CN114859731A - 基于线积分方法的区间二型模糊时滞系统控制器设计方法 - Google Patents

基于线积分方法的区间二型模糊时滞系统控制器设计方法 Download PDF

Info

Publication number
CN114859731A
CN114859731A CN202210550525.7A CN202210550525A CN114859731A CN 114859731 A CN114859731 A CN 114859731A CN 202210550525 A CN202210550525 A CN 202210550525A CN 114859731 A CN114859731 A CN 114859731A
Authority
CN
China
Prior art keywords
fuzzy
time
matrix
loop
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210550525.7A
Other languages
English (en)
Other versions
CN114859731B (zh
Inventor
韩迎迎
刘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN202210550525.7A priority Critical patent/CN114859731B/zh
Publication of CN114859731A publication Critical patent/CN114859731A/zh
Application granted granted Critical
Publication of CN114859731B publication Critical patent/CN114859731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于线积分方法的区间二型模糊时滞系统控制器设计方法。本发明针对具有时变时滞的区间二型模糊时滞系统,用线积分型Lyapunov‑Krasovskii泛函,建立了使系统满足渐近稳定和广义耗散性能的充分条件。为了处理控制综合中的非线性矩阵不等式,提出了一种高阶矩阵解耦方法,结合锥补偿线性化算法将非线性的矩阵不等式转化为带有线性矩阵不等式约束的二次优化问题,从而设计出使闭环系统满足渐近稳定和广义耗散性能的状态反馈控制器。

Description

基于线积分方法的区间二型模糊时滞系统控制器设计方法
技术领域
本发明属于模糊控制技术领域,涉及一种基于线积分方法的区间二型模糊时滞系统控制器设计方法。
背景技术
1965年Zadeh教授提出了模糊集合理论,模糊系统引起了很多领域众多研究者的兴趣。Zadeh于1975年提出了二型模糊集合理论,之后Mendel等人通过限制二型模糊集的次隶属度为1,提出了区间二型模糊集合的概念,进而建立了区间二型模糊系统(IT2模糊时滞系统)。近年来,该模型的理论和应用已经得到了充分的发展。
对于IT2模糊时滞系统,其稳定性分析和控制器设计已经有了大量研究。通常以输入输出关系为特征的系统性能在各种场景中都发挥着重要的作用,包括H性能、正则性、无源性在内的(Q;S;R)-耗散性已经做了相关的研究,张保勇团队针对连续线性马尔可夫跳变时滞系统提出了一种滤波器设计方法。还引入了一个新的性能指标---广义耗散性能,它包含了H性能,L2-L性能、无源性和(Q;S;R)-耗散性能。
利用多个二次Lyapunov函数加权平均的模糊李雅普诺夫函数方法,可建立保守性较小的稳定性条件。然而,在稳定性分析中,会出现隶属函数的时间导数,在设计模糊控制器之前必须知道它们的上界。由于这些时间导数与系统的向量场有关,它们的上界很难获得,有时甚至不存在。在这种情况下,韩国作者Rhee提出了一种新的模糊基Lyapunov函数,即线积分Lyapunov函数。利用线积分函数,稳定性结果不涉及隶属函数时间导数的上界。许多学者利用线积分函数研究了T-S模糊系统的控制问题,但IT2模糊时滞系统的稳定性及广义耗散性能的研究较少。因此,提出了一种基于线积分方法的区间二型模糊时滞系统,对IT2模糊时滞系统的稳定性及广义耗散性能进行优化。
发明内容
本发明的目的就是提供一种基于线积分方法的区间二型模糊时滞系统控制器设计方法。
本发明具体包括如下步骤:
步骤一、基于IF-THEN规则描述区间二型模糊时滞系统和IT2模糊控制器,利用单点模糊化、乘积推理和加权平均反模糊化,从而得到闭环IT2模糊时滞系统的模型;
Figure BDA0003650478460000011
其中
Aij=Ai+FiKj (4);
给出由如下IF-THEN规则描述的IT2模糊时滞系统:
Plant Rule i:IFx1is
Figure BDA0003650478460000012
…,andxnis
Figure BDA0003650478460000013
Then
Figure BDA0003650478460000021
其中
Figure BDA0003650478460000022
表示系统状态,
Figure BDA0003650478460000023
表示状态的微分,
Figure BDA0003650478460000024
表示控制,
Figure BDA0003650478460000025
表示外部干扰输入且满足
Figure BDA0003650478460000026
表示控制输出,每一对(i,j)∈{1,···,s}×{1,···,n},
Figure BDA0003650478460000027
表示第i条规则中基于前提变量xj所对应的IT2模糊集,αij指定在第i条IF-THEN规则中前提变量xj对应的模糊集合的序数,s表示规则总数;令S={1,···,s},N={1,···,n};
Figure BDA0003650478460000028
Figure BDA0003650478460000029
为已知的适当维数的常实数矩阵,假设在s个模糊规则中,所有前提变量xj所对应的模糊集合的数量是sj,则sj为正整数且满足
Figure BDA00036504784600000210
d(t)是描述状态延迟的可微时变函数,假设该时变时滞函数满足:0<d(t)≤d,
Figure BDA00036504784600000211
其中d>0并且μ是已知常数,初始函数
Figure BDA00036504784600000212
是定义在区间[-d,0]上的向量值函数,即
Figure BDA00036504784600000213
对于xj对应的IT2模糊集合
Figure BDA00036504784600000214
中的上标αij是所有基于sj的有序索引;当αij=ρj时,前提变量xj属于第ρj个模糊集
