CN114854997A - 一种红土镍矿硫化熔炼注入式补硫强化硫化方法 - Google Patents

一种红土镍矿硫化熔炼注入式补硫强化硫化方法 Download PDF

Info

Publication number
CN114854997A
CN114854997A CN202210337816.8A CN202210337816A CN114854997A CN 114854997 A CN114854997 A CN 114854997A CN 202210337816 A CN202210337816 A CN 202210337816A CN 114854997 A CN114854997 A CN 114854997A
Authority
CN
China
Prior art keywords
smelting
vulcanization
nickel ore
slag
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210337816.8A
Other languages
English (en)
Inventor
王亲猛
李中臣
郭学益
田庆华
李栋
王松松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210337816.8A priority Critical patent/CN114854997A/zh
Publication of CN114854997A publication Critical patent/CN114854997A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/025Obtaining nickel or cobalt by dry processes with formation of a matte or by matte refining or converting into nickel or cobalt, e.g. by the Oxford process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:将红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置向高温熔体内喷入富氧气体、还原剂和硫化剂,得到镍锍、熔炼渣和高温烟气。本发明的红土镍矿硫化熔炼注入式补硫强化硫化方法创新性的采用浸没式补硫的方法,可增加硫与熔体的接触面积,提高硫的直接利用率,减少硫渣的生成,避免硫资源的浪费。本发明创新性的将硫补入熔体内部,由于硫势高,可实现氧化镍直接到硫化镍相转变,提高反应效率,减少反应时间,节约成本。

Description

一种红土镍矿硫化熔炼注入式补硫强化硫化方法
技术领域
本发明属于冶金工程领域,尤其涉及一种利用红土镍矿硫化熔炼的方法。
背景技术
国家大力支持发展新能源汽车产业,随着新能源汽车的快速发展,将会导致电池快速增长,对镍、钴原料的需求将更加迫切,保障镍资源供应稳定将成为新能源企业的重要命题。
镍广泛存在于红土镍矿、硫化镍矿、二次资源和海洋结核中。从海洋结核中提取镍资源需要较高的投资,二次资源中镍铁分离较为困难,因此硫化镍矿和红土镍矿成为镍主要来源。由于近年来高品位硫化镍矿的持续枯竭,易于开采且储量大的红土镍矿资源变得非常重要,2010年开始至今,红土镍矿产镍的占比已超过硫化镍矿,并呈现逐渐上升的趋势。
红土镍矿按照元素含量通常分为三类:褐铁矿型、黏土型和腐殖土型。针对红土镍矿,通常采用湿法与火法冶炼工艺进行处理。回转窑-电炉(RKEF法)是其典型的火法冶炼工艺,其具有能耗高、熔炼渣量大、金属钴回收率低等缺点。腐殖土型由于镍含量高、铁含量低,更适用于火法冶炼工艺。高压酸浸(HPAL)是其典型的湿法冶炼工艺,其具有投资费用高、建设周期长、操作条件苛刻、产生大量湿法冶金渣,属于危废,处置困难等缺点。褐铁矿型由于镁、硅含量低,钴含量高,更适用于湿法冶炼工艺。
由上可知,适用于红土镍矿的上述湿法冶炼工艺与火法冶炼工艺这两种工艺存在的缺点均很突出,且对原料适用性差,不同原料需要采用不同的处理工艺,此外,上述工艺得到的产品无法直接于新能源产业衔接。经过技术的发展,红土镍矿的全新处理工艺-硫化熔炼工艺,可以很好的解决上述技术问题。但现有技术中的硫化熔炼工艺在加入硫化剂时,存在硫化剂利用率低、硫化剂用量高等缺陷。
发明内容
本发明所要解决的技术问题是克服以上背景技术中提到的不足和缺陷,提供一种硫资源直接利用率高、硫化效果好的红土镍硫化熔炼注入式补硫强化硫化方法。为解决上述技术问题,本发明提出的技术方案为:
一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:将红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置(喷粉或喷气装置)向高温熔体内喷入富氧气体、还原剂和硫化剂,得到镍锍、熔炼渣和高温烟气。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,熔炼炉包括侧吹熔池熔炼炉、顶吹熔池熔炼炉和底吹熔池熔炼炉等。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述还原剂包括气态还原剂和固态还原剂,所述气态还原剂包括一氧化碳、氢气和甲烷的一种或多种,所述气态还原剂的通入流量为标准大气压下每吨红土镍矿为2000-15000Nm3/h;所述固态还原剂包括焦炭、无烟煤、烟煤和生物质炭的一种或多种,所述固态还原剂的用量为红土镍矿质量的5-15%。本发明中,固态还原剂可采用加料装置直接加入熔炼体系。固态还原剂有两方面作用,一方面是为整个熔炼体系提供热量,这是其最主要的作用,另一方面是可起到一定的还原作用。固态还原剂加入量与熔炼温度、原始物料量有关,气态还原剂与镍回收率有关,因此固态和气态还原剂的主要作用不相同。固态还原剂分批次加入,主要参考的指标是熔炼温度与渣含镍量。本发明中通过采用气固态还原剂,并控制其二者的用量,采用气固还原剂混合使用可加快镍铁氧化物的还原。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述硫化剂包括石膏渣、硫化钙、黄铁矿和硫磺的一种或多种,所述硫化剂的用量为红土镍矿质量的2-15%。更优选的,当所述硫化剂采用石膏渣时,以气体还原剂为载体将粉末状形式的石膏渣喷入高温熔体内部;当所述硫化剂为黄铁矿时,以压缩空气为载体将以粉末状形式的黄铁矿喷入高温熔体内部;当所述硫化剂为硫磺时,以氮气为载体将以液态形式的硫磺喷入高温熔体内部。石膏渣作为一种含硫废渣,石膏渣需与还原剂充分接触时,才可以实现硫化作用,因此当加入石膏渣作硫化剂时,将以气体还原剂为载体将粉末状形式的石膏渣喷入高温熔体内部。石膏渣采用还原性气体作为载体的目的主要是使石膏渣还原至硫化态,提高石膏渣中硫的利用率,若不用还原性气体作为载体,石膏渣可能直接与二氧化硅反应生成高熔点物质,对冶炼造成难以解决的问题。
本发明创新性的发现了不同硫化剂采用不同气体作为载体给红土镍矿的硫化提供便利,一方面可提高硫的利用率,另一方面是用气体包裹硫化剂,增加硫化剂与熔体的接触面积,减少硫化剂的使用量,同样也减轻了尾气处理工序的压力。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,当硫化剂为石膏渣时,用于喷入硫化剂的喷枪的出口位于熔渣层中部,控制喷枪的倾斜角度为10-14°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层;当硫化剂为黄铁矿时,用于喷入硫化剂的喷枪的出口位于熔渣层中部,控制喷枪的倾斜角度为7-12°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层;当硫化剂为硫磺时,用于喷入硫化剂的喷枪的出口位于熔渣层底部,控制喷枪的倾斜角度为12-16°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层。更优选的,所述硫化剂为石膏渣,且不再加入渣型调质剂。本发明通过增加喷吹细节,主要作用可减少泡沫渣(四氧化三铁)形成,避免铁的过氧化,避免逸炉,提高硫化效率。
本发明将喷枪或氧枪的出口设于熔渣层,可以增加渣的流动性,且氧枪位于熔渣层,可以提高氧势,减小铁与硫的结合,提高镍锍的生成量。本发明更优选的方案中,利用石膏渣作为硫化剂,石膏渣在还原剂的作用下生成硫化钙用于作为硫化剂,熔渣层中的氧化镍与硫化钙反应生成氧化钙和镍锍,镍锍在熔渣层聚合,沉降至镍锍层,氧化钙可用作渣型调质剂,整体反应过程无需加入渣型调质剂。利用一种废渣即可实现硫化与渣型调控的目的,硫化效果好,成本低,加料步骤少,废渣产生量少。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述硫化剂为粉末状形式时控制的硫化剂的粒度大于150目的占85%以上,且均大于100目;喷入压力控制为0.1-0.5MPa。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述红土镍矿包含质量含量为0.8-3%的镍、0.02-0.2%的钴、10-50%的铁和0.5-35%的氧化镁。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述红土镍矿经过预还原处理后再加入到所述熔炼炉内,所述预还原处理包括以下步骤:将红土镍矿破碎后,在回转窑中进行焙烧干燥及预还原,以除去其中所含的游离水和结合水,得焙烧产物,控制回转窑中的焙烧温度为850-1000℃。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述熔炼炉内中还通过加料装置加入有渣型调质剂,所述渣型调质剂包括生石灰、石灰石和石英的一种或多种,所述渣型调质剂的用量为红土镍矿质量的4-15%。渣型调质剂的加入可降低熔渣熔点,降低熔炼温度,即减少固态还原剂用量;但若渣型调质剂加入量过多,则会导致熔渣流动性过好,加剧对炉衬的侵蚀。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,所述富氧气体中氧气的体积浓度为70-90%,所述富氧气体首先经过预热至800-900℃,控制所述富氧气体喷入高温熔体内的喷入压力为0.1-0.3MPa,富氧的通入流量为标准大气压下每吨红土镍矿的3000-20000Nm3/h。对富氧气体进行预热,可减少还原剂使用,缩短反应时间,绿色环保。
上述红土镍矿硫化熔炼注入式补硫强化硫化方法中,优选的,熔炼处理时控制熔炼温度为1450-1600℃,熔炼时间为1-3h,最终镍锍中镍和钴的总质量含量为20-30%、铁的质量含量为50-60%、硫的质量含量为10-20%;熔炼渣中镍的质量含量为0.05-0.25%,钴的质量含量为0-0.04%,高温烟气则直接进入回转窑进行原料的干燥预还原。
与现有技术相比,本发明的优点在于:
1、本发明的红土镍矿硫化熔炼注入式补硫强化硫化方法创新性的采用浸没式补硫的方法,可增加硫与熔体的接触面积,提高硫的直接利用率,减少硫渣的生成,避免硫资源的浪费。
2、本发明的红土镍矿硫化熔炼注入式补硫强化硫化方法创新性的将硫补入熔体内部,由于硫势高,可实现氧化镍直接到硫化镍相转变,提高反应效率,减少反应时间,节约成本。
总的来说,本发明通过红土镍矿硫化熔炼注入式补硫强化硫化方法,可实现硫与熔体直接接触,提高硫资源直接利用率、减少硫化剂和还原剂消耗、缩短冶炼时间、减少尾气处理工序的压力,过程绿色低碳、经济环保。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:
以1吨红土镍矿为原料,其主要化学组成包括Ni 2.1%、Co 0.11%、Fe 24.3%、MgO 27.4%。将该红土镍矿经过颚式破碎机破碎后,通过皮带装置将其运送至焙烧炉,得到焙烧后红土镍矿;将焙烧后红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置向高温熔体内以0.3MPa压力,每吨红土镍矿的喷入15000Nm3/h富氧气体,氧枪出口位于熔渣层,喷入红土镍矿质量10%的石膏渣、8%无烟煤,石膏渣喷入时以一氧化碳为载体喷入熔渣层中部,喷枪角度为10°,一氧化碳以0.3MPa压力,通入流量为标准大气压下每吨红土镍矿为10000Nm3/h。控制熔炼温度为1500℃,熔炼时间为3h,最终得到的镍锍、熔炼渣和高温烟气。
本实施例中,镍锍中镍和钴的总质量含量为23.2%、铁的质量含量为51.2%、硫的质量含量为16.9%;熔炼渣中镍的质量含量为0.12%,钴的质量含量为0.03%,高温烟气则直接进入回转窑进行原料的干燥预还原。
实施例2:
一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:
以1吨红土镍矿为原料,其主要化学组成包括Ni 2.1%、Co 0.11%、Fe 24.3%、MgO 27.4%。将该红土镍矿经过颚式破碎机破碎后,通过皮带装置将其运送至焙烧炉,得到焙烧后红土镍矿;将焙烧后红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置向高温熔体内以0.3MPa压力,每吨红土镍矿的喷入15000Nm3/h富氧气体,氧枪出口位于熔渣层,喷入红土镍矿质量12%的石膏渣、10%无烟煤,石膏渣喷入时以一氧化碳为载体喷入熔渣层中部,喷枪角度为10°,一氧化碳以0.3MPa压力,通入流量为标准大气压下每吨红土镍矿为10000Nm3/h。控制熔炼温度为1500℃,熔炼时间为3h,最终得到的镍锍、熔炼渣和高温烟气。
本实施例中,镍锍中镍和钴的总质量含量为24.2%、铁的质量含量为53.1%、硫的质量含量为13.8%;熔炼渣中镍的质量含量为0.09%,钴的质量含量为0.02%,高温烟气则直接进入回转窑进行原料的干燥预还原。
实施例3:
一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:
以1吨红土镍矿为原料,其主要化学组成包括Ni 2.1%、Co 0.11%、Fe 24.3%、MgO 27.4%。将该红土镍矿经过颚式破碎机破碎后,通过皮带装置将其运送至焙烧炉,得到焙烧后红土镍矿;将焙烧后红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置向高温熔体内以0.3MPa压力,每吨红土镍矿的喷入15000Nm3/h富氧气体,氧枪出口位于熔渣层,喷入红土镍矿质量3%的硫磺、8%无烟煤和10%的生石灰,硫磺喷入时以氮气为载体喷入熔渣层底部,喷枪角度为13°,氮气以0.3MPa压力,通入流量为标准大气压下每吨红土镍矿为12000Nm3/h。控制熔炼温度为1500℃,熔炼时间为3h,最终得到的镍锍、熔炼渣和高温烟气。
本实施例中,镍锍中镍和钴的总质量含量为22.5%、铁的质量含量为52.2%、硫的质量含量为14.7%;熔炼渣中镍的质量含量为0.09%,钴的质量含量为0.02%,高温烟气则直接进入回转窑进行原料的干燥预还原。
对比例1:
一种红土镍矿硫化熔炼注入式补硫强化硫化方法,包括以下步骤:
以1吨红土镍矿为原料,其主要化学组成包括Ni 2.1%、Co 0.11%、Fe 24.3%、MgO 27.4%。将该红土镍矿经过颚式破碎机破碎后,通过皮带装置将其运送至焙烧炉,得到焙烧后红土镍矿;将焙烧后红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理通过喷吹装置向高温熔体内以0.3MPa压力喷入15000Nm3/h富氧气体,氧枪出口位于熔渣层,直接通过加料装置加入10%的黄铁矿、8%无烟煤和7%的生石灰。控制熔炼温度为1500℃,熔炼时间为3h,最终得到的镍锍、熔炼渣和高温烟气。
本对比例中,镍锍中镍和钴的总质量含量为19%、铁的质量含量为62.5%、硫的质量含量为11.8%;熔炼渣中镍的质量含量为0.4%,钴的质量含量为0.06%,高温烟气则直接进入回转窑进行原料的干燥预还原。

Claims (10)

1.一种红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,包括以下步骤:将红土镍矿加入到熔炼炉内得到高温熔体并进行熔炼处理,熔炼处理时通过喷吹装置向高温熔体内喷入富氧气体、还原剂和硫化剂,得到镍锍、熔炼渣和高温烟气。
2.根据权利要求1所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述还原剂包括气态还原剂和固态还原剂,所述气态还原剂包括一氧化碳、氢气和甲烷的一种或多种,所述气态还原剂的通入流量为标准大气压下每吨红土镍矿为2000-15000Nm3/h;所述固态还原剂包括焦炭、无烟煤、烟煤和生物质炭的一种或多种,所述固态还原剂的用量为红土镍矿质量的5-15%。
3.根据权利要求1所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述硫化剂包括石膏渣、黄铁矿和硫磺的一种或多种,所述硫化剂的用量为红土镍矿质量的2-15%;当所述硫化剂采用石膏渣时,以气体还原剂为载体将粉末状形式的石膏渣喷入高温熔体内部;当所述硫化剂为黄铁矿时,以压缩空气为载体将以粉末状形式的黄铁矿喷入高温熔体内部;当所述硫化剂为硫磺时,以氮气为载体将以液态形式的硫磺喷入高温熔体内部。
4.根据权利要求3所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述硫化剂为粉末状形式时控制的硫化剂的粒度大于150目的占85%以上,且均大于100目;喷入压力控制为0.1-0.5MPa。
5.根据权利要求3所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,当硫化剂为石膏渣时,用于喷入硫化剂的喷枪的出口位于熔渣层中部,控制喷枪的倾斜角度为10-14°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层;当硫化剂为黄铁矿时,用于喷入硫化剂的喷枪的出口位于熔渣层中部,控制喷枪的倾斜角度为7-12°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层;当硫化剂为硫磺时,用于喷入硫化剂的喷枪的出口位于熔渣层底部,控制喷枪的倾斜角度为12-16°,控制用于喷入富氧气体的氧枪的出口位于熔炼渣层。
6.根据权利要求5所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述硫化剂为石膏渣,且不再加入渣型调质剂。
7.根据权利要求1-6中任一项所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述红土镍矿包含质量含量为0.8-3%的镍、0.02-0.2%的钴、10-50%的铁和0.5-35%的氧化镁;所述红土镍矿经过预还原处理后再加入到所述熔炼炉内,所述预还原处理包括以下步骤:将红土镍矿破碎后,在回转窑中进行焙烧,得焙烧产物,控制回转窑中的焙烧温度为850-1000℃。
8.根据权利要求1-6中任一项所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述熔炼炉内中还加入有渣型调质剂,所述渣型调质剂包括生石灰、石灰石和石英的一种或多种,所述渣型调质剂的用量为红土镍矿质量的4-15%。
9.根据权利要求1-6中任一项所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,所述富氧气体中氧气的体积浓度为70-90%,所述富氧气体首先经过预热至800-900℃,控制所述富氧气体喷入高温熔体内的喷入压力为0.1-0.3MPa,富氧的通入流量为标准大气压下每吨红土镍矿的3000-20000Nm3/h。
10.根据权利要求1-6中任一项所述的红土镍矿硫化熔炼注入式补硫强化硫化方法,其特征在于,熔炼处理时控制熔炼温度为1450-1600℃,熔炼时间为1-3h,最终镍锍中镍和钴的总质量含量为20-30%、铁的质量含量为50-60%、硫的质量含量为10-20%;熔炼渣中镍的质量含量为0.05-0.25%,钴的质量含量为0-0.04%。
CN202210337816.8A 2022-03-31 2022-03-31 一种红土镍矿硫化熔炼注入式补硫强化硫化方法 Pending CN114854997A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210337816.8A CN114854997A (zh) 2022-03-31 2022-03-31 一种红土镍矿硫化熔炼注入式补硫强化硫化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210337816.8A CN114854997A (zh) 2022-03-31 2022-03-31 一种红土镍矿硫化熔炼注入式补硫强化硫化方法

Publications (1)

Publication Number Publication Date
CN114854997A true CN114854997A (zh) 2022-08-05

Family

ID=82629074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210337816.8A Pending CN114854997A (zh) 2022-03-31 2022-03-31 一种红土镍矿硫化熔炼注入式补硫强化硫化方法

Country Status (1)

Country Link
CN (1) CN114854997A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747519A (zh) * 2022-11-02 2023-03-07 中南大学 一种镍矿资源综合利用的方法
CN115927874A (zh) * 2022-12-12 2023-04-07 江苏惠然实业有限公司 一种镍铁硫化的方法
WO2024026998A1 (zh) * 2022-08-04 2024-02-08 广东邦普循环科技有限公司 一种富氧侧吹炉处理红土镍矿的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703731A (zh) * 2012-06-18 2012-10-03 中国恩菲工程技术有限公司 一种利用红土型镍矿熔炼镍锍的方法
CN103937959A (zh) * 2014-03-25 2014-07-23 东营方圆有色金属有限公司 一种低成本低能耗处理红土镍矿的新方法
CN111424167A (zh) * 2020-04-16 2020-07-17 中国恩菲工程技术有限公司 处理红土镍矿的方法
CN113999991A (zh) * 2021-10-22 2022-02-01 金川镍钴研究设计院有限责任公司 红土镍矿冶炼镍铁连续硫化吹炼生产高镍锍的方法
CN114001549A (zh) * 2021-11-03 2022-02-01 中伟新材料股份有限公司 用于冶炼冰镍的熔炼炉及低冰镍的生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703731A (zh) * 2012-06-18 2012-10-03 中国恩菲工程技术有限公司 一种利用红土型镍矿熔炼镍锍的方法
CN103937959A (zh) * 2014-03-25 2014-07-23 东营方圆有色金属有限公司 一种低成本低能耗处理红土镍矿的新方法
CN111424167A (zh) * 2020-04-16 2020-07-17 中国恩菲工程技术有限公司 处理红土镍矿的方法
CN113999991A (zh) * 2021-10-22 2022-02-01 金川镍钴研究设计院有限责任公司 红土镍矿冶炼镍铁连续硫化吹炼生产高镍锍的方法
CN114001549A (zh) * 2021-11-03 2022-02-01 中伟新材料股份有限公司 用于冶炼冰镍的熔炼炉及低冰镍的生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024026998A1 (zh) * 2022-08-04 2024-02-08 广东邦普循环科技有限公司 一种富氧侧吹炉处理红土镍矿的方法
CN115747519A (zh) * 2022-11-02 2023-03-07 中南大学 一种镍矿资源综合利用的方法
CN115927874A (zh) * 2022-12-12 2023-04-07 江苏惠然实业有限公司 一种镍铁硫化的方法

Similar Documents

Publication Publication Date Title
CN101775451B (zh) 一种钒钛磁铁矿高炉冶炼方法
CN114854997A (zh) 一种红土镍矿硫化熔炼注入式补硫强化硫化方法
CN110241307B (zh) 两段法还原含镍物料制备镍锍的方法
CN113293296B (zh) 一种氧化镍矿熔融还原硫化生产低冰镍的方法
CN114350977B (zh) 一种红土镍矿循环硫化提取镍钴的方法
CN112410494B (zh) 一种可应用细粒度粉矿的悬浮熔融还原炼铁装置及炼铁方法
CN111705225A (zh) 制备镍锍的方法及装置
CN111378851A (zh) 处理红土镍矿的系统和方法
CN113265549B (zh) 用富氧侧吹熔炼炉处理红土镍矿和不锈钢冶金废料的方法
CN211570747U (zh) 还原含镍物料制备镍锍的装置
WO1997020954A1 (en) Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
CN212247156U (zh) 处理红土镍矿的系统
CN104828877A (zh) 转炉钢渣中氧化铁的回收方法
CN102181776B (zh) 一种还原球团法生产高品位镍及不锈钢的工艺方法和装置
CN116875759A (zh) 一种从红土镍矿高压浸出渣中回收铁的资源化回收方法
CN101956035A (zh) 一种含铁物料渣浴熔融还原炼钢工艺方法及装置
JPS5918452B2 (ja) 粉粒状鉱石からの溶融金属製造方法
CN117286349B (zh) 一种含镍物料冶炼生产高镍锍的方法
CN212316210U (zh) 制备镍锍的装置
CN116949282B (zh) 红土镍矿浸出渣的处理方法及其设备
JPS62228410A (ja) 溶融還元による粉粒状鉱石からの金属の回収方法
CN111635997B (zh) 氢气直接还原熔炼红土镍矿冶炼镍铁合金的方法
CN102676723B (zh) 一种用冲天炉冶炼灰铁的方法
CN115747519A (zh) 一种镍矿资源综合利用的方法
CN116043033A (zh) 一种红土镍矿一步生产高镍锍的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination