CN114858062B  Detection signal processing method, device, medium, equipment and grating ruler  Google Patents
Detection signal processing method, device, medium, equipment and grating ruler Download PDFInfo
 Publication number
 CN114858062B CN114858062B CN202210659766.5A CN202210659766A CN114858062B CN 114858062 B CN114858062 B CN 114858062B CN 202210659766 A CN202210659766 A CN 202210659766A CN 114858062 B CN114858062 B CN 114858062B
 Authority
 CN
 China
 Prior art keywords
 paths
 signals
 interference
 orthogonal signals
 determining
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Active
Links
 238000001514 detection method Methods 0.000 title claims abstract description 48
 238000003672 processing method Methods 0.000 title claims abstract description 20
 238000004422 calculation algorithm Methods 0.000 claims abstract description 42
 238000006073 displacement reaction Methods 0.000 claims abstract description 38
 230000001276 controlling effect Effects 0.000 claims abstract description 11
 238000003860 storage Methods 0.000 claims description 27
 230000000875 corresponding Effects 0.000 claims description 23
 238000005457 optimization Methods 0.000 claims description 8
 239000000126 substance Substances 0.000 claims description 8
 239000011159 matrix material Substances 0.000 claims description 4
 238000005259 measurement Methods 0.000 abstract description 23
 238000004519 manufacturing process Methods 0.000 abstract description 12
 238000000034 method Methods 0.000 abstract description 8
 238000009434 installation Methods 0.000 abstract description 5
 239000007787 solid Substances 0.000 abstract 1
 239000012071 phase Substances 0.000 description 145
 238000004364 calculation method Methods 0.000 description 10
 230000014509 gene expression Effects 0.000 description 5
 238000010586 diagram Methods 0.000 description 4
 239000007790 solid phase Substances 0.000 description 3
 238000004590 computer program Methods 0.000 description 2
 230000000694 effects Effects 0.000 description 2
 238000005516 engineering process Methods 0.000 description 2
 238000005070 sampling Methods 0.000 description 2
 101700081112 WDHD1 Proteins 0.000 description 1
 102100000497 WDHD1 Human genes 0.000 description 1
 230000005540 biological transmission Effects 0.000 description 1
 238000006243 chemical reaction Methods 0.000 description 1
 230000004048 modification Effects 0.000 description 1
 238000006011 modification reaction Methods 0.000 description 1
 238000010606 normalization Methods 0.000 description 1
 230000003287 optical Effects 0.000 description 1
 238000007781 preprocessing Methods 0.000 description 1
 239000000523 sample Substances 0.000 description 1
 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications

 G—PHYSICS
 G01—MEASURING; TESTING
 G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
 G01B11/00—Measuring arrangements characterised by the use of optical means
 G01B11/02—Measuring arrangements characterised by the use of optical means for measuring length, width or thickness

 G—PHYSICS
 G01—MEASURING; TESTING
 G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
 G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
 G01P3/36—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light

 G—PHYSICS
 G06—COMPUTING; CALCULATING; COUNTING
 G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
 G06K9/00—Methods or arrangements for recognising patterns
 G06K9/00496—Recognising patterns in signals and combinations thereof
Abstract
The disclosure relates to a detection signal processing method, a device, a medium, equipment and a grating ruler applied to the technical field of precision measurement, wherein the method comprises the following steps: controlling the reading head to move at any speed; acquiring three paths of interference signals acquired by a reading head in a motion state of any speed; the phases of the three interference signals are unknown; determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals; and determining the displacement and/or the speed of the measured target based on the two orthogonal signals. By acquiring interference signals of a nonsolid fixed phase and utilizing a phase compensation algorithm, processing of detection signals can be completed without depending on the initial phase of the interference signals, so that the problems of complex installation and debugging process, severe requirements on production and manufacturing processes and the like of a grating ruler are solved, and the problem of harsh requirements on a calibration environment for solving the initial phase of the interference signals of a calibration algorithm is solved; meanwhile, the measurement precision of the grating ruler is improved.
Description
Technical Field
The present disclosure relates to the field of precision measurement technologies, and in particular, to a method, an apparatus, a medium, a device, and a grating scale for processing a detection signal applied to the grating scale.
Background
The grating ruler is a precise displacement measuring device which utilizes the optical principle of the grating, has nanoscale measurement precision, subnanoscale resolution and extremely high measurement stability, and is mainly applied to displacement measurement of various measuring mechanisms, instruments, numerical control machines and automation mechanisms.
In the related art, the measurement principle of the grating ruler is to determine the orthogonal signal with displacement information by obtaining the initial phase information of the interference signal and calculating according to the accurate initial phase information of the interference signal. Usually, through the design of a light path, interference signals with fixed phases are collected, and the displacement of a target to be measured is determined through calculation; however, because the mechanical structure of the grating scale is complex, the method has the problem of high implementation difficulty, and has extremely harsh requirements on production and manufacturing conditions, and it is difficult to ensure that the detection signal is at the corresponding phase position, thereby resulting in poor measurement accuracy. In the related technology, highprecision initial phase solving can be carried out on the singlefrequency signal according to a calibration algorithm; however, the calibration algorithm requires that the grating ruler must be provided with a highprecision electric displacement table, otherwise, the grating ruler cannot work normally, the calibration algorithm has great limitation, and the limitation on the scene causes great difficulty in the normal use of the grating ruler.
Disclosure of Invention
In order to solve the technical problem or at least partially solve the technical problem, the present disclosure provides a method, an apparatus, a medium, a device, and a grating scale for processing a detection signal applied to the grating scale.
In a first aspect, the present disclosure provides a method for processing a detection signal applied to a grating ruler, including:
controlling the reading head to move at any speed;
acquiring three paths of interference signals acquired by a reading head in a motion state of any speed; the phases of the three paths of interference signals are unknown;
determining two paths of orthogonal signals by using a phase compensation algorithm based on the three paths of interference signals;
and determining the displacement and/or the speed of the measured target based on the two paths of orthogonal signals.
Optionally, the phase compensation algorithm is a fitting compensation algorithm based on a pearson correlation coefficient method and a nonlinear least square method;
wherein, the determining two paths of orthogonal signals by using a phase compensation algorithm based on the three paths of interference signals comprises:
determining the phase difference of the threeway interference signals by utilizing the Pearson correlation coefficient method based on the threeway interference signals; the threepath interference signal comprises a first path of interference signal, a second path of interference signal and a third path of interference signal, and the phase difference of the threepath interference signal comprises the phase difference of the second path of interference signal and the first path of interference signal and the phase difference of the third path of interference signal and the first path of interference signal;
determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals;
determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on the two paths of orthogonal signals to be optimized;
and determining the two paths of orthogonal signals after optimization based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals.
Optionally, the determining, based on the threeway interference signal and by using the pearson correlation coefficient method, a phase difference of the threeway interference signal includes:
calculating respective bias and amplitude for each path of interference signal in the three paths of interference signals;
determining the phase difference of the three paths of interference signals by utilizing a Pearson correlation coefficient method based on the bias and the amplitude;
determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals, wherein the two paths of orthogonal signals to be optimized comprise:
determining the two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals and combining the corresponding interference signal intensity;
in the correlation between the intensity of the first path of interference signal and the phase difference, the phase difference value is 0;
the method for determining the compensation quantity of the orthogonal signals by utilizing the nonlinear least square method based on the two paths of orthogonal signals to be optimized comprises the following steps:
obtaining the compensation quantity of the orthogonal signals with the phase difference between two paths of orthogonal signals to be optimized and completely orthogonal signals by utilizing a nonlinear least square method and through target matrix operation; wherein the compensation amount of the quadrature signal comprises a quadrature phase compensation amount, an amplitude compensation amount and a bias compensation amount;
the determining the two paths of orthogonal signals after optimization based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals comprises:
and compensating the two paths of orthogonal signals to be optimized by using the compensation quantity of the orthogonal signals to obtain the two paths of optimized orthogonal signals.
Optionally, the compensating the two orthogonal signals to be optimized by using the compensation amount of the orthogonal signal to obtain the two optimized orthogonal signals includes:
and combining the following formula to obtain two optimized orthogonal signals:
wherein the content of the first and second substances,andrepresents the two paths of orthogonal signals after the optimization,in order to be a cosine signal, the signal,is a sinusoidal signal;andrepresenting the two paths of orthogonal signals to be optimized;andrepresenting the quadrature phase compensation amount;andrepresenting the magnitude compensation amount;andrepresenting the offset compensation amount; corner markThe representation corresponds to a cosine signal, a corner markThe representation corresponds to a sinusoidal signal.
Optionally, the acquiring three interference signals collected by the reading head in a motion state of any speed includes:
collecting three paths of initial interference signals in real time under the state that the reading head moves at any speed;
judging whether the three initial interference signals meet storage conditions or not;
after the three paths of initial interference signals meet the storage condition, caching the initial interference signals meeting the storage condition;
and caching at least ten periods of initial interference signals aiming at each path of interference signals to obtain the three paths of interference signals.
Optionally, the determining the displacement and the velocity of the target to be measured based on the two orthogonal signals includes:
determining a phase shift amount based on the two paths of orthogonal signals;
and determining the displacement and/or the speed of the measured target based on the phase shift amount.
In a second aspect, the present disclosure further provides a detection signal processing apparatus applied to a grating ruler, including:
the motion control module is used for controlling the reading head to move at any speed;
the signal acquisition module is used for acquiring three paths of interference signals acquired by the reading head in a motion state of any speed; the phases of the three paths of interference signals are unknown;
the first determining module is used for determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals;
and the second determining module is used for determining the displacement and/or the speed of the measured target based on the two paths of orthogonal signals.
In a third aspect, the present disclosure also provides a computerreadable storage medium storing a program or instructions for causing a computer to perform the steps of any one of the methods described above.
In a fourth aspect, the present disclosure also provides an electronic device, including: a processor and a memory;
the processor is configured to perform the steps of any of the above methods by calling a program or instructions stored in the memory.
In a fifth aspect, the present disclosure further provides a grating ruler, including a reading head, where three different positions in the reading head are respectively provided with a detector for collecting detection signals at corresponding positions to form three paths of interference signals;
the phases corresponding to the three different positions are unknown;
the grating ruler adopts the steps of any one of the methods to realize detection signal processing.
Compared with the prior art, the technical scheme provided by the embodiment of the disclosure has the following advantages:
the present disclosure provides a method, an apparatus, a medium, a device and a grating scale for processing a detection signal applied to the grating scale, wherein the method includes: controlling the reading head to move at any speed; acquiring three paths of interference signals acquired by a reading head in a motion state of any speed; the phases of the three interference signals are unknown; determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals; and determining the displacement and/or the speed of the measured target based on the two orthogonal signals. Therefore, by acquiring the interference signal of the nonsolid phase fixed phase and utilizing the phase compensation algorithm, the processing of the detection signal can be completed without depending on the initial phase of the interference signal, thereby not only solving the problems of complex installation and debugging process of the grating ruler, strict requirements on production and manufacturing processes and the like, but also solving the problem of harsh requirements on calibration environment for the initial phase solution of the interference signal of the calibration algorithm; meanwhile, the measurement precision of the grating ruler is improved.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the present disclosure and together with the description, serve to explain the principles of the disclosure.
In order to more clearly illustrate the embodiments or technical solutions in the prior art of the present disclosure, the drawings used in the description of the embodiments or prior art will be briefly described below, and it is obvious for those skilled in the art that other drawings can be obtained according to the drawings without inventive exercise.
Fig. 1 is a schematic flowchart of a detection signal processing method applied to a grating scale according to an embodiment of the present disclosure;
fig. 2 is a detailed flowchart of S130 in the detection signal processing method applied to the grating ruler shown in fig. 1;
fig. 3 is a schematic flowchart of another detection signal processing method applied to a grating scale according to an embodiment of the present disclosure;
FIG. 4 is a Lissajous diagram of two orthogonal signals to be optimized;
fig. 5 is a schematic detailed flow chart of S120 in the detection signal processing method applied to the grating ruler shown in fig. 1;
fig. 6 is a detailed flowchart of S140 in the detection signal processing method applied to the grating ruler shown in fig. 1;
fig. 7 is a schematic structural diagram of a detection signal processing apparatus applied to a grating ruler according to an embodiment of the present disclosure;
fig. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
700, a detection signal processing device applied to the grating ruler; 710. a motion control module; 710. a signal acquisition module; 730. a first determination module; 740. a second determination module; 800. an electronic device; 810. a processor; 820. a memory; s110 to S140, S231 to S234, S310 to S340, S521 to S524 and S641 to S642 are steps of the method flow.
Detailed Description
In order that the above objects, features and advantages of the present disclosure may be more clearly understood, aspects of the present disclosure will be further described below. It should be noted that the embodiments and features of the embodiments of the present disclosure may be combined with each other without conflict.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure, but the present disclosure may be practiced in other ways than those described herein; it is to be understood that the embodiments disclosed in the specification are only a few embodiments of the present disclosure, and not all embodiments.
The method is combined with the background technology part, and the initial phase information of the interference signal is acquired by using a fixed phase method, so that the problems of difficulty in installation and debugging, severe production and manufacturing processes and the like exist; meanwhile, it is difficult to ensure that the detection signal is at the corresponding phase position in the actual sampling, which leads to poor measurement accuracy. The calibration algorithm has great limitation, and the limitation on the scene causes great difficulty for the normal use of the grating ruler.
In order to solve the technical problem or at least partially solve the technical problem, embodiments of the present disclosure provide a method, an apparatus, a medium, a device, and a grating scale for processing a probe signal applied to the grating scale, where the method includes: controlling the reading head to move at any speed; acquiring three interference signals collected by a reading head in a motion state of any speed; wherein, the phases of the three interference signals are unknown; determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals; and determining the displacement and/or the speed of the measured target based on the two orthogonal signals. Therefore, by acquiring the interference signal of the nonsolid phase fixed phase and utilizing the phase compensation algorithm, the processing of the detection signal can be completed without depending on the initial phase of the interference signal, thereby not only solving the problems of complex installation and debugging process of the grating ruler, strict requirements on production and manufacturing processes and the like, but also solving the problem of harsh requirements on calibration environment for the initial phase solution of the interference signal of the calibration algorithm; meanwhile, the measurement precision of the grating ruler is improved.
The following describes, with reference to fig. 1 to fig. 8, a method, an apparatus, a medium, a device, and a grating scale for processing a detection signal applied to the grating scale according to an embodiment of the present disclosure.
Fig. 1 is a schematic flowchart of a detection signal processing method applied to a grating scale according to an embodiment of the present disclosure. Referring to fig. 1, the method includes:
and S110, controlling the reading head to move at any speed.
The moving speed of the reading head may be a constant speed or a nonconstant speed, which is not limited herein.
And S120, acquiring three interference signals collected by the reading head in a motion state of any speed.
When a semiconductor Laser (LD) emits parallel light to pass through the reference grating and the measurement grating, the parallel light can be diffracted and interfered, and interference signals are formed at a detector end by + 11 order diffraction light; by utilizing the characteristic that the phase change directions of + 1order and1order diffraction light are opposite when the reference grating and the measurement grating move relatively, two movement signal periods correspond to one grating pitch, and the double subdivision of the signal periods is realized; meanwhile, through the design of 0level diffraction efficiency of the grating, interference signals under the combined interference of + 1level diffraction light and1level diffraction light of different groups of reference gratings and measurement gratings are subjected to phase shift to generate three paths of interference signals with different initial phases and the same frequency; the phases of the three interference signals are unknown.
Wherein, one of the reference grating and the measurement grating is arranged in the reading head, and the other one is arranged in the measured target; when the reading head moves relative to the measured target, the relative movement of the reference grating (such as a transmission grating) and the measurement grating is realized, so that an interference signal is obtained; because the reading head moves at any speed, the collected three interference signals are in an unstable state.
And S130, determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals.
Specifically, according to the three interference signals in an unstable state, calculating initial phases of the three interference signals, and performing quadrature conversion on the three interference signals to obtain two paths of quadrature signals; because the acquired interference signal is in an unstable state, the orthogonality of the two orthogonal signals obtained is poor, and if the displacement of the target to be measured is determined by taking the two orthogonal signals as a basis, the accuracy of the measurement result is low. Therefore, the two paths of orthogonal signals with poor orthogonality are compensated and optimized by using a phase compensation algorithm, the problem of poor orthogonality of the orthogonal signals is solved, and the measurement accuracy of the grating ruler is improved.
Wherein, the two orthogonal signals represent that the two sinusoidal signals optimized by the phase compensation algorithm are intersected, the phase difference between the two sinusoidal signals is 90 degrees, therefore, the two orthogonal signals substantially comprise one sinusoidal signalAnd a path of cosine signal。
And S140, determining the displacement and/or the speed of the measured target based on the two orthogonal signals.
Wherein the amount of phase shift is knownOff from quadrature signalThe method comprises the following steps:
According to the relation between the displacement and the phase shift quantity, the relative displacement between the reference grating and the measurement grating, namely the displacement of the measured target, can be obtained through the following formula.
Wherein the content of the first and second substances,is a displacement;is the amount of phase shift;is the pitch of the grating.
It should be noted that, the speed of the target to be measured can also be determined by combining the displacement and the corresponding duration of the target to be measured; the index may be determined to be the displacement and/or the speed of the measured object according to the requirement of the detection signal processing method for the grating ruler, which is not limited herein.
The embodiment of the disclosure provides a detection signal processing method applied to a grating ruler, which includes: controlling the reading head to move at any speed; acquiring three paths of interference signals acquired by a reading head in a motion state of any speed; the phases of the three interference signals are unknown; determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals; and determining the displacement and/or the speed of the measured target based on the two orthogonal signals. Therefore, by acquiring the interference signal of the nonsolid phase fixed phase and utilizing the phase compensation algorithm, the processing of the detection signal can be completed without depending on the initial phase of the interference signal, thereby not only solving the problems of complex installation and debugging process of the grating ruler, strict requirements on production and manufacturing processes and the like, but also solving the problem of harsh requirements on calibration environment for the initial phase solution of the interference signal of the calibration algorithm; meanwhile, the measurement precision of the grating ruler is improved.
In one embodiment, as shown in fig. 2, a detailed flowchart of S130 in the method for processing a detection signal applied to a grating ruler shown in fig. 1 is shown. Referring to fig. 2, the phase compensation algorithm is a fitting compensation algorithm based on a pearson correlation coefficient method and a nonlinear least square method; wherein, S130 "determining two orthogonal signals based on the three interference signals by using a phase compensation algorithm" includes:
s231, determining the phase difference of the three interference signals by utilizing a Pearson correlation coefficient method based on the three interference signals.
The threepath interference signal comprises a first path interference signal, a second path interference signal and a third path interference signal, and the phase difference of the threepath interference signal comprises the phase difference of the second path interference signal and the first path interference signal and the phase difference of the third path interference signal and the first path interference signal. The phase difference of the three paths of interference signals is obtained by taking the first path of interference signal as a reference signal and comparing the second path of interference signal and the third path of interference signal with the first path of interference signal respectively; the phase difference of the three paths of interference signals comprises the phase difference of a second path of interference signal and a first path of interference signalAnd the phase difference between the third path of interference signal and the first path of interference signal is(ii) a The actual number of phase differences of the three paths of interference signals is two; in order to equalize the number of phase differences and the number of interference signals, the first interference signal may be compared with a reference signal (i.e., the first interference signal), i.e., the first interference signal and the first interference signal have a phase difference ofAnd is andis 0.
It should be noted that, the embodiment of the present disclosure only exemplarily shows that the first path interference signal is used as the reference signal, but does not constitute a limitation to the method for processing the detection signal applied to the grating ruler provided by the embodiment of the present disclosure. In other embodiments, the reference signal may be set as any one of the threeway interference signals according to the requirements of the detection signal processing method applied to the grating ruler, which is not limited herein.
The method comprises the following specific steps:
(1) calculating the average value of the calibration data of each path of interference signal to be used as the bias of the path of interference signal; the first path of signal offset is obtained through calculationSecond path signal biasAnd third path signal bias。
(2) Calculating the amplitude of the calibration data by using offset, wherein the amplitude of each path of interference signal is equal to the total standard deviation of each path of interference signal multiplied by(ii) a Calculated amplitude of signal to first pathThe amplitude of the second path signalAnd third path signal amplitude。
(3) Calculating the phase difference between the second path of interference signal and the first path of signal by using a Pearson correlation coefficient method and combining the obtained amplitude value and biasAnd the phase difference between the second path of interference signal and the first path of signal。
And S232, determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals.
Wherein, the two orthogonal signals represent that the two sinusoidal signals are crossed, the phase difference between the two sinusoidal signals is 90 degrees, therefore, the two orthogonal signals substantially comprise one sinusoidal signalAnd a cosine signal。
Specifically, there is a certain correspondence between the interference signal intensity and the phase difference, and the interference signal intensity can be represented by the phase difference; using threestep phaseshifting method to combine and solve the intensity expressions of three interference signals to obtain phase shift quantity containing phase differenceThe expression of (2); the phase shift quantity obtained according to the trigonometric function calculation relationship and the threestep phase shift algorithmAnd determining two paths of orthogonal signals to be optimized.
Because the acquired interference signal is in an unstable state, the orthogonality of the two orthogonal signals obtained is poor, and if the displacement of the target to be measured is determined by taking the two orthogonal signals as a basis, the accuracy of the measurement result is low, so that the two orthogonal signals to be optimized need to be optimized.
And S233, determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on the two paths of orthogonal signals to be optimized.
The factors influencing the orthogonality of the two orthogonal signals at least comprise a nonorthogonal error angle, an amplitude error and a bias error, and corresponding compensation quantities are calculated by using a nonlinear least square method, namely an orthogonal phase compensation quantity, an amplitude compensation quantity and a bias compensation quantity.
And S234, determining the two paths of optimized orthogonal signals based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals.
In particular, two orthogonal signals to be optimized are combinedAndcompensating the orthogonal signals, eliminating the error influence caused by the orthogonal error angle, the amplitude error and the offset error, obtaining two optimized orthogonal signalsAnd。
in an embodiment, as shown in fig. 3, a schematic flow chart of another detection signal processing method applied to a grating scale is provided for the embodiment of the present disclosure. Referring to fig. 3, in the method:
and S310, controlling the reading head to move at any speed.
The steps are the same as S110, and refer to the explanation at S110 for details, which are not repeated herein.
S320, acquiring three interference signals collected by the reading head in a motion state of any speed.
The step is the same as S120, and for details, refer to the explanation at S120, which is not described herein again.
The method for determining the phase difference of the threeway interference signals by using the Pearson correlation coefficient method based on the threeway interference signals comprises the following steps:
s3311, calculating respective bias and amplitude for each path of interference signal in the three paths of interference signals.
Calculating the average value of the calibration data of each path of interference signal as the bias of the path of interference signal to obtain the bias of the first path of signalSecond path signal biasAnd a third path signal offset(ii) a The offset of each interference signal can be calculated by the following formula:
wherein the content of the first and second substances,representing a channel sequence of the threepath interference signal, and taking values from 1 to 3;representing the number of the paths of interference signals containing calibration data;calibration data representing the interference signal path;representing the variable in the calculation process, and the variation range is 0N.
Calculating the amplitude by using the obtained bias, specifically: by multiplying the total standard deviation of each path of interference signal byObtaining the amplitude of the channel signalCalculating to obtain the amplitude of the first path signal according to the following formulaThe amplitude of the second path signalAnd third path signal amplitude：
S3312, determining the phase difference of the three paths of interference signals by using a Pearson correlation coefficient method based on the bias and the amplitude.
Specifically, the phase difference between the second path of interference signal and the first path of signal is calculated by using a Pearson correlation coefficient method and combining the obtained amplitude value and biasAnd the phase difference between the second path of interference signal and the first path of signal(ii) a The calculation formula is as follows:
the method for determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of three paths of interference signals comprises the following steps:
and S332, determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals and combining the corresponding interference signal intensity.
And in the correlation between the intensity of the first path of interference signal and the phase difference, the phase difference value is 0. The phase difference of the three paths of interference signals is obtained by taking the first path of interference signal as a reference signal and comparing the second path of interference signal and the third path of interference signal with the first path of interference signal respectively; the phase difference between the second path of interference signal and the first path of interference signal isAnd the phase difference between the third path of interference signal and the first path of interference signal is(ii) a The actual number of phase differences of the three paths of interference signals is two; in order to equalize the number of phase differences and the number of interference signals, the first path of interference signal may be compared with a reference signal (i.e., the first path of interference signal), i.e., the first path of interference signal and the first path of interference signal have a phase difference ofAnd is made ofIs 0.
；
The data obtained by the calculation is subjected to realtime normalization algorithm processing, which specifically comprises the following steps: subtracting the corresponding offset from the three interference signal values, and dividing by the corresponding amplitude to obtain the preprocessed signal、And：
wherein, the first and the second end of the pipe are connected with each other,representing a first path of digital interference signal which is converted by an analogtodigital converter in real time;representing a second path of digital interference signals which are converted by the analogtodigital converter in real time;representing the third digital interference signal after being converted by the analogtodigital converter.
Then, two paths of orthogonal signals to be optimized are obtained by utilizing an orthogonal preprocessing algorithmAndthe expression of the two orthogonal signals to be optimized is as follows:
wherein the content of the first and second substances,representing orthogonal signals to be optimized obtained by three steps of phase shifting;representing the orthogonal cosine signal to be optimized obtained by threestep phase shifting. The phase difference of three interference signalsAndand substituting the formula to obtain an orthogonal signal and an orthogonal cosine signal to be optimized.
The method for determining the compensation quantity of the orthogonal signals by using the nonlinear least square method based on two paths of orthogonal signals to be optimized comprises the following steps:
s333, obtaining the compensation quantity of the orthogonal signal of the phase difference between the two paths of orthogonal signals to be optimized and the completely orthogonal signal through target matrix operation by utilizing a nonlinear least square method.
The compensation amount of the quadrature signal includes a quadrature phase compensation amount, an amplitude compensation amount, and a bias compensation amount.
FIG. 4 is a Lissajous diagram of two orthogonal signals to be optimized; wherein, the axis of abscissa is Sin signal, and the axis of ordinate is Cos signal. As shown in fig. 4, L1 is the correspondence of two orthogonal signals in an ideal state, and is circular as a whole; l2 is the corresponding relation of two paths of orthogonal signals to be optimized, and the whole is elliptic; the two orthogonal signals to be optimized have poor orthogonality, and the reasons influencing the orthogonality include nonorthogonal error angles, amplitude errors and offset errors, so the two orthogonal signals to be optimized can also be expressed as:
wherein the content of the first and second substances,representing an error angle;andrepresenting an amplitude error;andrepresenting the bias error.
Thus, an error angle is calculatedAmplitude errorAndoffset error ofAndand obtaining two paths of optimized orthogonal signals by corresponding compensation amount.
Further, on the basis of fig. 4, a parametric equation of cartesian coordinate system is fitted by using a nonlinear least square method, which is expressed as follows, and corresponds to the equation of the ellipse in fig. 4:
and furthermore, coefficients a, b, c, d and e of the parameter equation are solved.
Then, the coefficients and error angles are calculated according to the parametric equationAmplitude errorAndbias error, and offset errorAndto calculate the amount of quadrature phase compensationAndamplitude compensation amountAndand an offset compensation amountAndthe calculation formula is as follows:
；
wherein, the corner markThe representation corresponds to a cosine signal, a corner markThe representation corresponds to a sinusoidal signal.
"determining two paths of optimized orthogonal signals based on the compensation quantity of two paths of orthogonal signals to be optimized and orthogonal signals" includes:
and S334, compensating the two orthogonal signals to be optimized by using the compensation quantity of the orthogonal signals to obtain the two optimized orthogonal signals.
Specifically, the optimized two orthogonal signals can be obtained through backstepping calculation by combining the expression of the two orthogonal signals to be optimized obtained in step S332 and the compensation amount obtained through calculation in step S333; the two paths of optimized orthogonal signals have better orthogonality, and the orthogonal error of the two paths of optimized orthogonal signals is smaller than a preset orthogonal error threshold; the value range of the orthogonal error threshold can be flexibly set according to the requirements of the detection signal processing method applied to the grating ruler, for example, 0.11 degree, and is not limited herein.
And S340, determining the displacement and/or the speed of the measured target based on the two orthogonal signals.
The steps are the same as S140, and refer to the explanation at S140 for details, which are not described herein.
In one embodiment, the compensating for the two orthogonal signals to be optimized by using the compensation amount of the orthogonal signals to obtain the two optimized orthogonal signals includes:
and obtaining two optimized orthogonal signals by combining the following formulas:
wherein, the first and the second end of the pipe are connected with each other,andrepresents the two paths of orthogonal signals after being optimized,in order to be a cosine signal, the signal,is a sinusoidal signal;andrepresenting two paths of orthogonal signals to be optimized;andrepresents the amount of quadrature phase compensation;andrepresenting an amplitude compensation amount;andrepresenting an offset compensation amount; corner markThe representation corresponds to a cosine signal, a corner markThe representation corresponds to a sinusoidal signal.
Specifically, the expression of the two orthogonal signals to be optimized obtained in S332 and the compensation amount calculated in S333 are substituted into the above formula, and the optimized two orthogonal signals can be obtained through calculationAndfurther calculating the amount of phase shift(ii) a Based on the phase shift amount, it is finally confirmedAnd determining the displacement and/or the speed of the measured target.
According to the detection signal processing method applied to the grating ruler, the compensation quantity of the two orthogonal signals is accurately calculated by using a nonlinear least square method, the two crossed sinusoidal signals to be optimized are optimized, the two orthogonal signals after optimization have high orthogonality, the problem that the orthogonality of the two orthogonal signals to be optimized is poor is solved, the measurement precision of the grating ruler is improved, and the grating ruler can reach the nanoscale.
In some embodiments, as shown in fig. 5, a detailed flowchart of S120 in the detection signal processing method applied to the grating ruler shown in fig. 1 is shown. Referring to fig. 5, S120 "acquiring three interference signals collected by the reading head in a motion state with any speed" includes:
and S521, collecting three paths of initial interference signals in real time under the condition that the reading head moves at any speed.
And S522, judging whether the three initial interference signals meet the storage condition.
The amplifying circuit amplifies the 3 paths of initial interference signals, so that the voltage amplitude of the interference signals reaches a sampling interval of an AnalogtoDigital Converter (ADC), the ADC converts the Analog interference signals into Digital interference signals, and whether the converted Digital interference signals meet storage conditions is judged; the storage conditions include that the amplitude of the digital interference signal is stable within a range corresponding to the speed of the readhead to ensure that the signal to noise ratio is high. For example, when the reading head does not move, the signal amplitude is 0, and after the reading head starts moving, when the signal amplitude is greater than 0.5V, it is determined that the storage condition is satisfied.
And S523, after the three paths of initial interference signals meet the storage condition, caching the initial interference signals meeting the storage condition.
After the storage condition is met, the three paths of digital interference signals meeting the storage condition are cached.
And S524, caching at least ten periods of initial interference signals aiming at each path of interference signals to obtain three paths of interference signals.
Wherein each path of interference signal comprises at least ten interference signals with stable periods; when the data with more than ten interference signal periods in the buffer data is detected, the next step is executed.
In some embodiments, as shown in fig. 6, it is a detailed flowchart of S140 in the detection signal processing method applied to the grating ruler shown in fig. 1. Referring to fig. 6, S140 "determining the displacement and the velocity of the measured target based on two orthogonal signals" includes:
and S641, determining a phase shift amount based on the two paths of orthogonal signals.
Wherein the amount of phase shift is knownThe relationship with the two optimized orthogonal signals is as follows:
And S642, determining the displacement and/or the speed of the measured target based on the phase shift amount.
According to the relationship between the displacement and the phase shift amount, the relative displacement between the reference grating and the measurement grating can be obtained by the following formula:
wherein the content of the first and second substances,is displacement;is the amount of phase shift;is the pitch of the grating.
It should be noted that, the speed of the target to be measured can also be determined by combining the displacement and the corresponding duration of the target to be measured; the index may be determined as the displacement and/or the speed of the detected object according to the requirement of the detection signal processing method for the grating ruler, which is not limited herein.
Based on the same inventive concept, the embodiments of the present disclosure further provide a device for processing a detection signal applied to a grating ruler, where the device can perform any one of the steps of the method for processing a detection signal applied to a grating ruler provided in the embodiments of the present disclosure, and has functional modules and beneficial effects corresponding to the method for performing, and thus, for avoiding repeated descriptions, details are not repeated herein. The device can be realized by adopting software and/or hardware, and can be integrated on any terminal equipment with computing power, such as a server or a computer and the like.
Fig. 7 is a detection signal processing apparatus applied to a grating scale according to an embodiment of the present disclosure. Referring to fig. 7, the detection signal processing apparatus 700 applied to the grating ruler includes: the motion control module 710 is used for controlling the reading head to move at any speed; the signal acquisition module 720 is used for acquiring three paths of interference signals acquired by the reading head in a motion state at any speed; the phases of the three interference signals are unknown; a first determining module 730, configured to determine two paths of orthogonal signals by using a phase compensation algorithm based on the three paths of interference signals; and the second determining module 740 is configured to determine the displacement and/or the velocity of the target to be measured based on the two orthogonal signals.
In one embodiment, the phase compensation algorithm is a fitting compensation algorithm based on the Pearson correlation coefficient method and the nonlinear least squares method; the first determining module is used for determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals, and comprises the following steps: the first determining submodule is used for determining the phase difference of the three paths of interference signals by utilizing a Pearson correlation coefficient method based on the three paths of interference signals; the threepath interference signal comprises a first path of interference signal, a second path of interference signal and a third path of interference signal, and the phase difference of the threepath interference signal comprises the phase difference of the second path of interference signal and the first path of interference signal and the phase difference of the third path of interference signal and the first path of interference signal; the second determining submodule is used for determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals; the third determining submodule is used for determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on the two paths of orthogonal signals to be optimized; and the fourth determining submodule is used for determining the two paths of optimized orthogonal signals based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals.
In one embodiment, the first determining submodule is configured to determine the phase difference of the threeway interference signal by using a pearson correlation coefficient method based on the threeway interference signal, and includes: calculating respective bias and amplitude for each of the three interference signals, and determining phase differences of the three interference signals by using a Pearson correlation coefficient method based on the bias and amplitude.
The second determining submodule is used for determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals, and comprises the following steps of: determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals and combining the corresponding interference signal intensity; and in the correlation between the intensity of the first path of interference signal and the phase difference, the phase difference value is 0.
The third determining submodule is used for determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on two paths of orthogonal signals to be optimized, and comprises the following steps: obtaining the compensation quantity of orthogonal signals with the phase difference between two paths of orthogonal signals to be optimized and completely orthogonal signals by utilizing a nonlinear least square method and through target matrix operation; the compensation amount of the quadrature signal includes a quadrature phase compensation amount, an amplitude compensation amount, and a bias compensation amount.
The fourth determining submodule is used for determining the two paths of optimized orthogonal signals based on the compensation quantity of the two paths of orthogonal signals to be optimized and the orthogonal signals, and comprises the following steps: and compensating the two paths of orthogonal signals to be optimized by using the compensation quantity of the orthogonal signals to obtain the two paths of optimized orthogonal signals.
In one embodiment, the fourth determining submodule is configured to compensate the two orthogonal signals to be optimized by using the compensation amount of the orthogonal signal, and obtain the two optimized orthogonal signals, and includes: and obtaining two optimized orthogonal signals by combining the following formulas:
wherein the content of the first and second substances,andrepresents the two paths of orthogonal signals after being optimized,in order to be a cosine signal, the signal,is a sinusoidal signal;andrepresenting two paths of orthogonal signals to be optimized;andrepresents the amount of quadrature phase compensation;andrepresenting an amplitude compensation amount;andrepresenting an offset compensation amount; corner markThe representation corresponds to a cosine signal, a corner markThe representation corresponds to a sinusoidal signal.
In one embodiment, the signal acquiring module is configured to acquire three interference signals collected by the reading head in a state of performing a motion at an arbitrary speed, and includes: collecting three paths of initial interference signals in real time under the state that the reading head moves at any speed; judging whether the three initial interference signals meet storage conditions or not; after the three initial interference signals meet the storage condition, caching the initial interference signals meeting the storage condition; and caching at least ten periods of initial interference signals aiming at each path of interference signals to obtain three paths of interference signals.
In one embodiment, the second determining module is configured to determine the displacement and the velocity of the measured target based on the two orthogonal signals, and includes: determining a phase shift amount based on the two paths of orthogonal signals; and determining the displacement and/or the speed of the measured target based on the phase shift amount.
On the basis of the above embodiment, the embodiment of the present disclosure further provides an electronic device. As shown in fig. 8, the electronic device 800 includes: a processor 810 and a memory 820; processor 810 achieves corresponding benefits by invoking programs or instructions stored by memory 820 for performing the steps of any of the methods described above.
Processor 810 may be, among other things, a Central Processing Unit (CPU) or other form of Processing Unit having data computing and/or instruction execution capabilities, and may control other components in electronic device 800 to perform desired functions. Memory 820 may include one or more computer program products that may include various forms of computerreadable storage media, such as volatile memory and/or nonvolatile memory, among others. The volatile memory may include, for example, Random Access Memory (RAM), cache memory (cache), and/or the like. The nonvolatile memory may include, for example, Read Only Memory (ROM), hard disk, flash memory, etc. One or more computer program instructions may be stored on the computerreadable storage medium and executed by the processor 810 to implement the detection signal processing method applied to the grating ruler provided by the embodiments of the present disclosure described above, and/or other desired functions. Various contents such as an input signal, a signal component, a noise component, etc. may also be stored in the computerreadable storage medium
On the basis of the foregoing embodiment, an embodiment of the present disclosure further provides a computerreadable storage medium, where the computerreadable storage medium may be a computerreadable storage medium included in the apparatus in the foregoing embodiment; or it may be a separate computer readable storage medium not incorporated into the device. The computerreadable storage medium stores computerexecutable instructions, which, when executed by a computing device, can be used to implement the method for processing a detection signal applied to a grating ruler, described in any embodiment of the present disclosure.
On the basis of the above embodiment, the embodiment of the present disclosure further provides a grating ruler. The grating ruler comprises a reading head, wherein detectors are respectively arranged at three different positions in the reading head and are used for acquiring detection signals at corresponding positions to form three paths of interference signals; the phases corresponding to the three different positions are unknown; the grating ruler adopts the steps of any one of the methods to realize detection signal processing, has corresponding beneficial effects, and is not repeated herein in order to avoid repeated description.
It is noted that, in this document, relational terms such as "first" and "second," and the like, may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a nonexclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
The foregoing are merely exemplary embodiments of the present disclosure, which enable those skilled in the art to understand or practice the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (9)
1. A detection signal processing method applied to a grating ruler is characterized by comprising the following steps:
controlling the reading head to move at any speed;
acquiring three paths of interference signals acquired by a reading head in a motion state of any speed; the phases of the three paths of interference signals are unknown;
determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals;
determining the displacement and/or the speed of the target to be measured based on the two paths of orthogonal signals;
the phase compensation algorithm is a fitting compensation algorithm based on a Pearson correlation coefficient method and a nonlinear least square method;
wherein, the determining two paths of orthogonal signals by using a phase compensation algorithm based on the three paths of interference signals comprises:
determining the phase difference of the threeway interference signals by utilizing the Pearson correlation coefficient method based on the threeway interference signals; the threepath interference signal comprises a first path of interference signal, a second path of interference signal and a third path of interference signal, and the phase difference of the threepath interference signal comprises the phase difference of the second path of interference signal and the first path of interference signal and the phase difference of the third path of interference signal and the first path of interference signal;
determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals;
determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on the two paths of orthogonal signals to be optimized;
and determining the two paths of orthogonal signals after optimization based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals.
2. The method of claim 1, wherein:
the determining the phase difference of the threeway interference signal by using the pearson correlation coefficient method based on the threeway interference signal includes:
calculating respective bias and amplitude for each path of interference signal in the three paths of interference signals;
determining the phase difference of the three paths of interference signals by utilizing a Pearson correlation coefficient method based on the bias and the amplitude;
determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals, wherein the two paths of orthogonal signals to be optimized comprise:
determining the two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals and combining the corresponding interference signal intensity;
in the correlation between the intensity of the first path of interference signal and the phase difference, the phase difference value is 0;
the method for determining the compensation quantity of the orthogonal signals by utilizing the nonlinear least square method based on the two paths of orthogonal signals to be optimized comprises the following steps:
obtaining the compensation quantity of the orthogonal signals with the phase difference between two paths of orthogonal signals to be optimized and completely orthogonal signals by utilizing a nonlinear least square method and through target matrix operation; wherein the compensation amount of the quadrature signal comprises a quadrature phase compensation amount, an amplitude compensation amount and a bias compensation amount;
the determining the two paths of orthogonal signals after optimization based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals comprises:
and compensating the two paths of orthogonal signals to be optimized by using the compensation quantity of the orthogonal signals to obtain the two paths of optimized orthogonal signals.
3. The method according to claim 2, wherein the compensating the two orthogonal signals to be optimized by using the compensation amount of the orthogonal signals to obtain the two optimized orthogonal signals comprises:
and obtaining two optimized orthogonal signals by combining the following formulas:
wherein the content of the first and second substances,andrepresenting the two paths of orthogonal signals after the optimization,in order to be a cosine signal, the signal,is a sinusoidal signal;andrepresenting the two paths of orthogonal signals to be optimized;andrepresenting the quadrature phase compensation amount;andrepresenting the magnitude compensation amount;andrepresenting the offset compensation amount; corner markThe representation corresponds to a cosine signal, a corner markThe representation corresponds to a sinusoidal signal.
4. The method of any one of claims 13, wherein obtaining the threeway interference signal collected by the readhead during any speed motion comprises:
collecting three paths of initial interference signals in real time under the state that the reading head moves at any speed;
judging whether the three initial interference signals meet storage conditions or not;
after the three paths of initial interference signals meet the storage condition, caching the initial interference signals meeting the storage condition;
and caching at least ten periods of initial interference signals aiming at each path of interference signals to obtain the three paths of interference signals.
5. The method according to any one of claims 13, wherein the determining the displacement and/or velocity of the measured object based on the two orthogonal signals comprises:
determining a phase shift amount based on the two paths of orthogonal signals;
and determining the displacement and/or the speed of the measured target based on the phase shift amount.
6. A detection signal processing device applied to a grating ruler is characterized by comprising:
the motion control module is used for controlling the reading head to move at any speed;
the signal acquisition module is used for acquiring three paths of interference signals acquired by the reading head in a motion state of any speed; the phases of the three paths of interference signals are unknown;
the first determining module is used for determining two paths of orthogonal signals by utilizing a phase compensation algorithm based on the three paths of interference signals;
the second determining module is used for determining the displacement and/or the speed of the measured target based on the two paths of orthogonal signals;
the phase compensation algorithm is a fitting compensation algorithm based on a Pearson correlation coefficient method and a nonlinear least square method;
wherein, the determining two paths of orthogonal signals by using a phase compensation algorithm based on the three paths of interference signals comprises:
determining the phase difference of the threeway interference signals by utilizing the Pearson correlation coefficient method based on the threeway interference signals; the threepath interference signal comprises a first path of interference signal, a second path of interference signal and a third path of interference signal, and the phase difference of the threepath interference signal comprises the phase difference of the second path of interference signal and the first path of interference signal and the phase difference of the third path of interference signal and the first path of interference signal;
determining two paths of orthogonal signals to be optimized by using a threestep phase shifting method based on the phase difference of the three paths of interference signals;
determining the compensation quantity of the orthogonal signals by utilizing a nonlinear least square method based on the two paths of orthogonal signals to be optimized;
and determining the two paths of orthogonal signals after optimization based on the two paths of orthogonal signals to be optimized and the compensation quantity of the orthogonal signals.
7. A computerreadable storage medium, characterized in that it stores a program or instructions for causing a computer to perform the steps of the method according to any one of claims 15.
8. An electronic device, comprising: a processor and a memory;
the processor is configured to perform the steps of the method of any one of claims 15 by calling a program or instructions stored in the memory.
9. A grating ruler is characterized by comprising a reading head, wherein detectors are respectively arranged at three different positions in the reading head and used for collecting detection signals at corresponding positions to form three paths of interference signals;
the phases corresponding to the three different positions are unknown;
the grating ruler realizes detection signal processing by adopting the steps of the method of any one of claims 1 to 5.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN202210659766.5A CN114858062B (en)  20220613  20220613  Detection signal processing method, device, medium, equipment and grating ruler 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN202210659766.5A CN114858062B (en)  20220613  20220613  Detection signal processing method, device, medium, equipment and grating ruler 
Publications (2)
Publication Number  Publication Date 

CN114858062A CN114858062A (en)  20220805 
CN114858062B true CN114858062B (en)  20220916 
Family
ID=82625413
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN202210659766.5A Active CN114858062B (en)  20220613  20220613  Detection signal processing method, device, medium, equipment and grating ruler 
Country Status (1)
Country  Link 

CN (1)  CN114858062B (en) 
Citations (10)
Publication number  Priority date  Publication date  Assignee  Title 

CN1553140A (en) *  20031218  20041208  中国人民解放军国防科学技术大学  Phase differential nonsensitive counting method and device for node tracking mohr interference fringe signals 
CN101251391A (en) *  20080410  20080827  中国科学院长春光学精密机械与物理研究所  Photoelectricity shaft position encoder signal amplitude and phase selfcompensation circuit 
CN101713685A (en) *  20091203  20100526  北京理工大学  Phase compensation method of passive homodyne quadrature demodulation technology 
US8014444B1 (en) *  20071030  20110906  Itt Manufacturing Enterprises, Inc.  System and method for DC offset, amplitude and phase imbalance correction for I and Q baseband calibration 
CN107290042A (en) *  20160405  20171024  南京理工大学  The optical fiber grating sensing modulationdemodemodulation method and device modulated based on phase shift signal 
CN107345787A (en) *  20170809  20171114  合肥工业大学  A kind of grating interferometer alignment error realtime correction method 
CN108132448A (en) *  20171226  20180608  北京无线电计量测试研究所  For the device and method of phase generator phase zero point correction 
CN110631484A (en) *  20191104  20191231  南京师范大学  Threedimensional displacement measurement system and method based on laser selfmixing grating interference 
CN111781546A (en) *  20200420  20201016  麦歌恩电子(上海)有限公司  Background calibration method and system for eliminating nonideality of two paths of mutually orthogonal signals 
CN112923847A (en) *  20210121  20210608  广东工业大学  Local sine auxiliary grating ruler measurement error adaptive compensation method 
Family Cites Families (2)
Publication number  Priority date  Publication date  Assignee  Title 

JP4718557B2 (en) *  20041214  20110706  ルナ イノベーションズ インコーポレイテッド  Timevarying phase compensation method in interferometry 
TWI516746B (en) *  20120420  20160111  賽格股份有限公司  Method, apparatus, and computerprogram product for performing nonharmonic cyclic error compensation in interferometric encoder systems and lithography systems 

2022
 20220613 CN CN202210659766.5A patent/CN114858062B/en active Active
Patent Citations (10)
Publication number  Priority date  Publication date  Assignee  Title 

CN1553140A (en) *  20031218  20041208  中国人民解放军国防科学技术大学  Phase differential nonsensitive counting method and device for node tracking mohr interference fringe signals 
US8014444B1 (en) *  20071030  20110906  Itt Manufacturing Enterprises, Inc.  System and method for DC offset, amplitude and phase imbalance correction for I and Q baseband calibration 
CN101251391A (en) *  20080410  20080827  中国科学院长春光学精密机械与物理研究所  Photoelectricity shaft position encoder signal amplitude and phase selfcompensation circuit 
CN101713685A (en) *  20091203  20100526  北京理工大学  Phase compensation method of passive homodyne quadrature demodulation technology 
CN107290042A (en) *  20160405  20171024  南京理工大学  The optical fiber grating sensing modulationdemodemodulation method and device modulated based on phase shift signal 
CN107345787A (en) *  20170809  20171114  合肥工业大学  A kind of grating interferometer alignment error realtime correction method 
CN108132448A (en) *  20171226  20180608  北京无线电计量测试研究所  For the device and method of phase generator phase zero point correction 
CN110631484A (en) *  20191104  20191231  南京师范大学  Threedimensional displacement measurement system and method based on laser selfmixing grating interference 
CN111781546A (en) *  20200420  20201016  麦歌恩电子(上海)有限公司  Background calibration method and system for eliminating nonideality of two paths of mutually orthogonal signals 
CN112923847A (en) *  20210121  20210608  广东工业大学  Local sine auxiliary grating ruler measurement error adaptive compensation method 
Also Published As
Publication number  Publication date 

CN114858062A (en)  20220805 
Similar Documents
Publication  Publication Date  Title 

CN1773220B (en)  Encoder output signal correction apparatus and method  
JP4277887B2 (en)  Encoder signal correction circuit  
CN110940371B (en)  Calibration method, device and equipment of rotary magnetoelectric encoder  
JP5755009B2 (en)  Encoder  
JP2960013B2 (en)  Moving object detecting scale and moving object detecting apparatus using the same  
CN103403499A (en)  Method and device for determining the absolute position of a movable body  
US20130099106A1 (en)  Displacement detecting device, scale calibrating method and scale calibrating program  
CN108151653A (en)  A kind of moire frange signal of grating errordetecting and modification method  
JP2008058252A (en)  Correction circuit of encoder signal  
WO2019105133A1 (en)  Phase deviation compensation method and device  
CN114858062B (en)  Detection signal processing method, device, medium, equipment and grating ruler  
CN108827190B (en)  Highprecision angle measurement error detection device based on double autocollimators and detection method thereof  
Gao et al.  Subdivided error correction method for photoelectric axis angular displacement encoder based on particle swarm optimization  
Giniotis et al.  Optical method for the calibration of raster scales  
JP2839340B2 (en)  Calibration device for position signal  
CN114754685B (en)  Detection signal processing method, device, medium, equipment and grating ruler  
Zhu et al.  Design of a precise subdivision system for gratings using a modified CORDIC algorithm  
US6340908B1 (en)  Phase adjusting circuit, scaling signal generation circuit using phase adjusting circuit, and position measuring apparatus using scaling signal generation circuit  
US20100004888A1 (en)  Measurement apparatus  
JP5522910B2 (en)  Apparatus for interferometry, method using interferometry, interference measurement apparatus  
Ye et al.  Development of a digital interpolation module for highresolution sinusoidal encoders  
JP6276074B2 (en)  Position detection device  
JP2839341B2 (en)  Calibration device for position signal  
Li et al.  RealTime Direction Judgment System of SubNanometer Scale Grating Ruler  
CN114754680A (en)  Grating scale and method, device, medium and equipment for improving measurement precision of grating scale 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
PB01  Publication  
SE01  Entry into force of request for substantive examination  
SE01  Entry into force of request for substantive examination  
GR01  Patent grant  
GR01  Patent grant 