Figure BDA00036504784600000215
显然1≤ρj<sj;对于i∈S,j∈N和xj∈R,满足
Figure BDA00036504784600000216
Figure BDA00036504784600000217
Figure BDA00036504784600000218
分别代表IT2模糊集
Figure BDA00036504784600000219
的上隶属函数和下隶属函数;规范化隶属函数定义如下:
Figure BDA00036504784600000220
其中
Figure BDA00036504784600000221
Figure BDA00036504784600000222
是非线性函数,且满足:
Figure BDA00036504784600000223
Figure BDA00036504784600000224
则规范化隶属度函数满足:
Figure BDA00036504784600000225
所以归一化隶属函数
Figure BDA00036504784600000226
x(t)=(x1,···,xn)∈Rn,i∈S;由以上可知:
Figure BDA00036504784600000227
利用单点模糊化、乘积推理和加权平均反模糊化,则IT2模糊模型表示为:
Figure BDA00036504784600000228
与上述系统有相同前提变量和模糊集的IT2控制器,其IF-THEN规则描述如下:
Controller Rule i:IFx1is
Figure BDA0003650478460000031
…,andxnis
Figure BDA0003650478460000032
Then
u(t)=Kix(t);
其中u(t)是IT2控制器,Ki是将要被设计的控制增益。
利用单点模糊化、乘积推理和加权平均反模糊化,整体状态反馈模糊控制器表示为:
Figure BDA0003650478460000033
进而得到闭环IT2模糊时滞系统的模型;
步骤二、对式(3)所示闭环IT2模糊时滞系统的广义耗散性能进行定义:
利用线积分Lyapunov-Krasovskii泛函式(2)中的状态反馈模糊控制器,使得式(3)中具有时变时滞的闭环IT2模糊系统满足以下条件:
(Ⅰ)当ω(t)≡0,闭环IT2模糊时滞系统是渐近稳定的;
(Ⅱ)对于任何非零
Figure BDA0003650478460000034
闭环IT2模糊时滞系统满足广义耗散性能;
步骤三、基于线积分型Lyapunov-Krasovskii泛函建立闭环IT2模糊时滞系统满足渐近稳定和广义耗散的充分条件;使得闭环IT2模糊时滞系统满足广义耗散性能,当ω(t)≡0,得
Figure BDA0003650478460000035
当ω(t)≡0,闭环IT2模糊时滞系统满足渐近稳定性能;
步骤四、基于线积分型Lyapunov-Krasovskii泛函建立基于二次型LKF的推论;
步骤五、设计IT2模糊控制器:由于步骤三中不等式是非线性的,为了获得控制增益,引入高阶矩阵解耦;结合锥补偿线性化算法将非线性的矩阵不等式转化为带有线性矩阵不等式约束的二次优化问题,设计使闭环系统满足渐近稳定和广义耗散性能的状态反馈控制器。
由于二次Lyapunov函数是线积分Lyapunov函数的一种特殊情况,因此本发明基于线积分型Lyapunov-Krasovskii泛函建立的充分条件比二次型Lyapunov-Krasovskii泛函得到的结果保守性小。
本发明针对具有时变时滞的区间二型(IT2)模糊系统,用线积分型Lyapunov-Krasovskii泛函,建立了使系统满足渐近稳定和广义耗散性能的充分条件。为了处理控制综合中的非线性矩阵不等式,提出了一种高阶矩阵解耦方法,结合锥补偿线性化算法将非线性的矩阵不等式转化为带有线性矩阵不等式约束的二次优化问题,设计使闭环系统满足渐近稳定和广义耗散性能的状态反馈控制器。
附图说明
图1为系统满足渐近稳定性与L2-L性能的区域;
图2为系统满足渐近稳定性和无源性能的区域:ο代表定理一,★代表推论一;
图3为在初始函数[2cos(πt),-1.8cos(4t)]T的无源性情况下,闭环IT2模糊时滞系统的状态响应;
图4为初始函数[cos(5t),-cos(16t)]T的耗散情况下,闭环IT2时滞系统的状态响应。
具体实施方式
以下结合附图对本发明作进一步的解释说明。
步骤一、基于IF-THEN规则描述区间二型模糊时滞系统和IT2模糊控制器,从而得到闭环IT2模糊时滞系统的模型:
基于一组IF-THEN规则描述如下区间二型模糊时滞系统:
Plant Rule i:IFx1is
Figure BDA0003650478460000041
…,andxnis
Figure BDA0003650478460000042
Then
Figure BDA0003650478460000043
其中
Figure BDA0003650478460000044
表示系统状态,
Figure BDA0003650478460000045
表示状态的微分,
Figure BDA0003650478460000046
表示控制,
Figure BDA0003650478460000047
表示外部干扰输入且满足
Figure BDA0003650478460000048
表示控制输出,每一对(i,j)∈{1,···,s}×{1,···,n},
Figure BDA0003650478460000049
表示第i条规则中基于前提变量xj所对应的IT2模糊集,αij指定在第i条IF-THEN规则中前提变量xj对应的模糊集合的序数,s表示规则总数。令S={1,···,s},N={1,···,n}。
Figure BDA00036504784600000410
Figure BDA00036504784600000411
为已知的适当维数的常实数矩阵,假设在s个模糊规则中,所有前提变量xj所对应的模糊集合的数量是sj,则sj为正整数且满足
Figure BDA00036504784600000412
d(t)是描述状态延迟的可微时变函数,假设该时变时滞函数满足:0<d(t)≤d,
Figure BDA00036504784600000413
其中d>0并且μ是已知常数,初始函数
Figure BDA00036504784600000414
是定义在区间[-d,0]上的向量值函数,即
Figure BDA00036504784600000415
对于xj对应的IT2模糊集合
Figure BDA00036504784600000416
中的上标αij是所有基于sj的有序索引。当αij=ρj时,前提变量xj属于第ρj个模糊集
Figure BDA00036504784600000417
显然1≤ρj<sj。对于i∈S,j∈N和xj∈R,满足
Figure BDA00036504784600000418
Figure BDA00036504784600000419
Figure BDA00036504784600000420
分别代表IT2模糊集
Figure BDA00036504784600000421
的上隶属函数和下隶属函数。规范化隶属函数定义如下:
Figure BDA00036504784600000422
其中
Figure BDA00036504784600000423
Figure BDA00036504784600000424
是非线性函数,且满足:
Figure BDA00036504784600000425
Figure BDA00036504784600000426
则规范化隶属度函数满足:
Figure BDA00036504784600000427
所以,
Figure BDA00036504784600000428
x(t)=(x1,···,xn)∈Rn,i∈S;由以上可知:
Figure BDA00036504784600000429
利用单点模糊化、乘积推理和加权平均反模糊化,则IT2模糊模型可以表示为:
Figure BDA0003650478460000051
与上述系统有相同前提变量和模糊集的IT2控制器,其IF-THEN规则描述如下:
Controller Rule i:IFx1is
Figure BDA0003650478460000052
…,andxnis
Figure BDA0003650478460000053
Then
u(t)=Kix(t);
利用单点模糊化、乘积推理和加权平均反模糊化,整体状态反馈模糊控制器表示为:
Figure BDA0003650478460000054
进而得到闭环IT2模糊时滞系统的模型:
Figure BDA0003650478460000055
其中
Aij=Ai+FiKj (4);
步骤二、对式(3)所示闭环IT2模糊时滞系统的广义耗散性能进行定义:
定义:如果对于任意的
Figure BDA0003650478460000056
Figure BDA0003650478460000057
存在一个标量δ使得对于任意的tf∈(0,∞),使得闭环IT2模糊时滞系统的轨迹x(t)满足如下不等式:
Figure BDA0003650478460000058
Figure BDA0003650478460000059
那么闭环IT2模糊时滞系统满足广义耗散性能,其被积函数J(t)给定如下:J(t)=zT(t)Ψ1z(t)+2zT(t)Ψ2z(t)+ωT(t)Ψ3ω(t);
ψ,ψ123为实际输入量,定义中的矩阵ψ,ψ123满足:1.ψ=ψT,ψ1=ψ1 T;2.ψ≥0,ψ1≤0;3.‖Di‖·‖ψ‖=0;4.(‖ψ1‖+‖ψ2‖)‖ψ‖=0;5.
Figure BDA00036504784600000510
Figure BDA00036504784600000511
线积分V1(x)定义如下:
Figure BDA00036504784600000512
Figure BDA00036504784600000513
Figure BDA00036504784600000514
其中,Γ(0,x)表示从原点0到当前状态x的路径,
Figure BDA00036504784600000515
是积分虚拟向量,dΦ为无穷小位移向量,
Figure BDA00036504784600000516
是关于x的被积向量函数。
利用式(5)中的线积分Lyapunov-Krasovskii泛函式(2)中的状态反馈模糊控制器,使得式(3)中具有时变时滞的闭环IT2模糊系统满足以下条件:
(Ⅰ)当ω(t)≡0,闭环IT2模糊时滞系统是渐近稳定的;
(Ⅱ)对于任何非零
Figure BDA0003650478460000061
闭环IT2模糊时滞系统满足广义耗散性能。
步骤三、基于线积分型Lyapunov-Krasovskii泛函建立闭环IT2模糊时滞系统满足渐近稳定和广义耗散的充分条件;
给定标量0<ε<1,d>0,μ<1以及满足步骤二定义的矩阵ψ,ψ123,对于任意满足0<d(t)≤d,
Figure BDA0003650478460000062
的时变时滞d(t),如果存在矩阵
Figure BDA0003650478460000063
对称矩阵P满足0<P≤Pi和矩阵Q1>0,Q2>0,Q3>0,使得下面的矩阵不等式对于任意的i,j,l∈S均成立:
Figure BDA0003650478460000064
Figure BDA0003650478460000065
那么闭环IT2模糊时滞系统是渐近稳定的且满足广义耗散性能。此时,
Figure BDA0003650478460000066
通过上式得到闭环IT2模糊时滞系统的Lyapunov-Krasovskii函数V(t,xt)=V1(x(t))+V2(t,xt)+V3(t,xt),其中:
Figure BDA0003650478460000067
Figure BDA0003650478460000068
Figure BDA0003650478460000069
V1(x(t))的Lie导数为:
Figure BDA00036504784600000610
将hix(t)记为hix,则V2(t,xt)的导数为:
Figure BDA00036504784600000611
V3(t,xt)的导数
Figure BDA0003650478460000071
由此得如下不等式:
Figure BDA0003650478460000072
令,ξ(t)=[xT(t),xT(t-d(t)),xT(t-d,ωT(t))]T
得,
Figure BDA0003650478460000073
因为Ξijl<0,则
Figure BDA0003650478460000074
考虑J(t)中的量‖Ψ‖=0和‖Ψ‖≠0两种情况,结合渐近稳定和广义耗散性能的定义及其性能分析得如下不等式:
Figure BDA0003650478460000075
使得闭环IT2模糊时滞系统满足广义耗散性能,当ω(t)≡0,得
Figure BDA0003650478460000076
当ω(t)≡0,闭环IT2模糊时滞系统满足渐近稳定性能。
步骤四、基于线积分型Lyapunov-Krasovskii泛函建立基于二次型LKF的推论:
给定标量0<ε<1,d>0,μ<1以及满足步骤二定义的矩阵ψ,ψ123,对任意满足0<d(t)≤d,
Figure BDA0003650478460000077
的时变时滞d(t),如果存在对称矩阵P>0,Q1>0,Q2>0,Q3>0,使得下面的矩阵不等式对于任意的所有i,j∈S均成立:
Figure BDA0003650478460000078
Figure BDA0003650478460000079
则闭环IT2模糊时滞系统是渐进稳定的且满足广义耗散性能,此时,
Figure BDA00036504784600000710
Figure BDA00036504784600000711
步骤五、验证步骤三建立的闭环IT2模糊时滞系统的充分条件的保守性小于步骤四种基于二次型LKF的推论;
本实施例中给出如下数值案例:
闭环IT2模糊时滞系统的输入参数矩阵为:
Figure BDA0003650478460000081
Figure BDA0003650478460000082
Figure BDA0003650478460000083
Figure BDA0003650478460000084
C1=[0.2 -0.1],C2=[0.3 -0.2],C3=[0.2 -0.3];
C4=[0.21 -0.31],Cd1=[0.3 -1],Cd2=[-0.2 -0.12];
Cd3=[0.11 -0.13],Cd4=[0.21 -0.23],Fi=0;
其中a和b是实参数。所有序数αij,i=1,···,4;j=1,2,3取:
α11=1,α21=2,α31=2,α41=1;
α12=1,α22=1,α32=2,α42=2;
α13=1,α23=1,α33=1,α43=1;
其中s1=s2=2,s2=1。
对于L2-L性能,取D1=D2=D3=D3=0,Ψ=0.1,Ψ1=Ψ2=0,Ψ3=40;对于无源性能,取D1=0.1,D2=0.02,D3=0.1,D4=0.2,Ψ=0,Ψ1=0,Ψ2=3,Ψ3=10.图1和图2分别给出了系统满足L2-L性能和无源性能时系统的稳定域,仿真结果表明基于线积分方法得到的系统稳定域比基于二次型方法得到的系统稳定域大,所以线积分方法建立的结果保守性较小。
步骤六、设计IT2模糊控制器:
由于步骤三中的不等式含有项PiAij,使得步骤三中的矩阵不等式是非线性的,现有的矩阵解耦方法都不能处理该非线性。为了获得控制增益,引入如下的高阶矩阵解耦:
对于矩阵{Aij:i,j=1,···,4},
Figure BDA0003650478460000085
定义以下三个矩阵
Figure BDA0003650478460000086
Figure BDA0003650478460000087
Figure BDA0003650478460000088
并且
Figure BDA0003650478460000089
若存在矩阵{Ωij:1≤i≤j≤4},
Figure BDA00036504784600000810
使得:
Figure BDA00036504784600000811
则:
Figure BDA0003650478460000091
根据步骤二中Ψ≥0,Ψ1≤0,存在
Figure BDA0003650478460000092
Figure BDA0003650478460000093
满足
Figure BDA0003650478460000094
引入辅助矩阵Ωij和Yij,将上述高阶矩阵包含项
Figure BDA0003650478460000095
的4×4矩阵不等式转化为不包含项
Figure BDA0003650478460000096
的12×12矩阵不等式;
给定标量0<ε<1,d>0,μ<1以及满足假设一的矩阵ψ,ψ123.对满足满足0<d(t)≤d,
Figure BDA0003650478460000097
的时变时滞d(t),如果存在对称矩阵Hi>0,P>0,Q1>0,Q2>0,
Figure BDA0003650478460000098
以及矩阵
Figure BDA0003650478460000099
Figure BDA00036504784600000910
是如下二次优化问题的解:
Figure BDA00036504784600000911
线性约束为:
Figure BDA00036504784600000912
Figure BDA00036504784600000913
Figure BDA00036504784600000914
Figure BDA00036504784600000915
Figure BDA00036504784600000916
Figure BDA00036504784600000917
Figure BDA0003650478460000101
Figure BDA0003650478460000102
则闭环IT2模糊时滞系统是渐进稳定的且满足广义耗散性能,此时控制增益Kl由下式确定:
Figure BDA0003650478460000103
结合式(4)与式(12)使用schur补,将式(10)中第一个不等式等价于:
Figure BDA0003650478460000104
其中
Figure BDA0003650478460000105
Figure BDA0003650478460000106
Figure BDA0003650478460000107
Figure BDA0003650478460000108
Figure BDA0003650478460000109
令,
Figure BDA00036504784600001010
Figure BDA0003650478460000111
Figure BDA0003650478460000112
Figure BDA0003650478460000113
将高阶矩阵用于不等式(13),结合式(11)中的第一个不等式得:
Figure BDA0003650478460000114
Figure BDA0003650478460000115
在式(14)左右分别乘以diag{Pi,I,I,I}和其转置有:
Figure BDA0003650478460000116
再次使用Schur补引理,步骤二中的第二个不等式等价于式(10)中的第二个不等式。因此,步骤中的所有条件都得到满足;利用锥补偿线性化算法,即得到该定理中优化问题。
本实施例中具有时变时滞的连续时间IT2模糊控制系统具有以下模糊规则:
R1:Ifx1is
Figure BDA0003650478460000117
andxnis
Figure BDA0003650478460000118
then
Figure BDA0003650478460000119
z=C1x(t)+Cd1x(t-d(t))+D1ω(t).
R2:Ifx1is
Figure BDA00036504784600001110
andxnis
Figure BDA00036504784600001111
then
Figure BDA00036504784600001112
z=C2x(t)+Cd2x(t-d(t))+D2ω(t).
R3:If x1is
Figure BDA0003650478460000121
and xnis
Figure BDA0003650478460000122
then
Figure BDA0003650478460000123
z=C3x(t)+Cd3x(t-d(t))+D3ω(t).
R4:If x1is
Figure BDA0003650478460000124
and xnis
Figure BDA0003650478460000125
then
Figure BDA0003650478460000126
z=C4x(t)+Cd4x(t-d(t))+D4ω(t).
系统输入矩阵为:
Figure BDA0003650478460000127
Figure BDA0003650478460000128
Figure BDA0003650478460000129
C1=[-0.5 0.1],C2=[0.5 -1],C3=[0.8 -0.3],C4=[1 -0.8];
Cd1=[0.002 0.005],Cd2=[0.008 0.003],Cd3=[0.003 0.004];
Cd4=[0.009 0.001],
Figure BDA00036504784600001210
序数αij,i=1,…,4;j=1,2为:
α11=1,α21=2,α31=2,α41=1;
α12=1,α22=1,α32=2,α42=2;
s1=s2=2;
定义IT2模糊集
Figure BDA00036504784600001211
的上、下隶属函数
Figure BDA00036504784600001212
如下:
Figure BDA00036504784600001213
Figure BDA00036504784600001214
Figure BDA00036504784600001215
验证IT2模糊系统在同一框架下同时满足L2-L、H、无源和耗散四种性能。此处仅分析无源性和耗散性能。
无源性性能分析:
令ε=0.5,μ=0.1,d=0.43,Ψ=0,Ψ1=0,Ψ2=1,Ψ3=0.36。在这种情况下,假设D1=0.1,D2=0.02,D3=0.1,D4=0.2;解决优化问题(8)-(11),得一组输出量;
Figure BDA0003650478460000131
Figure BDA0003650478460000132
Figure BDA0003650478460000133
E1=[-0.0013 -0.0496],E2=[-0.0027 -0.0477],
E3=[-0.0013 -0.0496],E4=[-0.0013 -0.0496],
Figure BDA0003650478460000134
Figure BDA0003650478460000135
Figure BDA0003650478460000136
Figure BDA0003650478460000137
此时反馈控制增益求得如下;
K1=[-0.0039 -1.3055],K2=[0.0569 -1.2909],
K3=[-0.0049 -1.3052],K4=[-0.0034 -1.3055];
耗散性能分析:
令ε=0.5,μ=0.1,d=0.43,Ψ=0,Ψ1=-1,Ψ2=1,Ψ3=2.在这种情况下,假设D1=0.1,D2=0.02,D3=0.1,D4=0.2;此时式(9)-(11)中的LMI是可行的,输出量求得如下:
Figure BDA0003650478460000138
Figure BDA0003650478460000139
Figure BDA00036504784600001310
E1=[-0.0389 -0.8202],
E2=[-0.0428 -0.8212],E3=[-0.0390 -0.8200],E4=[-0.0390 -0.8202],
Figure BDA00036504784600001311
Figure BDA00036504784600001312
Figure BDA00036504784600001313
反馈控制增益为:
K1=[-0.0254 -1.2709],K2=[-0.0084 -1.2767],
K3=[-0.0254 -1.2708],K4=[-0.0252 -1.2710]。
对于无源性能,选择初始函数[2cos(πt),-1.8cos(4t)]T,对于耗散性能,选择初始函数[cos(5t),-cos(16t)]T,闭环IT2模糊时滞系统的状态响应图分别为如图3和图4所示,由图可知该系统满足广义耗散性能。

Claims (3)

1.一种基于线积分方法的区间二型模糊时滞系统控制器设计方法,其特征在于:具体包括如下步骤:
步骤一、基于IF-THEN规则描述区间二型模糊时滞系统和IT2模糊控制器,利用单点模糊化、乘积推理和加权平均反模糊化,从而得到闭环IT2模糊时滞系统的模型;
Figure FDA0003650478450000011
Aij=Ai+FiKj (4);
给出由如下IF-THEN规则描述的IT2模糊时滞系统:
Plant Rule i:IF x1 is
Figure FDA0003650478450000012
…,and xn is
Figure FDA0003650478450000013
Then
Figure FDA0003650478450000014
其中
Figure FDA0003650478450000015
表示系统状态,
Figure FDA0003650478450000016
表示状态的微分,
Figure FDA0003650478450000017
表示控制,
Figure FDA0003650478450000018
表示外部干扰输入且满足
Figure FDA0003650478450000019
Figure FDA00036504784500000110
表示控制输出,每一对(i,j)∈{1,…,s}×{1,…,n},
Figure FDA00036504784500000111
表示第i条规则中基于前提变量xj所对应的IT2模糊集,αij指定在第i条IF-THEN规则中前提变量xj对应的模糊集合的序数,s表示规则总数;令S={1,…,s},N={1,…,n};
Figure FDA00036504784500000112
Figure FDA00036504784500000113
为已知的适当维数的常实数矩阵,假设在s个模糊规则中,所有前提变量xj所对应的模糊集合的数量是sj,则sj为正整数且满足
Figure FDA00036504784500000114
d(t)是描述状态延迟的可微时变函数,假设该时变时滞函数满足:0<d(t)≤d,
Figure FDA00036504784500000115
其中d>0并且μ是已知常数,初始函数
Figure FDA00036504784500000116
是定义在区间[-d,0]上的向量值函数,即
Figure FDA00036504784500000117
Figure FDA00036504784500000118
对于xj对应的IT2模糊集合
Figure FDA00036504784500000119
Figure FDA00036504784500000120
中的上标αij是所有基于sj的有序索引;当αij=ρj时,前提变量xj属于第ρj个模糊集
Figure FDA00036504784500000121
显然1≤ρj<sj;对于i∈S,j∈N和xj∈R,满足
Figure FDA0003650478450000021
Figure FDA0003650478450000022
Figure FDA0003650478450000023
分别代表IT2模糊集
Figure FDA0003650478450000024
的上隶属函数和下隶属函数;规范化隶属函数定义如下:
Figure FDA0003650478450000025
其中
Figure FDA0003650478450000026
Figure FDA0003650478450000027
是非线性函数,且满足:
Figure FDA0003650478450000028
Figure FDA0003650478450000029
则规范化隶属度函数满足:
Figure FDA00036504784500000210
所以归一化隶属函数为
Figure FDA00036504784500000211
x(t)=(x1,…,xn)∈Rn,i∈S;由以上可知:
0≤hi(x)≤1,
Figure FDA00036504784500000212
利用单点模糊化、乘积推理和加权平均反模糊化,则IT2模糊模型表示为:
Figure FDA00036504784500000213
与上述系统有相同前提变量和模糊集的IT2控制器,其IF-THEN规则描述如下:
Controller Rule i:IF x1 is
Figure FDA00036504784500000214
…,and xn is
Figure FDA00036504784500000215
Then
u(t)=Kix(t);
其中u(t)控制器,Ki是将要被设计的控制增益;
利用单点模糊化、乘积推理和加权平均反模糊化,整体状态反馈模糊控制器表示为:
Figure FDA00036504784500000216
进而得到闭环IT2模糊时滞系统的模型;
步骤二、对式(3)所示闭环IT2模糊时滞系统的广义耗散性能进行定义:
利用线积分Lyapunov-Krasovskii泛函式(2)中的状态反馈模糊控制器,使得式(3)中具有时变时滞的闭环IT2模糊系统满足以下条件:
(Ⅰ)当ω(t)≡0,闭环IT2模糊时滞系统是渐近稳定的;
(Ⅱ)对于任何非零
Figure FDA00036504784500000217
闭环IT2模糊时滞系统满足广义耗散性能;
步骤三、基于线积分型Lyapunov-Krasovskii泛函建立闭环IT2模糊时滞系统满足渐近稳定和广义耗散的充分条件;使得闭环IT2模糊时滞系统满足广义耗散性能,当ω(t)≡0,得
Figure FDA00036504784500000218
当ω(t)≡0,闭环IT2模糊时滞系统满足渐近稳定性能;
步骤四、基于线积分型Lyapunov-Krasovskii泛函建立基于二次型LKF的推论;
步骤五、设计IT2模糊控制器:由于步骤三中不等式是非线性的,为了获得控制增益,引入高阶矩阵解耦;结合锥补偿线性化算法将非线性的矩阵不等式转化为带有线性矩阵不等式约束的二次优化问题,设计使闭环系统满足渐近稳定和广义耗散性能的状态反馈控制器。
2.如权利要求1所述的基于线积分方法的区间二型模糊时滞系统控制器设计方法,其特征在于:所述步骤三具体为:给定标量0<ε<1,d>0,μ<1以及满足步骤二条件的矩阵,对于任意满足0<d(t)≤d,
Figure FDA0003650478450000031
的时变时滞d(t),如果存在矩阵Hi>0,
Figure FDA0003650478450000032
对称矩阵P满足0<P≤Pi和矩阵Q1>0,Q2>0,Q3>0,使得下面的矩阵不等式对于任意的i,j,l∈S均成立:
Figure FDA0003650478450000033
Figure FDA0003650478450000034
那么闭环IT2模糊时滞系统是渐近稳定的且满足广义耗散性能;此时,
Figure FDA0003650478450000035
通过上式得到闭环IT2模糊时滞系统的Lyapunov-Krasovskii泛函V(t,xt)=V1(x(t))+V2(t,xt)+V3(t,xt),其中:
Figure FDA0003650478450000036
Figure FDA0003650478450000037
Figure FDA0003650478450000038
V1(x(t))的Lie导数为:
Figure FDA0003650478450000039
将hix(t)记为hix,则V2(t,xt)的导数为:
Figure FDA00036504784500000310
V3(t,xt)的导数
Figure FDA00036504784500000311
由此得如下不等式:
Figure FDA00036504784500000312
Figure FDA0003650478450000041
令,ξ(t)=[xT(t),xT(t-d(t)),xT(t-d,ωT(t))]T
得,
Figure FDA0003650478450000042
因为Ξijl<0,则
Figure FDA0003650478450000043
考虑J(t)中的量‖Ψ‖=0和‖Ψ‖≠0两种情况,结合渐近稳定和广义耗散性能的定义及其性能分析得如下不等式:
Figure FDA0003650478450000044
使得闭环IT2模糊时滞系统满足广义耗散性能,当ω(t)≡0,得
Figure FDA0003650478450000045
当ω(t)≡0,闭环IT2模糊时滞系统满足渐近稳定性能。
3.如权利要求1所述的基于线积分方法的区间二型模糊时滞系统控制器设计方法,其特征在于:所述步骤六具体为:
对于矩阵{Aij:i,j=1,…,4},
Figure FDA0003650478450000046
定义以下三个矩阵
Figure FDA0003650478450000047
Figure FDA0003650478450000048
Figure FDA0003650478450000049
并且
Figure FDA00036504784500000410
若存在矩阵{Ωij:1≤i≤j≤4},
Figure FDA00036504784500000411
使得:
Figure FDA00036504784500000412
则:
Figure FDA00036504784500000413
根据步骤二中Ψ≥0,Ψ1≤0,存在
Figure FDA00036504784500000414
Figure FDA00036504784500000415
满足
Figure FDA00036504784500000416
引入辅助矩阵Ωij和3ij,将上述高阶矩阵包含项
Figure FDA0003650478450000051
的4×4矩阵不等式转化为不包含项
Figure FDA0003650478450000052
的12×12矩阵不等式;
给定标量0<ε<1,d>0,a<1以及满足假设一的矩阵ψ,ψ123.对满足满足0<d(t)≤d,
Figure FDA0003650478450000053
的时变时滞d(t),如果存在对称矩阵Hi>0,P>0,Q1>0,Q2>0,
Figure FDA0003650478450000054
以及矩阵
Figure FDA0003650478450000055
pql:1≤q≤p≤4,l∈S},
Figure FDA0003650478450000056
Figure FDA0003650478450000057
是如下二次优化问题的解:
Figure FDA0003650478450000058
线性约束为:
Figure FDA0003650478450000059
Figure FDA00036504784500000510
Figure FDA00036504784500000511
Figure FDA00036504784500000512
Figure FDA00036504784500000513
Figure FDA00036504784500000514
Figure FDA00036504784500000515
Figure FDA0003650478450000061
则闭环IT2模糊时滞系统是渐进稳定的且满足广义耗散性能,此时控制增益Kl由下式确定:
Figure FDA0003650478450000062
结合式(4)与式(12)使用schur补,将式(10)中第一个不等式等价于:
Figure FDA0003650478450000063
其中
Figure FDA0003650478450000064
Figure FDA0003650478450000065
Figure FDA0003650478450000066
Figure FDA0003650478450000067
Figure FDA0003650478450000068
令,
Figure FDA0003650478450000069
Figure FDA00036504784500000610
Figure FDA0003650478450000071
Figure FDA0003650478450000072
将高阶矩阵用于不等式(13),结合式(11)中的第一个不等式得:
Figure FDA0003650478450000073
Figure FDA0003650478450000074
在式(14)左右分别乘以diag{Pi,I,I,I}和其转置有:
Figure FDA0003650478450000075
再次使用Schur补引理,步骤二中的第二个不等式等价于式(10)中的第二个不等式;因此,步骤中的所有条件都得到满足;利用锥补偿线性化算法,即得到该定理中优化问题。
CN202210550525.7A 2022-05-18 2022-05-18 基于线积分方法的区间二型模糊时滞系统控制器设计方法 Active CN114859731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210550525.7A CN114859731B (zh) 2022-05-18 2022-05-18 基于线积分方法的区间二型模糊时滞系统控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210550525.7A CN114859731B (zh) 2022-05-18 2022-05-18 基于线积分方法的区间二型模糊时滞系统控制器设计方法

Publications (2)

Publication Number Publication Date
CN114859731A true CN114859731A (zh) 2022-08-05
CN114859731B CN114859731B (zh) 2023-03-24

Family

ID=82640082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210550525.7A Active CN114859731B (zh) 2022-05-18 2022-05-18 基于线积分方法的区间二型模糊时滞系统控制器设计方法

Country Status (1)

Country Link
CN (1) CN114859731B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180148069A1 (en) * 2016-11-30 2018-05-31 Tansel Yucelen Validating and computing stability limits of human-in-the-loop adaptive control systems
CN109118439A (zh) * 2018-07-03 2019-01-01 浙江大学 基于线积分的锥束ct去模糊方法
CN110018639A (zh) * 2019-05-10 2019-07-16 杭州电子科技大学 基于区间二型t-s模型的网络化控制系统的鲁棒容错控制方法
CN114462241A (zh) * 2022-01-28 2022-05-10 杭州师范大学 多速率系统的全对称多胞形集员状态估计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180148069A1 (en) * 2016-11-30 2018-05-31 Tansel Yucelen Validating and computing stability limits of human-in-the-loop adaptive control systems
CN109118439A (zh) * 2018-07-03 2019-01-01 浙江大学 基于线积分的锥束ct去模糊方法
CN110018639A (zh) * 2019-05-10 2019-07-16 杭州电子科技大学 基于区间二型t-s模型的网络化控制系统的鲁棒容错控制方法
CN114462241A (zh) * 2022-01-28 2022-05-10 杭州师范大学 多速率系统的全对称多胞形集员状态估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YINGYING HAN等: "Performance analysis and extended dissipative controller design for Itô stochastic-delayed IT2 fuzzy models", 《INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE》 *
王雪飞等: "离散区间二型Tagaki-Sugeno模型时滞系统广义耗散控制设计", 《控制理论与应用》 *
陈玉田等: "区间二型T- S时滞模糊系统的H_∞控制器设计", 《杭州电子科技大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN114859731B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Ma et al. Adaptive finite-time output-feedback control design for switched pure-feedback nonlinear systems with average dwell time
Liu et al. Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme
Zhou et al. Interval type-2 fuzzy control for nonlinear discrete-time systems with time-varying delays
Kavikumar et al. Reliable non-fragile memory state feedback controller design for fuzzy Markov jump systems
Kim et al. Decentralized sampled-data H∞ fuzzy filter for nonlinear large-scale systems
CN113359445B (zh) 一种多智能体磁滞系统分布式输出反馈渐近一致控制方法
Shang et al. Neural adaptive tracking control for a class of high-order non-strict feedback nonlinear multi-agent systems
Wu et al. Finite-time adaptive neural command filtered control for non-strict feedback uncertain multi-agent systems including prescribed performance and input nonlinearities
Ho et al. Adaptive fuzzy approach for a class of uncertain nonlinear systems in strict-feedback form
Zhang et al. Finite-time non-fragile H∞ sampled-data control for uncertain TS fuzzy system with time-varying delay and nonlinear perturbation subject to Markovian jump
Xue et al. Decentralized tracking control for a class of stochastic high-order time-delay nonlinear systems under arbitrary switchings
Li et al. Observer-based finite-time fuzzy adaptive control for MIMO non-strict feedback nonlinear systems with errors constraint
Han et al. Finite-time extended dissipative control for fuzzy systems with nonlinear perturbations via sampled-data and quantized controller
Mohan et al. The simplest fuzzy PID controllers: mathematical models and stability analysis
Wang et al. Adaptive neural tracking control for non-affine nonlinear systems with finite-time output constraint
Duan et al. Mode-dependent non-fragile observer-based controller design for fractional-order T–S fuzzy systems with Markovian jump via non-PDC scheme
Qi et al. Adaptive finite-time fuzzy control for nonlinear systems with input quantization and unknown time delays
CN111399376B (zh) 一种t-s模糊系统的二维重复控制器设计优化方法
Ge et al. Improved stability criteria of TS fuzzy systems with sampled-data-based dissipative control
Zhao et al. Fuzzy adaptive dynamic surface control for strict-feedback nonlinear systems with unknown control gain functions
CN114527646A (zh) 面向城市固废焚烧过程的多回路准对角递归神经网络pid控制方法
Li et al. Networked controller and observer design of discrete-time systems with inaccurate model parameters
CN114859731B (zh) 基于线积分方法的区间二型模糊时滞系统控制器设计方法
CN113820954A (zh) 一种广义噪声下复杂非线性系统的容错控制方法
Sun et al. RESO-based distributed bipartite tracking control for stochastic MASs with actuator nonlinearity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant