in the covering gas; a gas circulation pipeline is arranged between the adsorption device and the reactor Between the containers, a circulation pump is arranged on the gas circulation pipeline, and the circulation pump is used to transport the cover gas in the reactor container to the adsorption device and transport the adsorbed and purified cover gas back to the reactor container ; A polonium monitoring device, arranged on the gas circulation pipeline, is used to monitor the polonium content in the covering gas.
Description
技术领域technical field
本发明的实施例涉及放射性物质处理技术领域,具体涉及一种用于铅铋冷却反应堆的钋去除系统和方法。Embodiments of the present invention relate to the technical field of radioactive material processing, in particular to a system and method for removing polonium for a lead-bismuth cooling reactor.
背景技术Background technique
液态铅铋合金是一种良好的块中子反应堆的冷却剂。在使用液态铅铋合金作为快中子反应堆的冷却剂时,铅铋合金受到中子辐射后会产生具有放射性的钋,其危险性较高。并且,由于钋具有很强的挥发性,在高温条件下,钋会从液态铅铋合金冷却剂中挥发进入冷却剂上方的覆盖气体中,使得覆盖气体中存在一定量的放射性钋。Liquid lead-bismuth alloy is a good coolant for bulk neutron reactors. When the liquid lead-bismuth alloy is used as the coolant of the fast neutron reactor, the lead-bismuth alloy will produce radioactive polonium after being irradiated by neutrons, which is highly dangerous. Moreover, because polonium has strong volatility, under high temperature conditions, polonium will volatilize from the liquid lead-bismuth alloy coolant into the cover gas above the coolant, so that there is a certain amount of radioactive polonium in the cover gas.
因此,为了使铅铋冷却反应堆可以安全运行,并且防止含有放射性钋的覆盖气体泄漏或排放至大气中,需要去除覆盖气体中的钋。Therefore, in order for a lead-bismuth-cooled reactor to operate safely, and to prevent leakage or release of the radioactive polonium-containing capping gas into the atmosphere, the polonium in the capping gas needs to be removed.
发明内容SUMMARY OF THE INVENTION
根据本发明的一个方面,提供了一种用于铅铋冷却反应堆的钋去除系统。所述钋去除系统与所述铅铋冷却反应堆的反应堆容器连接,用于去除所述反应堆容器中覆盖气体中的钋气溶胶。所述钋去除系统包括:吸附装置,所述吸附装置内安装有吸附模块,所述吸附模块用于吸附所述覆盖气体中的钋;气体循环管路,设置于所述吸附装置与所述反应堆容器之间,所述气体循环管路上设置有循环泵,所述循环泵用于将所述反应堆容器内的覆盖气体输送至所述吸附装置并将吸附净化后的覆盖气体输送回所述反应堆容器;钋监测装置,设置于所述气体循环管路上,用于监测所述覆盖气体中的钋含量。According to one aspect of the present invention, a polonium removal system for a lead-bismuth cooled reactor is provided. The polonium removal system is connected to the reactor vessel of the lead-bismuth cooling reactor, and is used for removing the polonium aerosol in the covering gas in the reactor vessel. The polonium removal system includes: an adsorption device, an adsorption module is installed in the adsorption device, and the adsorption module is used for adsorbing polonium in the cover gas; a gas circulation pipeline is arranged between the adsorption device and the reactor Between the containers, a circulation pump is arranged on the gas circulation pipeline, and the circulation pump is used to transport the cover gas in the reactor container to the adsorption device and transport the adsorbed and purified cover gas back to the reactor container ; A polonium monitoring device, arranged on the gas circulation pipeline, is used to monitor the polonium content in the covering gas.
根据本发明的另一个方面,提供了一种用于铅铋冷却反应堆的钋去除方法。所述钋去除方法包括:启动钋去除系统中的气体循环管路上的循环泵,将反应堆容器内的覆盖气体输送至吸附装置,以使所述覆盖气体中的钋气溶胶吸附于所述吸附装置内的吸附模块;吸附净化后的覆盖气体输送回所述反应堆容器;所述反应堆容器中的覆盖气体经过循环吸附,直至所述覆盖气体中的钋含量达到预定标准,停止气体循环管路中的气体循环。According to another aspect of the present invention, a method of removing polonium for a lead-bismuth cooled reactor is provided. The method for removing polonium includes: starting a circulating pump on a gas circulation pipeline in a polonium removal system, and transporting the cover gas in the reactor vessel to an adsorption device, so that the polonium aerosol in the cover gas is adsorbed on the adsorption device The adsorption module inside the reactor; the cover gas after adsorption and purification is transported back to the reactor container; the cover gas in the reactor container is adsorbed cyclically until the polonium content in the cover gas reaches a predetermined standard, and the gas circulation pipeline is stopped. gas circulation.
附图说明Description of drawings
通过下文中参照附图对本发明的实施例所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。Other objects and advantages of the present invention will be apparent from the following description of embodiments of the present invention with reference to the accompanying drawings, and may assist in a comprehensive understanding of the present invention.
图1是根据本发明一个实施例的钋去除系统的结构示意图。FIG. 1 is a schematic structural diagram of a polonium removal system according to an embodiment of the present invention.
图2是根据本发明一个实施例的钋去除系统中吸附装置的结构示意图。2 is a schematic structural diagram of an adsorption device in a polonium removal system according to an embodiment of the present invention.
图3是根据本发明一个实施例的钋去除方法的流程示意图。3 is a schematic flowchart of a method for removing polonium according to an embodiment of the present invention.
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。It should be noted that the accompanying drawings are not necessarily drawn to scale, but are only shown in a schematic manner that does not affect the reader's understanding.
附图标记说明:Description of reference numbers:
10、吸附装置;20、隔离阀;30、循环泵;40、真空装置;50、惰性气体装置;60、钋监测装置;70、伴热保温装置;81、流量测量装置;82、压力测量装置;83、温度测量装置;90、密封转运装置;200、反应堆容器。10, adsorption device; 20, isolation valve; 30, circulating pump; 40, vacuum device; 50, inert gas device; 60, polonium monitoring device; 70, heat tracing and insulation device; 81, flow measuring device; 82, pressure measuring device ; 83, temperature measurement device; 90, sealed transport device; 200, reactor vessel.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions of the present application will be described clearly and completely below with reference to the accompanying drawings of the embodiments of the present application. Obviously, the described embodiment is one embodiment of the present application, but not all embodiments. Based on the described embodiments of the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
需要说明的是,除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。若全文中涉及“第一”、“第二”等描述,则该“第一”、“第二”等描述仅用于区别类似的对象,而不能理解为指示或暗示其相对重要性、先后次序或者隐含指明所指示的技术特征的数量,应该理解为“第一”、“第二”等描述的数据在适当情况下可以互换。若全文中出现“和/或”,其含义为包括三个并列方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。此外,为了便于描述,在这里可以使用空间相对术语,如“上方”、“下方”、“顶部”、“底部”等,仅用来描述如图中所示的一个器件或特征与其他器件或特征的空间位置关系,应当理解为也包含除了图中所示的方位之外的在使用或操作中的不同方位。It should be noted that, unless otherwise defined, the technical terms or scientific terms used in the present application shall have the usual meanings understood by those with ordinary skills in the field to which the present application belongs. If descriptions such as "first" and "second" are involved in the whole text, the descriptions such as "first" and "second" are only used to distinguish similar objects, and should not be construed as indicating or implying their relative importance, sequence, etc. The order or the quantity of the indicated technical features is implicitly indicated, and it should be understood that the data described by "first", "second", etc. can be interchanged under appropriate circumstances. If "and/or" appears in the whole text, it means that it includes three parallel schemes. Taking "A and/or B" as an example, it includes scheme A, scheme B, or scheme that A and B satisfy at the same time. Furthermore, for ease of description, spatially relative terms, such as "above," "below," "top," "bottom," etc., may be used herein to describe only one device or feature as shown in the figure versus other devices or features. The spatial relationship of features should be understood to also encompass different orientations in use or operation in addition to the orientation shown in the figures.
图1示出了根据本发明一个实施例的钋去除系统的结构示意图。本实施例中的钋去除系统用于铅铋反应堆中,所述钋去除系统与所述铅铋反应堆的反应堆容器连接,用于去除所述反应堆容器内覆盖气体中的钋气溶胶。其中,所述惰性气体为反应堆容器中用于保护冷却剂和/或冷却剂管路的气体,一般使用惰性气体作为覆盖气体,例如,氩气等。FIG. 1 shows a schematic structural diagram of a polonium removal system according to an embodiment of the present invention. The polonium removal system in this embodiment is used in a lead-bismuth reactor, and the polonium removal system is connected to the reactor vessel of the lead-bismuth reactor, and is used for removing the polonium aerosol in the covering gas in the reactor vessel. Wherein, the inert gas is the gas used to protect the coolant and/or the coolant pipeline in the reactor vessel, and generally, the inert gas is used as the covering gas, for example, argon gas.
如图1所示,本实施例中的钋去除系统包括吸附装置10、气体循环管路和钋监测装置60。其中,所述吸附装置10内安装有吸附模块13,所述吸附模块13用于吸附所述覆盖气体中的钋(Po-210)。所述气体循环管路设置于所述吸附装置10与所述反应堆容器200之间,所述气体循环管路上设置有循环泵30,所述循环泵30用于将所述反应堆容器200内的覆盖气体输送至所述吸附装置10并将吸附净化后的覆盖气体输送回所述反应堆容器200,以使反应堆容器中的覆盖气体在所述气体循环管路中循环。所述钋监测装置60设置于所述气体循环管路上,用于监测所述覆盖气体中的钋含量,从而判断所述反应堆容器中覆盖气体是否达到净化要求。As shown in FIG. 1 , the polonium removal system in this embodiment includes an
采用本实施例中的钋去除系统,能够对铅铋反应堆运行过程中产生的钋气溶胶进行去除,通过吸附钋气溶胶实现了反应堆容器中覆盖气体中钋的去除。并且,放射性的覆盖气体在钋去除系统和反应堆容器之间采用回路式结构设计,使放射性气体形成闭式循环,降低了放射性气体泄漏的风险,能够持续、高效、安全地对覆盖气体中的钋进行吸附去除。Using the polonium removal system in this embodiment, the polonium aerosol generated during the operation of the lead-bismuth reactor can be removed, and the polonium in the covering gas in the reactor vessel can be removed by adsorbing the polonium aerosol. In addition, the radioactive cover gas adopts a loop structure design between the polonium removal system and the reactor vessel, so that the radioactive gas forms a closed cycle, reduces the risk of radioactive gas leakage, and can continuously, efficiently and safely remove the polonium in the cover gas. adsorption removal.
本实施例中气体循环管路上的循环泵30可以用于调节气体循环管路中的气体流量,操作人员可以根据钋去除系统的运行状态,通过循环泵实时调整气体流量。可选的,本实施例中的循环泵可以在0~5.0m3/h的范围内调整气体流量。此外,本实施例中的气体循环管路的泄漏率极小,不超过1×10-7Pa·m/s。In this embodiment, the circulating
此外,本实施例中的气体循环管路上还设置有测量装置,用于测量所述气体循环管路中气体的气体参数,其中,气体的气体参数包括气体的流量、压力、温度中的至少一个。所述测量装置包括流量测量装置81、压力测量装置82以及温度测量装置83中的至少一个。In addition, the gas circulation pipeline in this embodiment is also provided with a measuring device for measuring gas parameters of the gas in the gas circulation pipeline, wherein the gas parameters of the gas include at least one of the flow rate, pressure, and temperature of the gas . The measuring device includes at least one of a
在一些实施例中,所述钋去除系统可以耦合于铅铋冷却反应堆。所述钋去除系统和所述反应堆容器之间设置有隔离阀20,所述隔离阀20可以选择性地打开或关闭。当所述隔离阀打开时,所述反应堆容器内与所述钋去除系统内之间可以进行气体流通;当所述隔离阀关闭时,所述反应堆容器内与所述钋去除系统内之间气体不能流通,以使所述钋去除系统与所述反应堆容器隔离。In some embodiments, the polonium removal system may be coupled to a lead-bismuth cooled reactor. An isolation valve 20 is provided between the polonium removal system and the reactor vessel, and the isolation valve 20 can be selectively opened or closed. When the isolation valve is opened, gas can be communicated between the reactor vessel and the polonium removal system; when the isolation valve is closed, the gas between the reactor vessel and the polonium removal system There is no flow through to isolate the polonium removal system from the reactor vessel.
图2示出了根据本发明一个实施例的吸附装置的结构示意图。如图2所示,本实施例中的吸附装置10内安装有多个间隔设置的吸附模块13。其中,多个吸附模块13平行设置,且相邻两个吸附模块之间具有预定的间隔。所述反应堆容器200中的覆盖气体通过气体循环管路从吸附装置10的入口11进入,并且覆盖气体沿着吸附装置10内各吸附模块之间的间隔流入吸附装置10内的流道。FIG. 2 shows a schematic structural diagram of an adsorption device according to an embodiment of the present invention. As shown in FIG. 2 , a plurality of
本实施例中的吸附装置10中设置有流量分配器和多个流道,其中,所述流道用于供所述覆盖气体流动,所述流量分配器用于将进入所述吸附装置10的所述覆盖气体分配至各个流道。所述流量分配器靠近所述吸附装置10的入口设置,从所述入口引入的覆盖气体经由所述流量分配器分配至所述多个流道,多个所述流道可以途经多个吸附模块13,以使覆盖气体通过各个流道流经多个吸附模块13之后,再从吸附装置10的出口12流出至气体循环管路中。如图2所示,覆盖气体在吸附装置10内沿流动方向A进行流动,其中,所述流道的进口可以设置于所述吸附模块13之间的间隔中。本实施例中的吸附模块13可以最大化地对覆盖气体中的钋气溶胶进行吸附固定,从而实现对覆盖气体的吸附净化。The
可选的,所述吸附装置10中的多个吸附模块13之间设置有蛇形流道,所述覆盖气体在所述蛇形流道中流动并多次经过各所述吸附模块13,使得所述覆盖气体中的钋气溶胶吸附固定于所述多个吸附模块13,实现覆盖气体的净化。Optionally, a serpentine flow channel is provided between the plurality of
在本实施例中,所述吸附模块13包括金属网以及包裹在所述金属网外的非金属膜。其中,所述非金属膜可以由纤维素、树脂等高分子材料制成,或者,可以由二氧化硅、二氧化锰等氧化物材料以及基于所述氧化物材料的复合材料制成。金属网可以为金、银、铂、不锈钢等材料制成的丝网。可选的,所述非金属膜或者金属网可以为单层布置,也可以为多层重叠布置,从而对混合有钋气溶胶的覆盖气体进行物理吸附和过滤。In this embodiment, the
在一些实施例中,所述吸附模块13中还设置有化学吸附单元,所述化学吸附单元可以设置在两金属网、两非金属膜、或者金属网和非金属膜之间。例如,所述吸附模块13从一侧至另一侧依次设置有非金属膜、金属网、化学吸附单元、金属网以及非金属膜。所述化学吸附单元利用化学反应将Po-210及其化合物转化为其他含Po-210的稳定化合物,从而完成Po-210的去除。In some embodiments, the
通过本实施例中的吸附装置10,可以以物理吸附为主、化学吸附为辅对覆盖气体中的钋进行吸附,以净化所述覆盖气体。With the
如图1所示,本实施例中的钋监测装置60设置于所述吸附装置10的入口之前的气体循环管路上,和/或,所述吸附装置10的出口之后的气体循环管路上。本实施例中的钋监测装置60可以监测气体循环管路内气体的钋含量,为钋去除系统的吸附效率以及净化效果提供判断依据。As shown in FIG. 1 , the polonium monitoring device 60 in this embodiment is disposed on the gas circulation pipeline before the inlet of the
可选的,所述钋监测装置60的检测方式为样品在线富集后进行检测。Optionally, the detection method of the polonium monitoring device 60 is to perform detection after the sample is enriched online.
其中,设置在所述吸附装置10入口之前的钋监测装置60可以监测从反应堆容器输送过来的覆盖气体中的钋含量,从而判断反应堆容器内的覆盖气体是否达到净化要求。在反应堆容器内的覆盖气体达到净化要求后,就可以通过气体循环管路上的循环泵30调整气体流量,使气体循环管路中的气体流量逐渐减小,直至气体流量为零,完成反应堆容器中覆盖气体的净化。Wherein, the polonium monitoring device 60 disposed before the inlet of the
同时,设置在所述吸附装置10的出口之后的钋监测装置60可以监测由吸附装置10吸附净化后的覆盖气体的钋含量。根据所述吸附装置10前后的两个所述钋监测装置60的监测结果,可以判断吸附装置10的吸附效率。Meanwhile, the polonium monitoring device 60 disposed after the outlet of the
本实施例中的吸附装置10的工作气体环境为覆盖气体与放射性钋气溶胶,为了维持吸附装置10的工作气体环境,钋去除系统还包括真空装置40和惰性气体装置50。The working gas environment of the
如图1所示,所述真空装置40与所述吸附装置连接,用于调整所述吸附装置中气体的压力,以维持所述吸附装置所需的工作气体环境,同时维持所述钋去除系统与反应堆容器内气体平衡。As shown in FIG. 1 , the vacuum device 40 is connected to the adsorption device for adjusting the pressure of the gas in the adsorption device to maintain the working gas environment required by the adsorption device and maintain the polonium removal system at the same time Equilibrate with the gas in the reactor vessel.
钋去除系统还包括惰性气体装置50,所述惰性气体装置50与所述吸附装置10连接,用于为所述吸附装置10提供与所述反应堆容器200内覆盖气体相同的惰性气体,为吸附装置提供所需要的工作气体环境,以维持所述吸附装置所需的工作气体环境,同时维持所述钋去除系统与反应堆容器内气体平衡。The polonium removal system further includes an inert gas device 50, which is connected to the
此外,吸附装置10可以在较高的温度下运行。本实施例中的吸附装置10可以用于吸附铅铋冷却反应堆中的覆盖气体,吸附装置的工作温度在200~400℃之间,工作压力在-0.1MPa~0.5MPa。Additionally, the
如图1所示,本实施例中的钋去除系统还包括密闭转运装置70。所述密闭转运装置70用于对所述吸附装置10中的吸附模块13拆卸、更换和密封转移。As shown in FIG. 1 , the polonium removal system in this embodiment further includes a closed transport device 70 . The closed transfer device 70 is used to disassemble, replace and seal transfer the
在完成反应堆容器内的覆盖气体的吸附净化并隔离所述钋去除系统与反应堆容器之后,通过密闭转运装置70可以将吸附装置中吸附固定有钋的吸附模块拆卸下来,自动打包并密封地转运至指定的区域进行妥善处置。此外,在将使用过的吸附固定有钋的吸附模块13拆卸下来后,还可以通过密闭转运装置70安装新的吸附模块13,以进行下一次的气体净化。本实施例中的密闭转运装置70的泄漏率较小,不超过1×10-8Pa·m/s,降低了放射性泄漏的风险。After completing the adsorption and purification of the cover gas in the reactor vessel and isolating the polonium removal system from the reactor vessel, the adsorption module in which the polonium is adsorbed and fixed in the adsorption device can be disassembled through the closed transfer device 70, and the adsorption module in the adsorption device can be automatically packaged and transported in a sealed manner to Proper disposal in designated area. In addition, after the used
如图1所示,钋去除系统还包括伴热保温装置90。所述伴热保温装置90设置于靠近所述反应堆容器200入口处的所述气体循环管路上,用于为净化后的覆盖气体加热和保温,使得净化后的覆盖气体加热至与反应堆容器200内的覆盖气体同等的温度水平并保温,之后再进入反应堆容器内,避免温差过大而出现热扰动,破坏反应堆容器内的热平衡。As shown in FIG. 1 , the polonium removal system also includes a heat tracing and insulation device 90 . The heat tracing and heat preservation device 90 is arranged on the gas circulation pipeline near the inlet of the
可选的,所述伴热保温装置90可以为包裹于所述气体循环管路上的加热带,可以为气体循环管路内的气体进行加热。可选的,所述反应堆容器的入口和出口附近的气体循环管路上均设置有温度测量装置83。其中,出口处的温度测量装置83可以测量反应堆容器200中的覆盖气体的温度,为伴热保温装置90对覆盖气体的加热提供参考数据,以使净化后的气体加热至与反应堆容器200内的气体温度一致。入口处的温度测量装置83可以测量净化后的覆盖气体的温度,从而判断是否需要为其进行加热。Optionally, the heat tracing and heat preservation device 90 may be a heating belt wrapped on the gas circulation pipeline, and may heat the gas in the gas circulation pipeline. Optionally, a temperature measuring device 83 is provided on the gas circulation pipeline near the inlet and the outlet of the reactor vessel. The temperature measuring device 83 at the outlet can measure the temperature of the covering gas in the
此外,钋去除系统还包括控制装置(图中未示出),所述控制装置与所述气体循环管路上的循环泵30、真空装置40、惰性气体装置50和伴热保温装置90中的至少一个连接,用于控制所述气体循环管路内的气体参数。In addition, the polonium removal system also includes a control device (not shown in the figure), the control device and at least one of the circulating
可选的,当吸附装置10的吸附效率没有达到标准时,可以结合气体循环管路中测量装置监测到的气体流量、压力、温度等参数,调节钋去除系统中气体参数,以使吸附装置的吸附效率达到标准。Optionally, when the adsorption efficiency of the
本发明实施例中的钋去除系统具有运行安全稳定、吸附效率高的特点,可实现铅铋冷却反应堆中钋的在线富集与检测功能以及去除功能。采用本发明实施例中的钋去除系统以物理吸附为主,以化学吸附为辅,可以安全、高效地去除铅铋冷却反应堆内覆盖气体中的钋。并且,钋去除系统采用回路式结构设计,使放射性的覆盖气体以及其中混有的钋气溶胶形成闭式循环,减少了放射性气体泄漏的风险。The polonium removal system in the embodiment of the present invention has the characteristics of safe and stable operation and high adsorption efficiency, and can realize on-line enrichment and detection functions and removal functions of polonium in a lead-bismuth cooling reactor. Using the polonium removal system in the embodiment of the present invention mainly uses physical adsorption and supplements chemical adsorption, and can safely and efficiently remove polonium in the cover gas in the lead-bismuth cooling reactor. In addition, the polonium removal system adopts a loop structure design, so that the radioactive covering gas and the polonium aerosol mixed in it form a closed cycle, which reduces the risk of radioactive gas leakage.
本发明的实施例还提供了一种用于铅铋冷却反应堆的钋去除方法。本发明实施例中钋去除方法可以使用上述实施方式中的钋去除系统来实现。此外,本实施例中的钋去除过程可以在反应堆停止运行时进行。Embodiments of the present invention also provide a method for removing polonium for a lead-bismuth-cooled reactor. The method for removing polonium in the embodiments of the present invention can be implemented by using the system for removing polonium in the above-mentioned embodiments. In addition, the polonium removal process in this embodiment can be performed while the reactor is out of operation.
图3示出了根据本发明一个实施例的钋去除方法的流程图。如图3所示,本实施例的钋去除方法包括以下步骤。FIG. 3 shows a flow chart of a method for removing polonium according to one embodiment of the present invention. As shown in FIG. 3 , the method for removing polonium in this embodiment includes the following steps.
步骤S10,启动钋去除系统中气体循环管路上的循环泵。Step S10, start the circulation pump on the gas circulation pipeline in the polonium removal system.
步骤S20,控制所述反应堆容器中的覆盖气体在钋去除系统中循环,其中,所述循环泵将反应堆容器内的覆盖气体输送至吸附装置,以使所述覆盖气体中的钋气溶胶吸附于所述吸附装置内的吸附模块;吸附净化后的覆盖气体输送回所述反应堆容器。Step S20, controlling the covering gas in the reactor vessel to circulate in the polonium removal system, wherein the circulating pump transports the covering gas in the reactor vessel to the adsorption device, so that the polonium aerosol in the covering gas is adsorbed on the polonium aerosol. The adsorption module in the adsorption device; the cover gas after adsorption and purification is transported back to the reactor vessel.
步骤S30,实时监测所述覆盖气体中钋含量。Step S30, monitoring the content of polonium in the covering gas in real time.
步骤S40,当所述覆盖气体中的钋含量达到预定标准,停止气体循环管路中的气体循环。Step S40, when the content of polonium in the covering gas reaches a predetermined standard, stop the gas circulation in the gas circulation pipeline.
具体地,在步骤S10中,启动循环泵之前,还需要检测钋去除系统的运行状态,以确保系统中各设备、装置以及仪表稳定工作,具备对反应堆容器内覆盖气体中钋进行去除的净化能力。Specifically, in step S10, before starting the circulating pump, it is also necessary to detect the operating state of the polonium removal system to ensure that the equipment, devices and instruments in the system work stably, and have the ability to purify the gas covered by the reactor vessel to remove polonium. .
此外,在启动之前,还需要打开反应堆与钋去除系统之间的隔离阀,以解除钋去除系统与反应堆的隔离,进而启动钋去除系统。In addition, before starting, the isolation valve between the reactor and the polonium removal system also needs to be opened to release the isolation of the polonium removal system from the reactor, and then start the polonium removal system.
在本实施例中,在启动反应堆容器与钋去除系统之间的气体循环管路上的循环泵后,可以控制循环泵以使气体循环管路中的气体流量控制在较低的预定流量水平上,以在钋去除系统中建立气体循环回路。其中,预定流量水平可以设置为0.5m3/h。In this embodiment, after starting the circulation pump on the gas circulation line between the reactor vessel and the polonium removal system, the circulation pump can be controlled so that the gas flow in the gas circulation line is controlled at a lower predetermined flow level, To establish a gas circulation loop in the polonium removal system. Wherein, the predetermined flow level can be set to 0.5m 3 /h.
进一步地,待钋去除系统稳定运行之后,可以逐渐提高气体循环管路中的循环气体流量。Further, after the polonium removal system operates stably, the circulating gas flow rate in the gas circulating pipeline can be gradually increased.
在步骤S20中,当覆盖气体在钋去除系统中循环时,经过吸附装置,吸附装置中的吸附装置可以吸附覆盖气体中的钋气溶胶,从而净化覆盖气体。净化后的覆盖气体通过气体循环管路又输送回反应堆容器,使所述反应堆容器中的覆盖气体经过循环吸附。In step S20, when the cover gas circulates in the polonium removal system, the adsorption device in the adsorption device can adsorb the polonium aerosol in the cover gas through the adsorption device, thereby purifying the cover gas. The purified cover gas is transported back to the reactor vessel through the gas circulation pipeline, so that the cover gas in the reactor vessel is subjected to circulating adsorption.
当所述覆盖气体中的钋含量达到预定标准后,可以停止气体循环管路中的气体循环,从而完成对反应堆容器内覆盖气体的净化。When the polonium content in the covering gas reaches a predetermined standard, the gas circulation in the gas circulation pipeline can be stopped, so as to complete the purification of the covering gas in the reactor vessel.
在一些实施例中,在反应堆容器中的覆盖气体在钋去除系统中循环时,可以实时监测入和/或离开所述吸附装置的气体的钋含量,以判断反应堆容器中覆盖气体的钋含量是否达到预定标准。In some embodiments, the polonium content of the gas entering and/or leaving the adsorption device can be monitored in real time as the blanket gas in the reactor vessel circulates in the polonium removal system to determine whether the polonium content of the blanket gas in the reactor vessel is meet the predetermined standard.
可选的,还可以根据进入和离开所述吸附装置的气体的钋含量,实时地确定所述吸附装置的吸附效率。在一些实施例中,可以通过吸附装置出口之后的钋监测装置的第一示数,以及吸附装置入口之前的钋监测装置的第二示数,来判断所述吸附效率。例如,当所述第一示数在所述第二示数的5%以下时,可以确定此时吸附装置的吸附效率在95%以上。Optionally, the adsorption efficiency of the adsorption device can also be determined in real time according to the polonium content of the gas entering and leaving the adsorption device. In some embodiments, the adsorption efficiency can be judged by the first reading of the polonium monitoring device after the outlet of the adsorption device, and the second reading of the polonium monitoring device before the inlet of the adsorption device. For example, when the first indication is less than 5% of the second indication, it can be determined that the adsorption efficiency of the adsorption device is above 95%.
为了使吸附装置能够最大化地得到利用,可以控制吸附装置的吸附效率在预定效率之上。例如,将吸附装置的吸附效率设置为95%。在本实施例中,可以通过调整所述气体循环管路中的气体参数,以调节所述吸附装置的吸附效率。其中,所述气体参数包括气体的流量、压力、温度中的至少一个。In order to maximize the utilization of the adsorption device, the adsorption efficiency of the adsorption device can be controlled above a predetermined efficiency. For example, the adsorption efficiency of the adsorption device is set to 95%. In this embodiment, the adsorption efficiency of the adsorption device can be adjusted by adjusting the gas parameters in the gas circulation pipeline. Wherein, the gas parameter includes at least one of gas flow, pressure, and temperature.
具体地,可以通过调节气体循环管路中的气体流量,来调节吸附效率。当所述吸附装置的吸附效率大于预定效率时,可以通过控制循环泵适当地增加系统内循环气体的流量,以最大化地利用吸附装置中的吸附模块,通过吸附模块快速地实现反应堆容器中覆盖气体的净化。当所述吸附装置的吸附效率小于预定效率时,可以通过控制循环泵降低系统内循环气体的流量,以使吸附装置的吸附效率在95%以上,从而实现钋的高效去除。Specifically, the adsorption efficiency can be adjusted by adjusting the gas flow in the gas circulation pipeline. When the adsorption efficiency of the adsorption device is greater than the predetermined efficiency, the flow rate of the circulating gas in the system can be appropriately increased by controlling the circulating pump, so as to maximize the utilization of the adsorption module in the adsorption device, and quickly realize the coverage of the reactor vessel through the adsorption module. Gas purification. When the adsorption efficiency of the adsorption device is less than the predetermined efficiency, the flow rate of the circulating gas in the system can be reduced by controlling the circulating pump, so that the adsorption efficiency of the adsorption device is above 95%, thereby realizing the efficient removal of polonium.
在本实施例中,钋去除系统在覆盖气体和钋气溶胶的气体环境下工作。通过控制真空装置和/或惰性气体装置,可以维持所述吸附装置中的气体环境,还可以维持钋去除系统与所述反应堆容器内的气体平衡。In this embodiment, the polonium removal system operates in a gaseous environment covering the gas and the polonium aerosol. By controlling the vacuum device and/or the inert gas device, the gas environment in the adsorption device can be maintained, and the polonium removal system can also be maintained in equilibrium with the gas in the reactor vessel.
此外,在覆盖气体在钋去除系统中循环时,可以对靠近反应堆容器入口的气体循环管路进行伴热保温,以将吸附净化后的覆盖气体加热至与反应堆容器内的覆盖气体的温度相同后,再输送回所述反应堆容器,避免温差过大而出现热扰动,破坏反应堆容器内的热平衡。In addition, when the cover gas is circulated in the polonium removal system, the gas circulation pipeline near the reactor vessel inlet can be heat traced and insulated to heat the adsorbed and purified cover gas to the same temperature as the cover gas in the reactor vessel. , and then transported back to the reactor vessel to avoid thermal disturbance due to excessive temperature difference and destroy the thermal balance in the reactor vessel.
在步骤S30中,在气体循环过程中,通过吸附装置之前的钋监测装置实时监测反应堆容器中覆盖气体的钋含量。In step S30, during the gas circulation process, the polonium content of the covering gas in the reactor vessel is monitored in real time by the polonium monitoring device before the adsorption device.
当所述反应堆容器中的覆盖气体中的钋含量达到预定标准后,可以缓慢降低气体循环管路中的气体流量至0m3/h,使钋去除系统停止运行。其中,预定标准可以根据实际需要进行设置,钋含量在所述预定标准以下,即可认为覆盖气体净化完成。When the polonium content in the covering gas in the reactor vessel reaches a predetermined standard, the gas flow rate in the gas circulation pipeline can be slowly reduced to 0 m 3 /h to stop the operation of the polonium removal system. Wherein, the predetermined standard can be set according to actual needs, and if the polonium content is below the predetermined standard, it can be considered that the purification of the cover gas is completed.
在钋去除系统停止运行之后,关闭反应堆容器与钋去除系统之间的隔离阀,将钋去除系统与反应堆容器隔离,结束对反应堆容器中覆盖气体的吸附净化。After the polonium removal system stops running, the isolation valve between the reactor vessel and the polonium removal system is closed to isolate the polonium removal system from the reactor vessel, and the adsorption and purification of the covering gas in the reactor vessel is ended.
在吸附净化结束后,将吸附装置内的吸附模块拆卸并密封转移,并在所述吸附装置内安装新的吸附模块。具体地,可以利用密闭转运装置将吸附装置中的吸附模块打包并密封,然后转移至指定的区域进行妥善处置。同时,通过密闭转运系统为吸附装置安装新的吸附模块,以便于进行下一次的气体净化。After the adsorption and purification is completed, the adsorption module in the adsorption device is disassembled, sealed and transferred, and a new adsorption module is installed in the adsorption device. Specifically, the adsorption module in the adsorption device can be packaged and sealed by a closed transport device, and then transferred to a designated area for proper disposal. At the same time, a new adsorption module is installed for the adsorption device through a closed transfer system to facilitate the next gas purification.
最后,在更换好吸附装置中的吸附模块后,控制反应堆恢复运行。Finally, after replacing the adsorption module in the adsorption device, control the reactor to resume operation.
采用本实施例中的钋去除方法,可以安全、高效、持续地去除铅铋冷却反应堆内覆盖气体中的钋,并且,降低了放射性气体泄漏的风险。By using the method for removing polonium in this embodiment, the polonium in the cover gas in the lead-bismuth cooling reactor can be safely, efficiently and continuously removed, and the risk of radioactive gas leakage is reduced.
对于本发明的实施例,还需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。For the embodiments of the present invention, it should also be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments may be combined with each other to obtain new embodiments.
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto, and the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210293734.8A CN114887445A (en) | 2022-03-24 | 2022-03-24 | Polonium removal system and method for lead bismuth cooled reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210293734.8A CN114887445A (en) | 2022-03-24 | 2022-03-24 | Polonium removal system and method for lead bismuth cooled reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114887445A true CN114887445A (en) | 2022-08-12 |
Family
ID=82714813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210293734.8A Pending CN114887445A (en) | 2022-03-24 | 2022-03-24 | Polonium removal system and method for lead bismuth cooled reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114887445A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825356A (en) * | 2022-12-26 | 2023-03-21 | 中国原子能科学研究院 | Measurement system and measurement method |
CN116065198A (en) * | 2023-03-06 | 2023-05-05 | 中子时代(青岛)创新科技有限公司 | Extraction device and method for Po in lead bismuth liquid metal |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3463739A (en) * | 1968-06-04 | 1969-08-26 | Atomic Energy Commission | Method for recovering polonium-210 from bismuth |
BE739636A (en) * | 1968-10-29 | 1970-03-02 | ||
JPH09155182A (en) * | 1995-12-12 | 1997-06-17 | Ishikawajima Harima Heavy Ind Co Ltd | Vacuum container degassing apparatus and method |
DE19650266A1 (en) * | 1996-12-04 | 1998-06-10 | Ruediger Dr Wuertz | Process for improving radiation charge by radon |
US6154478A (en) * | 1998-06-30 | 2000-11-28 | The Boeing Company | Chemical oxygen-iodine laser (coil)/cryosorption vacuum pump system |
CN105363315A (en) * | 2014-08-13 | 2016-03-02 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Device and method for removing chloride from liquid sample |
CN105920973A (en) * | 2016-06-13 | 2016-09-07 | 宁波市镇海净典环境治理服务有限公司 | Advective multilayer active waste gas adsorption device |
CN109166641A (en) * | 2018-09-30 | 2019-01-08 | 岭东核电有限公司 | Low-level Spent Radioactive gas processing system in a kind of lead bismuth heap |
CN109545412A (en) * | 2018-10-12 | 2019-03-29 | 上海交通大学 | The online removing means of PWR fuel assembly fission gas |
CN208865394U (en) * | 2018-07-20 | 2019-05-17 | 广州市环境保护设备厂有限公司 | A kind of wall-flow type reactor |
CN209752536U (en) * | 2019-02-25 | 2019-12-10 | 苏州希图环保科技有限公司 | portable high-efficient active carbon adsorption device |
CN111359366A (en) * | 2019-09-10 | 2020-07-03 | 上海深城环保设备工程有限公司 | Laminated gas adsorber and waste gas purification device using same |
EP3695896A1 (en) * | 2019-02-14 | 2020-08-19 | Primarine GmbH | Method and device for purifying exhaust gases containing sulphur oxides from combustion engines by means of a multi-stage adsorption process |
CN214764347U (en) * | 2021-02-07 | 2021-11-19 | 重庆格尔康科技有限公司 | Industrial organic waste gas treatment system |
-
2022
- 2022-03-24 CN CN202210293734.8A patent/CN114887445A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3463739A (en) * | 1968-06-04 | 1969-08-26 | Atomic Energy Commission | Method for recovering polonium-210 from bismuth |
BE739636A (en) * | 1968-10-29 | 1970-03-02 | ||
JPH09155182A (en) * | 1995-12-12 | 1997-06-17 | Ishikawajima Harima Heavy Ind Co Ltd | Vacuum container degassing apparatus and method |
DE19650266A1 (en) * | 1996-12-04 | 1998-06-10 | Ruediger Dr Wuertz | Process for improving radiation charge by radon |
US6154478A (en) * | 1998-06-30 | 2000-11-28 | The Boeing Company | Chemical oxygen-iodine laser (coil)/cryosorption vacuum pump system |
CN105363315A (en) * | 2014-08-13 | 2016-03-02 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Device and method for removing chloride from liquid sample |
CN105920973A (en) * | 2016-06-13 | 2016-09-07 | 宁波市镇海净典环境治理服务有限公司 | Advective multilayer active waste gas adsorption device |
CN208865394U (en) * | 2018-07-20 | 2019-05-17 | 广州市环境保护设备厂有限公司 | A kind of wall-flow type reactor |
CN109166641A (en) * | 2018-09-30 | 2019-01-08 | 岭东核电有限公司 | Low-level Spent Radioactive gas processing system in a kind of lead bismuth heap |
CN109545412A (en) * | 2018-10-12 | 2019-03-29 | 上海交通大学 | The online removing means of PWR fuel assembly fission gas |
EP3695896A1 (en) * | 2019-02-14 | 2020-08-19 | Primarine GmbH | Method and device for purifying exhaust gases containing sulphur oxides from combustion engines by means of a multi-stage adsorption process |
CN209752536U (en) * | 2019-02-25 | 2019-12-10 | 苏州希图环保科技有限公司 | portable high-efficient active carbon adsorption device |
CN111359366A (en) * | 2019-09-10 | 2020-07-03 | 上海深城环保设备工程有限公司 | Laminated gas adsorber and waste gas purification device using same |
CN214764347U (en) * | 2021-02-07 | 2021-11-19 | 重庆格尔康科技有限公司 | Industrial organic waste gas treatment system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825356A (en) * | 2022-12-26 | 2023-03-21 | 中国原子能科学研究院 | Measurement system and measurement method |
CN116065198A (en) * | 2023-03-06 | 2023-05-05 | 中子时代(青岛)创新科技有限公司 | Extraction device and method for Po in lead bismuth liquid metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11217353B2 (en) | Method of preparing spent nuclear fuel for dry storage | |
CN114887445A (en) | Polonium removal system and method for lead bismuth cooled reactor | |
US10839969B2 (en) | System and method for preparing a container loaded with wet radioactive elements for dry storage | |
EP3076400A1 (en) | System for purifying a gaseous medium of hydrogen and method for the use thereof | |
JP2023175809A (en) | System and method for electrode seal assembly | |
CN104328291A (en) | Oxidizing valence-adjusting equipment for oxidizing Pu (III) to Pu (IV) | |
CN113036192A (en) | Tail gas treatment system for hydrogen-oxygen fuel cell | |
CN212301505U (en) | An online sampling device | |
CN216572325U (en) | A normal temperature separation device for radioactive krypton and xenon in gaseous effluent of nuclear power plant | |
CN114113483B (en) | Methods and systems for collecting fission products released by lead-bismuth alloys | |
US12195825B2 (en) | System and method for producing molybdenum 99 | |
US3658485A (en) | Gas purifying apparatus | |
US3795087A (en) | Removal of hydrogen from liquid sodium | |
CN114152487B (en) | Detection device and detection method for radioactive inert gas in nuclear facility waste gas | |
KR102736660B1 (en) | Purification getter and getter type purification system for bulk gas | |
CN114515511A (en) | Active isotope gas multi-column separation and purification system | |
JP2004170330A (en) | Monitor for rare gas radioactive concentration, and method of measuring rare gas radioactive concentration | |
CN119914826A (en) | A uranium hexafluoride dumping system for containers | |
CN117572486A (en) | Tritium loading system | |
Bruggeman et al. | Testing of a capillary electrolysis system for highly tritiated water | |
RU2548412C2 (en) | Apparatus for extracting hydrogen from oxygenless gas media | |
Kamei et al. | Removal of hydrogen from liquid sodium | |
JPS62148887A (en) | Internal pressure reducer for container of nuclear reactor | |
JPS6123520B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |