CN114854787B - Plant recombinant expression vector, construction method and application thereof - Google Patents
Plant recombinant expression vector, construction method and application thereof Download PDFInfo
- Publication number
- CN114854787B CN114854787B CN202210396439.5A CN202210396439A CN114854787B CN 114854787 B CN114854787 B CN 114854787B CN 202210396439 A CN202210396439 A CN 202210396439A CN 114854787 B CN114854787 B CN 114854787B
- Authority
- CN
- China
- Prior art keywords
- resistant gene
- gene expression
- resistant
- insect
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013604 expression vector Substances 0.000 title claims abstract description 46
- 238000003259 recombinant expression Methods 0.000 title claims abstract description 33
- 238000010276 construction Methods 0.000 title claims abstract description 13
- 241000196324 Embryophyta Species 0.000 claims abstract description 80
- 230000009261 transgenic effect Effects 0.000 claims abstract description 65
- 230000014509 gene expression Effects 0.000 claims abstract description 61
- 241000238631 Hexapoda Species 0.000 claims abstract description 54
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 51
- 239000004009 herbicide Substances 0.000 claims abstract description 42
- 230000002363 herbicidal effect Effects 0.000 claims abstract description 41
- 244000068988 Glycine max Species 0.000 claims abstract description 32
- 235000010469 Glycine max Nutrition 0.000 claims abstract description 31
- 108020004705 Codon Proteins 0.000 claims abstract description 8
- 239000012634 fragment Substances 0.000 claims description 48
- 239000013598 vector Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 23
- 108090000790 Enzymes Proteins 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 20
- 239000002773 nucleotide Substances 0.000 claims description 20
- 125000003729 nucleotide group Chemical group 0.000 claims description 20
- 238000005520 cutting process Methods 0.000 claims description 17
- 239000005562 Glyphosate Substances 0.000 claims description 12
- 238000003776 cleavage reaction Methods 0.000 claims description 12
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 claims description 12
- 229940097068 glyphosate Drugs 0.000 claims description 12
- 230000007017 scission Effects 0.000 claims description 11
- 238000010367 cloning Methods 0.000 claims description 9
- 241000607479 Yersinia pestis Species 0.000 claims description 7
- 238000001976 enzyme digestion Methods 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000009395 breeding Methods 0.000 claims description 2
- 230000001488 breeding effect Effects 0.000 claims description 2
- 239000002131 composite material Substances 0.000 abstract description 9
- 238000010353 genetic engineering Methods 0.000 abstract description 3
- 230000035882 stress Effects 0.000 description 18
- 238000001514 detection method Methods 0.000 description 12
- 241000589158 Agrobacterium Species 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 6
- 230000036425 denaturation Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 238000001962 electrophoresis Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000000575 pesticide Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 231100000674 Phytotoxicity Toxicity 0.000 description 3
- 241000985245 Spodoptera litura Species 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 238000009333 weeding Methods 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012272 crop production Methods 0.000 description 2
- 238000012364 cultivation method Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000024346 drought recovery Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000012257 pre-denaturation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229940027138 cambia Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZYWFEOZQIUMEGL-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol;phenol Chemical compound ClC(Cl)Cl.CC(C)CCO.OC1=CC=CC=C1 ZYWFEOZQIUMEGL-UHFFFAOYSA-N 0.000 description 1
- 239000012881 co-culture medium Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000009730 ganji Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
- C12N9/1092—3-Phosphoshikimate 1-carboxyvinyltransferase (2.5.1.19), i.e. 5-enolpyruvylshikimate-3-phosphate synthase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
- C07K14/325—Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8274—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
- C12N15/8275—Glyphosate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insects & Arthropods (AREA)
- Pest Control & Pesticides (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
The invention provides a plant recombinant expression vector, a construction method and application thereof, and belongs to the technical field of genetic engineering. The plant recombinant expression vector pGR contains a herbicide-resistant gene expression frame, an insect-resistant gene expression frame and a stress-resistant gene expression frame. The herbicide-resistant gene expression frame comprises a CaMV35S promoter, a g2m-epsps gene with optimized codons and a CaMVPolyA terminator, the insect-resistant gene expression frame comprises a CaMV35S promoter, a cry1C gene with optimized codons and a NOS terminator, and the stress-resistant gene expression frame comprises a CaMV35S promoter, a soybean GmNFYB1 gene and a NOS terminator. The expression vector can be used for obtaining the herbicide-resistant, insect-resistant and stress-resistant composite transgenic plant, and has good application prospect in cultivating composite plant varieties.
Description
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to a plant recombinant expression vector, a construction method and application thereof.
Background
Grass damage, insect damage and abiotic stress are important factors influencing crop production, especially rural labor force transfer and large area per unit area of main areas in northeast China, the field management level is reduced, chemical weeding is mainly relied on in the aspect of weed control, and mechanical and manual weeding are assisted. If rainwater is concentrated or chemical weeding fails during seedling field management, the yield is reduced by more than 10% generally, and the yield is seriously abandoned. And the use of the traditional herbicide causes the problems of common weed damage, soil environment deterioration, serious phytotoxicity to crops and the like. The occurrence and presence of pests directly affect the yield and quality of crops, and it is often necessary to apply large amounts of pesticides to control the pests. If the pesticide spraying prevention and control are not performed, the yield reduction caused by insect damage reaches more than 10 percent, and the serious year yield reduction can reach more than 50 percent. In addition, drought and salt and alkali are also one of the main factors affecting crop production.
The transgenic crop with herbicide resistance, insect resistance and stress tolerance is cultivated by using the genetic engineering technology, and a better solution is provided for effectively preventing and controlling weeds and insect pests and coping with drought, saline-alkali and other stress. The glyphosate-tolerant herbicide characteristic enables the transgenic crops to be planted with high-efficiency herbicides with short residual effect period and wide herbicide control spectrum, and avoids the harm to the next crop, thereby realizing reasonable rotation. The cultivation and planting of the insect-resistant crops bring great economic and environmental benefits, and the use amount of the insecticide is greatly reduced. The transgenic stress-resistant variety is cultivated, so that the yield of soybean on drought and salinized soil can be increased, the idle lands can be effectively utilized, and a new way is opened for solving the problems of more population and less cultivated land in China.
The continuous emergence of the transgenic crops with the composite traits is the trend and the characteristics of the development of the transgenic industrialization, is also the trend of the future development of the transgenic crops, and meets the diversified demands of growers and consumers. The planting area of the transgenic crops with the composite insect resistance property in 2018 is increased by 4 percent, and the transgenic crops occupy 42 percent of the global planting area. The method for cultivating transgenic crops with complex characters is mainly 3 methods, namely, transforming the existing transgenic crops, connecting a plurality of genes to the same vector, transferring the genes into a receptor, and polymerizing the existing transgenic characters by using a conventional hybridization breeding technology. The transformation of existing transgenic crops and the polymerization of different shapes by using conventional crossbreeding technology have the problems of time consumption, complexity, low transformation efficiency, different screening marker genes and the like. The method of connecting multiple genes to the same vector and simultaneously carrying out genetic transformation is a relatively rapid method, and transgenic plants with multiple characters can be obtained simultaneously, but because of more gene expression frames and longer vector sequences, precise design is needed in the process of constructing the vector.
Disclosure of Invention
Therefore, the invention aims to provide a plant recombinant expression vector, a construction method and application thereof, herbicide-resistant, insect-resistant and stress-resistant genes are constructed into the same expression vector, and the plant is genetically transformed by using the expression vector, so that herbicide-resistant, insect-resistant and stress-resistant composite property transgenic plants can be cultivated, thereby providing a rapid method for developing and applying composite property transgenic crops, and having good application prospect
The invention provides a plant recombinant expression vector pGR which comprises a herbicide-resistant gene expression frame, an insect-resistant gene expression frame and a stress-resistant gene expression frame.
Preferably, the herbicide-resistant gene expression frame sequentially comprises a CaMV35S promoter, a glyphosate-resistant gene with optimized codons and a CaMV PolyA terminator;
the grass resistance Ganji is due to g2m-epsps;
the herbicide resistant gene expression frame is one of the following DNA fragments:
A. a DNA fragment with a nucleotide sequence shown as SEQ ID NO. 1;
B. a DNA fragment complementary to SEQ ID NO. 1;
C. and (3) replacing, deleting or inserting one or more bases on the basis of the DNA fragment shown in SEQ ID NO. 1.
Preferably, the insect-resistant gene expression frame sequentially comprises a CaMV35S promoter, an insect-resistant gene with optimized codons and an NOS terminator; the insect-resistant genes comprise cry1C genes;
the nucleotide sequence of the insect-resistant gene expression frame is one of the following DNA fragments:
1) A DNA fragment with a nucleotide sequence shown as SEQ ID NO. 2;
2) A DNA fragment complementary to SEQ ID NO. 2;
3) And (3) replacing, deleting or inserting one or more bases on the basis of the DNA fragment shown in SEQ ID NO. 2.
Preferably, the stress-tolerant gene expression cassette sequentially comprises a CaMV35S promoter, a soybean stress-tolerant gene and an NOS terminator; the stress-tolerant genes comprise GmNFYB1 genes;
the stress-tolerant gene expression frame is one of the following DNA fragments:
a DNA fragment with the nucleotide sequence shown in SEQ ID NO. 3;
II DNA fragment complementary to SEQ ID NO. 3;
III substitution, deletion or insertion of one or several bases on the basis of the DNA fragment shown in SEQ ID NO. 3.
Preferably, the multiple cloning site of the herbicide-resistant gene expression cassette is XhoI;
the multiple cloning site of the insect-resistant gene expression frame is KpnI/HindIII;
the multiple cloning site of the stress-resistant gene expression frame is BglII/BstEII;
the backbone vector of the recombinant expression vector pGR includes pCAMBIA3301.
Preferably, the nucleotide sequence of pGR20 is shown as SEQ ID NO. 4.
The invention provides a construction method of the plant recombinant expression vector pGR, which comprises the following steps:
the GmNFYB1 gene fragment containing BglII and BstEII enzyme cutting sites and the commercial vector pCAMBIA3301 are respectively connected after double enzyme cutting by BglII and BstEII, so as to construct a p3301-NF vector;
the insect-resistant gene cry1C and a commercial vector pBI121 are respectively cut by BamHI and SacI and then connected to construct a pBI121-crylC vector;
the pBI121-crylC vector is used as a template, a specific primer with KpnI and HindIII enzyme cutting sites at two ends is utilized to amplify and obtain a fragment of an insect-resistant gene expression frame, and the fragment is connected with a p3301-NF vector which is cut by KpnI and HindIII enzyme, so as to construct a p3301-NF-cry1C plant expression vector;
the g2m-epsps fragment containing the XhoI enzyme cutting site synthesized by the sequence and the p3301-NF-cry1C vector are connected after being cut by the XhoI enzyme, so as to form a plant recombinant expression vector pGR containing the herbicide-resistant gene expression frame.
The invention provides application of the plant recombinant expression vector pGR or the plant recombinant expression vector pGR obtained by the construction method in cultivation of transgenic plants.
Preferably, the transgenic plant is a herbicide-resistant, insect-resistant and stress-resistant composite trait transgenic plant.
The invention provides a cultivation method of herbicide-resistant, insect-resistant and stress-resistant transgenic plants, which comprises the following steps: the plant recombinant expression vector pGR20 is introduced into a receptor plant to obtain a transgenic plant.
The invention provides a plant recombinant expression vector pGR which comprises a herbicide-resistant gene expression frame, an insect-resistant gene expression frame and a stress-resistant gene expression frame. The herbicide-resistant, insect-resistant and stress-resistant genes are constructed into the same expression vector, and the plant is subjected to genetic transformation by using the expression vector, so that the herbicide-resistant, insect-resistant and stress-resistant composite trait transgenic plant can be cultivated, a rapid method is provided for development and application of composite trait transgenic crops, and the method has good application prospects.
Drawings
FIG. 1 is a schematic diagram of a plant expression vector pGR provided by the invention;
FIG. 2 is T 2 PCR detection of g2m-epsps, cry1C and GmNFYB1 genes in the transgenic soybean; m: DNA marker, lane 1: no template control, lane 2: a plasmid positive control; lane 3: a non-transgenic receptor control; lanes 4-13: transgenic soybean of different strains;
FIG. 3 is an identification of glyphosate tolerant herbicide characteristics of transgenic soybeans;
FIG. 4 is an identification of insect resistance of transgenic soybeans;
FIG. 5 is an identification of drought tolerance of transgenic soybeans.
Detailed Description
The invention provides a plant recombinant expression vector pGR which comprises a herbicide-resistant gene expression frame, an insect-resistant gene expression frame and a stress-resistant gene expression frame.
In the present invention, the herbicide-resistant gene expression cassette preferably comprises a CaMV35S promoter, a glyphosate-resistant gene with optimized codons, and a CaMV PolyA terminator in that order. The glyphosate-tolerant gene is preferably g2m-epsps. The glyphosate-resistant gene expression frame is one of the following DNA fragments:
A. a DNA fragment with a nucleotide sequence shown as SEQ ID NO. 1;
B. a DNA fragment complementary to SEQ ID NO. 1;
C. and (3) replacing, deleting or inserting one or more bases on the basis of the DNA fragment shown in SEQ ID NO. 1.
The glyphosate-resistant gene expression frame can efficiently express the g2m-epsps gene, so that a genetic transformation system shows stronger herbicide-resistant property.
In the present invention, the insect-resistant gene expression cassette preferably comprises a CaMV35S promoter, an insect-resistant gene optimizing codons, and an NOS terminator in this order. The insect-resistant gene preferably includes cry1C gene. The nucleotide sequence of the insect-resistant gene expression frame is one of the following DNA fragments: 1) A DNA fragment with a nucleotide sequence shown as SEQ ID NO. 2;
2) A DNA fragment complementary to SEQ ID NO. 2;
3) And (3) replacing, deleting or inserting one or more bases on the basis of the DNA fragment shown in SEQ ID NO. 2.
The insect-resistant gene expression frame can efficiently express cry1C genes, so that a genetic transformation system shows stronger insect-resistant characteristics.
In the present invention, the stress-tolerant gene expression cassette preferably comprises a CaMV35S promoter, a soybean gene and an NOS terminator in this order. The stress-tolerant gene preferably comprises the GmNFYB1 gene. The stress-tolerant gene expression frame is one of the following DNA fragments: a DNA fragment with the nucleotide sequence shown in SEQ ID NO. 3;
II DNA fragment complementary to SEQ ID NO. 3;
III substitution, deletion or insertion of one or several bases on the basis of the DNA fragment shown in SEQ ID NO. 3.
The stress-tolerant gene expression frame can efficiently express GmNFYB1 genes, so that a genetic transformation system shows stronger stress-tolerant characteristics. The stress tolerance is preferably drought tolerance.
In the present invention, the multiple cloning site of the glyphosate-tolerant gene expression cassette is preferably XhoI. The multiple cloning site of the insect-resistant gene expression frame is preferably KpnI/HindIII; the multiple cloning site of the stress-tolerant gene expression cassette is preferably BglII/BstEII. The backbone vector of the recombinant expression vector pGR includes pCAMBIA3301. The nucleotide sequence of pGR is preferably shown in SEQ ID NO. 4.
The invention provides a construction method of the plant recombinant expression vector pGR, which comprises the following steps:
the GmNFYB1 gene fragment containing BglII and BstEII enzyme cutting sites and the commercial vector pCAMBIA3301 are respectively connected after double enzyme cutting by BglII and BstEII, so as to construct a p3301-NF vector;
the insect-resistant gene cry1C containing BamHI and SacI double enzyme cutting sites and a commercial vector pBI121 are respectively connected after being cut by BamHI and SacI double enzyme, so as to construct a pBI121-crylC vector;
the pBI121-crylC vector is used as a template, a specific primer with KpnI and HindIII enzyme cutting sites at two ends is utilized to amplify and obtain a fragment of an insect-resistant gene expression frame, and the fragment is connected with a p3301-NF vector after KpnI and HindIII enzyme cutting to construct a p3301-NF-cry1C plant expression vector;
the g2m-epsps fragment containing the XhoI enzyme cutting site synthesized by the sequence and the p3301-NF-cry1C vector are connected after being cut by the XhoI enzyme, so as to form a plant recombinant expression vector pGR containing the herbicide-resistant gene expression frame.
In the invention, the GmNFYB1 gene fragment containing BglII and BstEII enzyme cutting sites is preferably obtained by amplifying a primer pair shown in SEQ ID NO. 11 and SEQ ID NO. 12, and the nucleotide sequence of the obtained fragment is shown in SEQ ID NO. 13. The amplification system is preferably 10 XBuffer 3. Mu. L, dNTP 3. Mu. L, mgCl as follows 2 3. Mu.L of each of the upstream and downstream primers, 0.5. Mu.L of KOD Plus Neo, 1. Mu.L of the template and the balance ddH 2 O. The procedure for amplification is preferably as follows: pre-denaturation at 95℃for 3min; denaturation at 95℃for 30s, annealing at 58℃for 30s, elongation at 68℃for 1min,34 cycles; extending at 72℃for 5min. The reaction system of the double digestion is preferably 10 mu L of PCR recovery product, 10 XBuffer 2 mu L, bglII 1 mu L, bstEII 1 mu L and the rest ddH 2 O. The reaction conditions for the double cleavage are preferably 37℃overnight. The said connectionThe grafting is preferably performed with T4 ligase. The conditions for the ligation are preferably 16℃for 4 hours. After the ligation, verification of the recombinant vector is preferably performed. The method of the present invention is not particularly limited, and the method of the present invention may be performed by any method known in the art, such as culturing in transformed E.coli, extracting plasmids, and performing colony PCR amplification or sequencing. The source of the commercial vector pCAMBIA3301 is not particularly limited in the present invention, and the commercial vector pCAMBIA3301 known in the art may be used. The commercial vector pCAMBIA3301 in the examples of the present invention was purchased from Cambia corporation.
In the invention, the insect-resistant gene cry1C containing BamHI and SacI double enzyme cutting sites is preferably obtained by amplifying a primer pair shown as SEQ ID NO. 14 and SEQ ID NO. 15, and the nucleotide sequence of the obtained fragment is shown as SEQ ID NO. 16. The amplification system is preferably 10 XBuffer 3. Mu. L, dNTP 3. Mu. L, mgCl as follows 2 3. Mu.L of each of the upstream and downstream primers, 0.5. Mu.L of KOD Plus Neo, 1. Mu.L of the template and the balance of ddH 2 O. The procedure for amplification is preferably as follows: pre-denaturation at 95℃for 3min; denaturation at 95℃for 30s, annealing at 58℃for 30s, elongation at 68℃for 1min,34 cycles; extending at 72℃for 5min. The double cleavage reaction system is preferably 10. Mu.L, 10 XBuffer 2. Mu.L, bamHI 1. Mu.L, sacI 1. Mu.L and the balance ddH of the PCR recovered product 2 O. The reaction conditions for the double cleavage are preferably 37℃overnight. The ligation is preferably performed with a T4 ligase. The conditions for the ligation are preferably 16℃for 4 hours. After the ligation, verification of the recombinant vector is preferably performed. The method of the present invention is not particularly limited, and the method of the present invention may be performed by any method known in the art, such as culturing in transformed E.coli, extracting plasmids, and performing colony PCR amplification or sequencing. The source of the commercial vector pBI121 is not particularly limited in the present invention, and the commercial vector pBI121 known in the art may be used. The commercial vector pBI121 was purchased from Clontech in the examples of the present invention.
In the invention, the specific primers with KpnI and HindIII cleavage sites at the two ends are shown as SEQ ID NO. 17 and SEQ ID NO. 18. When the fragment of the insect-resistant gene expression cassette obtained by amplification is connected with the p3301-NF carrier after the cleavage of KpnI and HindIII, the connection condition is preferably that the connection is carried out at 16 ℃ for 4 hours. After the ligation, verification of the recombinant vector is preferably performed. The method of the present invention is not particularly limited, and the method of the present invention may be performed by any method known in the art, such as culturing in transformed E.coli, extracting plasmids, and performing colony PCR amplification or sequencing.
In the invention, the g2m-epsps fragment containing the XhoI enzyme cutting site synthesized by the sequence and the p3301-NF-cry1C vector are connected after being cut by the XhoI enzyme, so as to form the plant recombinant expression vector pGR containing the herbicide-resistant gene expression frame. The present invention is not particularly limited to sequence synthesis of g2m-epsps fragments containing XhoI cleavage sites, and may employ sequence synthesis techniques well known in the art. In the examples of the present invention, the g2m-epsps fragment containing the XhoI cleavage site was synthesized by Songhong Biotech Co., ltd.
The invention provides application of the plant recombinant expression vector pGR or the plant recombinant expression vector pGR obtained by the construction method in cultivation of transgenic plants.
In the present invention, the transgenic plant is preferably a transgenic plant with herbicide-resistant, insect-resistant and stress-tolerant complex traits.
The invention provides a cultivation method of herbicide-resistant, insect-resistant and stress-resistant transgenic plants, which comprises the following steps: the plant recombinant expression vector pGR20 is introduced into a receptor plant to obtain a transgenic plant.
In the present invention, the transgenic plants preferably include screening. The screening includes PCR detection of the target gene. The primer for PCR detection of the target gene comprises g2m-F/g2m-R, cry1C-F/cry1C-R, NFYB1-F/NFYB1-R. The PCR reaction conditions: denaturation at 94℃for 3min, denaturation at 94℃for 30s, annealing at 61-63℃for 30s, elongation at 72℃for 30s,35 cycles, and elongation at 72℃for 8min after the cycle.
In the invention, the transgenic plants obtained by screening are subjected to character screening, and herbicide resistance identification results show that the transgenic soybeans are not inhibited in growth, the leaves are not fading, shrink and have no glyphosate phytotoxicity reactions such as new leaf yellowing, and the transgenic soybeans show high resistance to glyphosate; the insect resistance identification result shows that the damage of the receptor contrast leaf is serious and is expressed as insect sensing; the transgenic soybean leaves remain intact and show high resistance to prodenia litura; the stress tolerance identification result shows that the drought resistance of the transgenic soybean in the seedling stage is obviously higher than that of a receptor.
The following describes a plant recombinant expression vector, its construction method and application in detail with reference to examples, but they should not be construed as limiting the scope of the invention.
Example 1
Construction method of plant expression vector pGR20
(1) The GmNFYB1 (Glyma.10G192000.1) gene was amplified by PCR from the cDNA of the soybean variety Williams 82 using gene specific primers with BglII and BstEII cleavage sites. The amplified GmNFYB1 gene fragment and a commercial vector pCAMBIA3301 are respectively connected after BglII and BstEII double enzyme digestion, a p3301-NF vector is constructed, a stress-tolerant gene expression frame containing CaMV35S-GmNFYB1-NOS elements is formed, and the nucleotide sequence is shown in SEQ ID NO:3.
(2) The insect-resistant gene cry1C and a commercial vector pBI121 are respectively digested with BamHI and SacI and then connected to construct a pBI121-crylC vector, so as to form an insect-resistant gene expression frame containing CaMV 35S-cry1C-NOS components, and the nucleotide sequence is shown in SEQ ID NO:2.
(3) From the constructed pBI121-crylC vector, a fragment of an insect-resistant gene expression frame with the size of 3.5kb and containing CaMV 35S-cry1C-NOS components is amplified by utilizing a specific primer with KpnI and HindIII cleavage sites at two ends, and is connected with a p3301-NF vector which is cleaved by KpnI and HindIII, so as to construct a p3301-NF-cry1C plant expression vector.
(4) The g2m-epsps fragment containing XhoI cleavage site synthesized by the sequence and the p3301-NF-cry1C vector are connected after being digested by XhoI to form a herbicide-resistant gene expression frame containing CaMV 35S-cry1C-PolyA element, and the nucleotide sequence is shown in SEQ ID NO:1. finally obtaining pGR plant expression vector, wherein the schematic diagram of the vector is shown in figure 1, the nucleotide sequence is shown in SEQ ID NO:4.
example 2
Application of plant expression vector in cultivation of transgenic plants
1. pGR20 vector transformed soybean
Adopts an agrobacterium-mediated soybean cotyledonary node transformation method, and the agrobacterium strain is Ag10. The soybean cotyledonary node is sterilized, then the callus is induced, and is co-cultured with agrobacterium to infect the callus, and the transformed callus is selected, and then plant regeneration is performed on selective culture.
Obtaining of sterile explants: explants are prepared by selecting normal sprouting pollution-free seedlings. Cutting soybean along hypocotyl with a surgical knife in an ultra clean workbench, reserving 3-4mm hypocotyl, placing in a sterile culture dish, adding appropriate amount of co-culture solution to facilitate peeling seed coat, cutting the hypocotyl vertically along cotyledon hypocotyl, removing clean true leaf tissue, making 5-7 cuts axially at the joint of cotyledon and cotyledon hypocotyl, and making cuts about 3-4mm long. Each explant consists of a cotyledon connected with a hypocotyl, and two explants can be formed by one seed.
Preparation of agrobacterium: the agrobacterium strain preserved at low temperature is taken out from the ultra-low temperature refrigerator and frozen and thawed on ice, a small amount of strain is dipped by an inoculating loop or a sterile gun head to be inoculated on an LB plate, and the LB solid culture medium contains 50mg/L of corresponding antibiotics. The cells were cultured upside down at 28℃for 1-2d to obtain a monoclonal antibody. After 2d, the monoclonal was picked up and inoculated in 5ml of YEP medium (containing the corresponding antibiotic) and grown at 220rpm at 28℃overnight (about 12 h). When the bacterial liquid is activated to a saturated state for the first time, 1ml of bacterial liquid is extracted from the bacterial liquid, inoculated into a triangular shaking flask containing 100ml of YEP (containing corresponding antibiotics) and activated for the second time under the conditions of 28 ℃ and 220 rpm. After the agrobacterium is fully activated to OD 600 When about 1.0, the bacterial solution was centrifuged at 4000rpm at 4℃for 10min, the supernatant was discarded to collect the pellet, and the pellet was suspended in an equal volume of co-culture solution at the bottom of the tube, at which time the OD 600 About 0.5 to about 0.8 for standby.
Co-culturing the explant and agrobacterium: when the explant is prepared, every 40-60 pieces of the explant are placed in a 100ml triangular flask, about 50ml of re-suspended agrobacterium liquid is added into each flask, and the bacterial liquid needs to be over the explant. Co-infects under dark or dim light for 30-35min, shake the flask once every 5min to allow sufficient contact of Agrobacterium with the explant. After infection is completed, the excess agrobacterium liquid is carefully poured out, a layer of sterile filter paper is paved on a co-culture medium, the impregnated explant is paved on the filter paper downwards towards one side of the axis, and co-culture is carried out for 3d under the condition of darkness or low light at 24 ℃.
Resistance screening and regeneration: after co-culturing for 3d, the explant is subjected to the stages of resistance cluster bud induction, elongation bud induction, rooting and the like to obtain a regenerated plant; and respectively adding a proper resistance screening agent in the clustered bud induction and elongation stage, and adding a proper concentration of agrobacterium bacteriostat and IBA (IBA) to induce rooting according to the practical requirement in an experiment in the rooting stage, wherein the clustered bud induction and elongation bud induction stage is carried out once every two weeks for the explant, and a new incision is prepared on the back of the explant during the subculture so that the explant can absorb nutrients better. The elongated buds are elongated to 4-6cm and can induce rooting, and after rooting, the sealing film opening on the culture dish is uncovered for hardening seedlings for 1-3 days; transplanting the plants to a pot plant or a field for growth to obtain transgenic plants.
2. PCR detection of transgenic soybean
Extraction of genomic DNA: taking 0.1g of homogenized sample into a 1.5ml centrifuge tube, adding 500 μl of CTAB extract, and incubating at 65deg.C for 30min; adding equal volume of phenol-chloroform-isoamyl alcohol (25:24:1, V/V), uniformly mixing, centrifuging for 10min at 13000r/min, taking supernatant, and repeating the above steps for 1-2 times; adding twice volume of CTAB precipitation solution into the supernatant, and incubating for 30min at room temperature; after centrifugation, the precipitate was dissolved with 350. Mu.l NaCl (1.2 mol/L), chloroform was added, and mixed well; transferring the supernatant to a new centrifuge tube after centrifugation; adding 0.6 times volume of isopropanol and 1/10 times volume of 3mol/L NH 4 Ac (pH 6.8), fully and uniformly mixing, and standing at low temperature for 15min; washing the precipitate with 70% ethanol after centrifugation, and drying at room temperature; dissolving DNA in 50. Mu.l TE buffer, adding 1. Mu.l RNaseA (10 mg/ml), incubating at 37℃for 15min, and preserving at-20 ℃; the DNA concentration was measured by Spectrophotometer ND-1000 and the amount to be applied was 1.5. Mu.l each time. Agarose electrophoresis to detect DNA concentration: preparing 0.8% agarose electrophoresis liquid, and adding proper EB. Electrophoresis conditions u=120v, i=140 mA.
Transgenic strain PCR detection: the target genes of the transgenic soybean lines were detected using specific primers (table 1). PCR reaction conditions: denaturation at 94℃for 3min, denaturation at 94℃for 30s, annealing at 61-63℃for 30s, elongation at 72℃for 30s,35 cycles, and elongation at 72℃for 8min after the cycle. The PCR amplification product was taken in 10. Mu.l, and subjected to electrophoresis detection (containing ethidium bromide) by 1.5% agarose gel, electrophoresis at 5V/cm for 40min, and observation under an ultraviolet lamp was performed.
TABLE 1 list of transgenic detection primers
And extracting genome DNA of the transgenic soybean plant as a template, and carrying out PCR detection on g2m-epsps, cry1C and GmNFYB1 target genes. The detection results are shown in FIG. 2. The results indicate that the presence of the gene of interest can be detected in the transgenic material, indicating that the exogenous gene has been stably integrated into the soybean genome.
Example 3
Transgenic plant herbicide resistance, insect resistance and stress tolerance function detection
To identify the resistance of transgenic plants, herbicide, pest and drought resistance assays were performed on transgenic plants that were positive for PCR detection.
1. Herbicide resistance identification
The transgenic soybeans and the receptor seeds thereof with positive PCR detection are sown in a pot, and after the seedlings grow to 2 leaves, the glyphosate herbicide is sprayed in the period of complete unfolding, the application amount of the glyphosate herbicide is 2 times of the dosage in pesticide registration (1800 g/hectare of active ingredient), and the seedlings are investigated after 2 weeks of pesticide application. The results show that the receptor varieties are not resistant under the spraying dosage, and the plants die after 2 weeks; the transgenic soybeans are not inhibited in growth, leaves are not faded, shrink and have no glyphosate phytotoxicity reaction such as new leaf yellowing, and the transgenic soybeans show that the transgenic soybeans show high resistance to glyphosate (figure 3).
2. Insect resistance identification
The method comprises the steps of collecting the unfolding leaves with consistent health and fresh tenderness on transgenic soybean and receptor plants, punching the leaves into 2.5cm wafers by a puncher, selecting 6 leaves, placing the wafers into a culture dish paved with sponge, moisturizing the wafers by 13mL of sterile water, inoculating 2-year-old prodenia litura larvae according to the proportion of 2 heads/dish, and carrying out result investigation analysis after 7 days. The result shows that the damage of the receptor control leaves is serious and is expressed as pest sensing; while the transgenic soybean leaves remained intact and exhibited high resistance to prodenia litura (figure 4).
3. Stress tolerance identification
The transgenic soybeans and the recipients are sown in a greenhouse in a potting mode, so that the soil content in each pot is consistent, and 10 seeds of each material are obtained. Thinning after emergence of seedlings, and ensuring that the number of seedlings in each pot is the same. Stopping watering when the plants grow to two three-leaf compound period, and starting natural drought treatment. The results indicate that the drought resistance of transgenic soybean in seedling stage is significantly higher than that of the receptor (figure 5).
The foregoing is merely a preferred embodiment of the present invention and it should be noted that modifications and adaptations to those skilled in the art may be made without departing from the principles of the present invention, which are intended to be comprehended within the scope of the present invention.
Sequence listing
<110> institute of crop science at national academy of agricultural sciences
<120> a plant recombinant expression vector, construction method and application thereof
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2610
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
gaattcgtaa tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc 60
acacaacata cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta 120
actcacatta attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca 180
gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg gctagagcag 240
cttgccaaca tggtggagca cgacactctc gtctactcca agaatatcaa agatacagtc 300
tcagaagacc aaagggctat tgagactttt caacaaaggg taatatcggg aaacctcctc 360
ggattccatt gcccagctat ctgtcacttc atcaaaagga cagtagaaaa ggaaggtggc 420
acctacaaat gccatcattg cgataaagga aaggctatcg ttcaagatgc ctctgccgac 480
agtggtccca aagatggacc cccacccacg aggagcatcg tggaaaaaga agacgttcca 540
accacgtctt caaagcaagt ggattgatgt gataacatgg tggagcacga cactctcgtc 600
tactccaaga atatcaaaga tacagtctca gaagaccaaa gggctattga gacttttcaa 660
caaagggtaa tatcgggaaa cctcctcgga ttccattgcc cagctatctg tcacttcatc 720
aaaaggacag tagaaaagga aggtggcacc tacaaatgcc atcattgcga taaaggaaag 780
gctatcgttc aagatgcctc tgccgacagt ggtcccaaag atggaccccc acccacgagg 840
agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat 900
atctccactg acgtaaggga tgacgcacaa tcccactatc cttcgcaaga ccttcctcta 960
tataaggaag ttcatttcat ttggagagga cacgctgaaa tcaccagtct ctctctacaa 1020
atctatctct atggcgcaag ttagcagaat ctgcaatggt gtgcagaacc catctcttat 1080
ctccaatctc tcgaaatcca gtcaacgcaa atctccctta tcggtttctc tgaagacgca 1140
gcagcatcca cgagcttatc cgatttcgtc gtcgtgggga ttgaagaaga gtgggatgac 1200
gttaattggc tctgagcttc gtcctcttaa ggtcatgtct tctgtttcca cggcatgcat 1260
ggcttgcctc ccagatgatt cggggcctca cgttgggcat agcacgccgc ctcgcctcga 1320
ccaggagcct tgcactctca gcagccagaa gaccgtgacg gtcacaccgc ccaacttccc 1380
actgacgggc aaggtggctc cacctgggtc gaagtctatc acaaataggg ctctcctgct 1440
cgctgctctc gctaagggca cttcaaggct gtccggggct ctcaagtctg acgatacccg 1500
gcacatgtca gtcgccctgc gccagatggg cgttaccatc gacgagcccg acgataccac 1560
gttcgtggtc acaagccagg gctcgctgca gctcccagct cagcctctgt tcctcggcaa 1620
cgctgggact gcgatgaggt tcctgaccgc tgctgtcgct actgttcagg gcaccgttgt 1680
gctcgacggg gatgagtaca tgcagaagag gcccatcggc ccactgctcg ctacgctcgg 1740
ccagaatggg attcaggtcg actccccaac gggctgccca ccagttacag tgcacggcat 1800
ggggaaggtg caggcgaagc gcttcgagat cgacggcggg ctgtccagcc agtacgtcag 1860
cgctctgctc atgctcgctg cttgcggcga ggctcctatc gaggtggctc tgacagggaa 1920
ggacattggc gctaggggct acgtcgacct gaccctcgat tgcatgaggg ctttcggcgc 1980
tcaggtggat gctgtcgacg atacaacttg gagggtggct ccaactggct acaccgctca 2040
tgactacctc atcgagcctg atgcttccgc tgctacttac ctgtgggctg ctgaggttct 2100
caccggcggg aggatcgaca ttggcgtggc tgctcaggac ttcacccagc cagatgctaa 2160
ggcccaggcg gtcatcgcgc agttccccaa catgcaggct actgtcgttg gctcccagat 2220
gcaggacgct attccaacgc tggccgtgct cgccgcgttc aacaatacgc ctgtccgctt 2280
cacagagctg gcgaacctcc gcgttaagga gtgcgacagg gtgcaggccc tgcatgatgg 2340
cctcaatgag atcaggccag gcctggctac gattgagggg gacgatctgc tcgtggcttc 2400
ggacccagct ctggctggca cggcgtgcac agctctcatc gacacccacg cggatcatcg 2460
gattgctatg tgcttcgcgc tggctggcct caaagtcagc gggatccgca ttcaggaccc 2520
ggattgcgtt gccaagactt accctgatta ctggaaggct ctggcgtccc tgggcgttca 2580
cctcaatgat tagcgatcga caagctcgag 2610
<210> 2
<211> 3075
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
gagctcggta ccagattagc cttttcaatt tcagaaagaa tgctaaccca cagatggtta 60
gagaggctta cgcagcaggt ctcatcaaga cgatctaccc gagcaataat ctccaggaaa 120
tcaaatacct tcccaagaag gttaaagatg cagtcaaaag attcaggact aactgcatca 180
agaacacaga gaaagatata tttctcaaga tcagaagtac tattccagta tggacgattc 240
aaggcttgct tcacaaacca aggcaagtaa tagagattgg agtctctaaa aaggtagttc 300
ccactgaatc aaaggccatg gagtcaaaga ttcaaataga ggacctaaca gaactcgccg 360
taaagactgg cgaacagttc atacagagtc tcttacgact caatgacaag aagaaaatct 420
tcgtcaacat ggtggagcac gacacacttg tctactccaa aaatatcaaa gatacagtct 480
cagaagacca aagggcaatt gagacttttc aacaaagggt aatatccgga aacctcctcg 540
gattccattg cccagctatc tgtcacttta ttgtgaagat agtggaaaag gaaggtggct 600
cctacaaatg ccatcattgc gataaaggaa aggccatcgt tgaagatgcc tctgccgaca 660
gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa gacgttccaa 720
ccacgtcttc aaagcaagtg gattgatgtg atatctccac tgacgtaagg gatgacgcac 780
aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt catttggaga 840
gaacacgggg gactctagag gatccaccat ggaggagaac aatcagaacc agtgtatccc 900
ttacaattgt ctttctaatc ctgaagaagt tcttttggat ggagaaagga tctcaactgg 960
taactcatca attgacatct ctctctcact tgttcagttc ttggtttcta actttgtgcc 1020
aggaggagga ttccttgttg gacttatcga cttcgtttgg ggaatcgttg gaccttctca 1080
atgggatgca tttctcgttc agatcgaaca gctcatcaac gaaagaatcg ctgagttcgc 1140
taggaatgct gctattgcta accttgaagg acttggaaac aacttcaaca tctacgtgga 1200
ggcattcaag gaatgggaag aagatcctaa caacccagca accaggacca gagtgatcga 1260
taggttccgt atccttgatg gacttcttga aagggacatt cctagcttta ggatctctgg 1320
atttgaagtt ccacttctct ctgtttacgc tcaagctgct aatctccatc ttgctatcct 1380
tagagattct gtgatcttcg gagaaagatg gggattgaca accatcaacg tgaacgagaa 1440
ctacaacaga ctcatcaggc acatcgatga gtacgctgat cactgtgcta acacttacaa 1500
ccgtggactc aacaaccttc ctaagtctac ctatcaagat tggatcacat acaaccgact 1560
taggagagac cttacattga ctgttcttga tatcgctgct ttctttccaa actatgacaa 1620
taggagatat ccaattcagc cagttggtca acttacaagg gaagtttaca ctgacccact 1680
catcaacttc aacccacagc ttcagtctgt tgctcagctt cctaccttca acgttatgga 1740
gagcagcgca atcagaaatc ctcacctctt cgacatcttg aacaacctta caatctttac 1800
cgattggttt agtgttggac gtaacttcta ctggggagga catcgagtga tctctagcct 1860
catcggaggt ggtaacatca catctcctat ctacggaaga gaggctaacc aggagcctcc 1920
aagatcattc actttcaacg gacctgtgtt caggactctt tcaaatccta ctcttcgact 1980
tcttcagcaa ccttggccag ctccaccatt caaccttcgt ggtgttgaag gagttgagtt 2040
ctctacacct acaaacagct tcacctatcg tggaagaggt actgttgatt ctcttactga 2100
acttccacct gaggaaacag tgtgccacct cgtgaaggat acagtcatcg tctttgtcat 2160
gcaaccttcg ttcaaagatc tggaacacct ttccttacaa ctggtgttgt gttctcttgg 2220
actcatcgta gtgcaactct taccaacaca attgatccag agaggatcaa ccagatccct 2280
cttgtgaaag gattcagagt ttggggagga acctctgtga ttacaggacc aggattcaca 2340
ggaggtgata tccttcgaag aaacaccttt ggtgacttcg tttctcttca agtgaacatc 2400
aactcaccaa tcacccaaag ataccgtctt agatttcgtt acgcttctag tagggatgca 2460
cgagttatcg ttcttacagg agctgcatct acaggagtgg gaggtcaagt tagtgtgaac 2520
atgcctcttc agaaaactat ggagatcgga gagaacctca catctagaac attcagatac 2580
accgacttca gtaatccttt ctcattcaga gctaatccag acatcatcgg tatcagtgaa 2640
caacctctct tcggtgcagg ttctatcagt agcggtgaac tttacatcga caagatcgag 2700
atcatccttg cagatgcaac atttgaagca gaatctgacc ttgaaagagc acaaaagtag 2760
tgaccaacgt atttatatca gaaaatagat gagtcgaaat taaaagctta tacccgttaa 2820
tgagatcgtt caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt 2880
gcgatgatta tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa 2940
tgcatgacgt tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa 3000
tacgcgatag aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca 3060
tctatgttac tagat 3075
<210> 3
<211> 1319
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
ccctaggcat ggagtcaaag attcaaatag aggacctaac agaactcgcc gtaaagactg 60
gcgaacagtt catacagagt ctcttacgac tcaatgacaa gaagaaaatc ttcgtcaaca 120
tggtggagca cgacacactt gtctactcca aaaatatcaa agatacagtc tcagaagacc 180
aaagggcaat tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt 240
gcccagctat ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat 300
gccatcattg cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca 360
aagatggacc cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt 420
caaagcaagt ggattgatgt gatatctcca ctgacgtaag ggatgacgca caatcccact 480
atccttcgca agacccttcc tctatataag gaagttcatt tcatttggag agaacacggg 540
ggactatgtc ggatgcaccg gcgagtccga gtcacgagag tggtggcgag cagagccctc 600
gcggctcgtt gtccggcgcg gctagagagc aggaccggta ccttcccatt gccaacatca 660
gccgcatcat gaagaaggct ctgcctccca atggcaagat tgcgaaggat gcaaaagaca 720
caatgcaaga atgcgtttct gaattcatca gcttcattac cagcgaggcg agtgagaaat 780
gccagaagga gaagagaaag acaatcaatg gagacgattt actatgggcc atggcaactt 840
tagggtttga agactacatt gagccgctta aggtgtacct ggctaggtac agagaggcgg 900
agggtgacac taaaggatct gctagaagtg gtgatggatc tgctagacca gatcaagttg 960
gccttgcagg tcaaaatgct cagcttgttc atcagggttc gctgaactat attggtttgc 1020
aggtgcaacc acaacatctg gttatgcctt caatgcaagg ccatgaatag cgttcaaaca 1080
tttggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg attatcatat 1140
aatttctgtt gaattacgtt aagcatgtaa taattaacat gtaatgcatg acgttattta 1200
tgagatgggt ttttatgatt agagtcccgc aattatacat ttaatacgcg atagaaaaca 1260
aaatatagcg cgcaaactag gataaattat cgcgcgcggt gtcatctatg ttactagat 1319
<210> 4
<211> 13578
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
catgccaacc acagggttcc cctcgggatc aaagtacttt gatccaaccc ctccgctgct 60
atagtgcagt cggcttctga cgttcagtgc agccgtcttc tgaaaacgac atgtcgcaca 120
agtcctaagt tacgcgacag gctgccgccc tgcccttttc ctggcgtttt cttgtcgcgt 180
gttttagtcg cataaagtag aatacttgcg actagaaccg gagacattac gccatgaaca 240
agagcgccgc cgctggcctg ctgggctatg cccgcgtcag caccgacgac caggacttga 300
ccaaccaacg ggccgaactg cacgcggccg gctgcaccaa gctgttttcc gagaagatca 360
ccggcaccag gcgcgaccgc ccggagctgg ccaggatgct tgaccaccta cgccctggcg 420
acgttgtgac agtgaccagg ctagaccgcc tggcccgcag cacccgcgac ctactggaca 480
ttgccgagcg catccaggag gccggcgcgg gcctgcgtag cctggcagag ccgtgggccg 540
acaccaccac gccggccggc cgcatggtgt tgaccgtgtt cgccggcatt gccgagttcg 600
agcgttccct aatcatcgac cgcacccgga gcgggcgcga ggccgccaag gcccgaggcg 660
tgaagtttgg cccccgccct accctcaccc cggcacagat cgcgcacgcc cgcgagctga 720
tcgaccagga aggccgcacc gtgaaagagg cggctgcact gcttggcgtg catcgctcga 780
ccctgtaccg cgcacttgag cgcagcgagg aagtgacgcc caccgaggcc aggcggcgcg 840
gtgccttccg tgaggacgca ttgaccgagg ccgacgccct ggcggccgcc gagaatgaac 900
gccaagagga acaagcatga aaccgcacca ggacggccag gacgaaccgt ttttcattac 960
cgaagagatc gaggcggaga tgatcgcggc cgggtacgtg ttcgagccgc ccgcgcacgt 1020
ctcaaccgtg cggctgcatg aaatcctggc cggtttgtct gatgccaagc tggcggcctg 1080
gccggccagc ttggccgctg aagaaaccga gcgccgccgt ctaaaaaggt gatgtgtatt 1140
tgagtaaaac agcttgcgtc atgcggtcgc tgcgtatatg atgcgatgag taaataaaca 1200
aatacgcaag gggaacgcat gaaggttatc gctgtactta accagaaagg cgggtcaggc 1260
aagacgacca tcgcaaccca tctagcccgc gccctgcaac tcgccggggc cgatgttctg 1320
ttagtcgatt ccgatcccca gggcagtgcc cgcgattggg cggccgtgcg ggaagatcaa 1380
ccgctaaccg ttgtcggcat cgaccgcccg acgattgacc gcgacgtgaa ggccatcggc 1440
cggcgcgact tcgtagtgat cgacggagcg ccccaggcgg cggacttggc tgtgtccgcg 1500
atcaaggcag ccgacttcgt gctgattccg gtgcagccaa gcccttacga catatgggcc 1560
accgccgacc tggtggagct ggttaagcag cgcattgagg tcacggatgg aaggctacaa 1620
gcggcctttg tcgtgtcgcg ggcgatcaaa ggcacgcgca tcggcggtga ggttgccgag 1680
gcgctggccg ggtacgagct gcccattctt gagtcccgta tcacgcagcg cgtgagctac 1740
ccaggcactg ccgccgccgg cacaaccgtt cttgaatcag aacccgaggg cgacgctgcc 1800
cgcgaggtcc aggcgctggc cgctgaaatt aaatcaaaac tcatttgagt taatgaggta 1860
aagagaaaat gagcaaaagc acaaacacgc taagtgccgg ccgtccgagc gcacgcagca 1920
gcaaggctgc aacgttggcc agcctggcag acacgccagc catgaagcgg gtcaactttc 1980
agttgccggc ggaggatcac accaagctga agatgtacgc ggtacgccaa ggcaagacca 2040
ttaccgagct gctatctgaa tacatcgcgc agctaccaga gtaaatgagc aaatgaataa 2100
atgagtagat gaattttagc ggctaaagga ggcggcatgg aaaatcaaga acaaccaggc 2160
accgacgccg tggaatgccc catgtgtgga ggaacgggcg gttggccagg cgtaagcggc 2220
tgggttgtct gccggccctg caatggcact ggaaccccca agcccgagga atcggcgtga 2280
cggtcgcaaa ccatccggcc cggtacaaat cggcgcggcg ctgggtgatg acctggtgga 2340
gaagttgaag gccgcgcagg ccgcccagcg gcaacgcatc gaggcagaag cacgccccgg 2400
tgaatcgtgg caagcggccg ctgatcgaat ccgcaaagaa tcccggcaac cgccggcagc 2460
cggtgcgccg tcgattagga agccgcccaa gggcgacgag caaccagatt ttttcgttcc 2520
gatgctctat gacgtgggca cccgcgatag tcgcagcatc atggacgtgg ccgttttccg 2580
tctgtcgaag cgtgaccgac gagctggcga ggtgatccgc tacgagcttc cagacgggca 2640
cgtagaggtt tccgcagggc cggccggcat ggccagtgtg tgggattacg acctggtact 2700
gatggcggtt tcccatctaa ccgaatccat gaaccgatac cgggaaggga agggagacaa 2760
gcccggccgc gtgttccgtc cacacgttgc ggacgtactc aagttctgcc ggcgagccga 2820
tggcggaaag cagaaagacg acctggtaga aacctgcatt cggttaaaca ccacgcacgt 2880
tgccatgcag cgtacgaaga aggccaagaa cggccgcctg gtgacggtat ccgagggtga 2940
agccttgatt agccgctaca agatcgtaaa gagcgaaacc gggcggccgg agtacatcga 3000
gatcgagcta gctgattgga tgtaccgcga gatcacagaa ggcaagaacc cggacgtgct 3060
gacggttcac cccgattact ttttgatcga tcccggcatc ggccgttttc tctaccgcct 3120
ggcacgccgc gccgcaggca aggcagaagc cagatggttg ttcaagacga tctacgaacg 3180
cagtggcagc gccggagagt tcaagaagtt ctgtttcacc gtgcgcaagc tgatcgggtc 3240
aaatgacctg ccggagtacg atttgaagga ggaggcgggg caggctggcc cgatcctagt 3300
catgcgctac cgcaacctga tcgagggcga agcatccgcc ggttcctaat gtacggagca 3360
gatgctaggg caaattgccc tagcagggga aaaaggtcga aaaggtctct ttcctgtgga 3420
tagcacgtac attgggaacc caaagccgta cattgggaac cggaacccgt acattgggaa 3480
cccaaagccg tacattggga accggtcaca catgtaagtg actgatataa aagagaaaaa 3540
aggcgatttt tccgcctaaa actctttaaa acttattaaa actcttaaaa cccgcctggc 3600
ctgtgcataa ctgtctggcc agcgcacagc cgaagagctg caaaaagcgc ctacccttcg 3660
gtcgctgcgc tccctacgcc ccgccgcttc gcgtcggcct atcgcggccg ctggccgctc 3720
aaaaatggct ggcctacggc caggcaatct accagggcgc ggacaagccg cgccgtcgcc 3780
actcgaccgc cggcgcccac atcaaggcac cctgcctcgc gcgtttcggt gatgacggtg 3840
aaaacctctg acacatgcag ctcccggaga cggtcacagc ttgtctgtaa gcggatgccg 3900
ggagcagaca agcccgtcag ggcgcgtcag cgggtgttgg cgggtgtcgg ggcgcagcca 3960
tgacccagtc acgtagcgat agcggagtgt atactggctt aactatgcgg catcagagca 4020
gattgtactg agagtgcacc atatgcggtg tgaaataccg cacagatgcg taaggagaaa 4080
ataccgcatc aggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg 4140
gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg 4200
ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa 4260
ggccgcgttg ctggcgtttt tccataggct ccgcccccct gacgagcatc acaaaaatcg 4320
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc 4380
tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc 4440
ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc 4500
ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg 4560
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc 4620
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 4680
gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gtatctgcgc 4740
tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac 4800
caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg 4860
atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc 4920
acgttaaggg attttggtca tgcattctag gtactaaaac aattcatcca gtaaaatata 4980
atattttatt ttctcccaat caggcttgat ccccagtaag tcaaaaaata gctcgacata 5040
ctgttcttcc ccgatatcct ccctgatcga ccggacgcag aaggcaatgt cataccactt 5100
gtccgccctg ccgcttctcc caagatcaat aaagccactt actttgccat ctttcacaaa 5160
gatgttgctg tctcccaggt cgccgtggga aaagacaagt tcctcttcgg gcttttccgt 5220
ctttaaaaaa tcatacagct cgcgcggatc tttaaatgga gtgtcttctt cccagttttc 5280
gcaatccaca tcggccagat cgttattcag taagtaatcc aattcggcta agcggctgtc 5340
taagctattc gtatagggac aatccgatat gtcgatggag tgaaagagcc tgatgcactc 5400
cgcatacagc tcgataatct tttcagggct ttgttcatct tcatactctt ccgagcaaag 5460
gacgccatcg gcctcactca tgagcagatt gctccagcca tcatgccgtt caaagtgcag 5520
gacctttgga acaggcagct ttccttccag ccatagcatc atgtcctttt cccgttccac 5580
atcataggtg gtccctttat accggctgtc cgtcattttt aaatataggt tttcattttc 5640
tcccaccagc ttatatacct tagcaggaga cattccttcc gtatctttta cgcagcggta 5700
tttttcgatc agttttttca attccggtga tattctcatt ttagccattt attatttcct 5760
tcctcttttc tacagtattt aaagataccc caagaagcta attataacaa gacgaactcc 5820
aattcactgt tccttgcatt ctaaaacctt aaataccaga aaacagcttt ttcaaagttg 5880
ttttcaaagt tggcgtataa catagtatcg acggagccga ttttgaaacc gcggtgatca 5940
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt 6000
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag 6060
tctgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat 6120
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga 6180
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt 6240
taatgtactg aattaacgcc gaattaattc gggggatctg gattttagta ctggattttg 6300
gttttaggaa ttagaaattt tattgataga agtattttac aaatacaaat acatactaag 6360
ggtttcttat atgctcaaca catgagcgaa accctatagg aaccctaatt cccttatctg 6420
ggaactactc acacattatt atggagaaac tcgagcttgt cgatcgctaa tcattgaggt 6480
gaacgcccag ggacgccaga gccttccagt aatcagggta agtcttggca acgcaatccg 6540
ggtcctgaat gcggatcccg ctgactttga ggccagccag cgcgaagcac atagcaatcc 6600
gatgatccgc gtgggtgtcg atgagagctg tgcacgccgt gccagccaga gctgggtccg 6660
aagccacgag cagatcgtcc ccctcaatcg tagccaggcc tggcctgatc tcattgaggc 6720
catcatgcag ggcctgcacc ctgtcgcact ccttaacgcg gaggttcgcc agctctgtga 6780
agcggacagg cgtattgttg aacgcggcga gcacggccag cgttggaata gcgtcctgca 6840
tctgggagcc aacgacagta gcctgcatgt tggggaactg cgcgatgacc gcctgggcct 6900
tagcatctgg ctgggtgaag tcctgagcag ccacgccaat gtcgatcctc ccgccggtga 6960
gaacctcagc agcccacagg taagtagcag cggaagcatc aggctcgatg aggtagtcat 7020
gagcggtgta gccagttgga gccaccctcc aagttgtatc gtcgacagca tccacctgag 7080
cgccgaaagc cctcatgcaa tcgagggtca ggtcgacgta gcccctagcg ccaatgtcct 7140
tccctgtcag agccacctcg ataggagcct cgccgcaagc agcgagcatg agcagagcgc 7200
tgacgtactg gctggacagc ccgccgtcga tctcgaagcg cttcgcctgc accttcccca 7260
tgccgtgcac tgtaactggt gggcagcccg ttggggagtc gacctgaatc ccattctggc 7320
cgagcgtagc gagcagtggg ccgatgggcc tcttctgcat gtactcatcc ccgtcgagca 7380
caacggtgcc ctgaacagta gcgacagcag cggtcaggaa cctcatcgca gtcccagcgt 7440
tgccgaggaa cagaggctga gctgggagct gcagcgagcc ctggcttgtg accacgaacg 7500
tggtatcgtc gggctcgtcg atggtaacgc ccatctggcg cagggcgact gacatgtgcc 7560
gggtatcgtc agacttgaga gccccggaca gccttgaagt gcccttagcg agagcagcga 7620
gcaggagagc cctatttgtg atagacttcg acccaggtgg agccaccttg cccgtcagtg 7680
ggaagttggg cggtgtgacc gtcacggtct tctggctgct gagagtgcaa ggctcctggt 7740
cgaggcgagg cggcgtgcta tgcccaacgt gaggccccga atcatctggg aggcaagcca 7800
tgcatgccgt ggaaacagaa gacatgacct taagaggacg aagctcagag ccaattaacg 7860
tcatcccact cttcttcaat ccccacgacg acgaaatcgg ataagctcgt ggatgctgct 7920
gcgtcttcag agaaaccgat aagggagatt tgcgttgact ggatttcgag agattggaga 7980
taagagatgg gttctgcaca ccattgcaga ttctgctaac ttgcgccata gagatagatt 8040
tgtagagaga gactggtgat ttcagcgtgt cctctccaaa tgaaatgaac ttccttatat 8100
agaggaaggt cttgcgaagg atagtgggat tgtgcgtcat cccttacgtc agtggagata 8160
tcacatcaat ccacttgctt tgaagacgtg gttggaacgt cttctttttc cacgatgctc 8220
ctcgtgggtg ggggtccatc tttgggacca ctgtcggcag aggcatcttg aacgatagcc 8280
tttcctttat cgcaatgatg gcatttgtag gtgccacctt ccttttctac tgtccttttg 8340
atgaagtgac agatagctgg gcaatggaat ccgaggaggt ttcccgatat taccctttgt 8400
tgaaaagtct caatagccct ttggtcttct gagactgtat ctttgatatt cttggagtag 8460
acgagagtgt cgtgctccac catgttatca catcaatcca cttgctttga agacgtggtt 8520
ggaacgtctt ctttttccac gatgctcctc gtgggtgggg gtccatcttt gggaccactg 8580
tcggcagagg catcttgaac gatagccttt cctttatcgc aatgatggca tttgtaggtg 8640
ccaccttcct tttctactgt ccttttgatg aagtgacaga tagctgggca atggaatccg 8700
aggaggtttc ccgatattac cctttgttga aaagtctcaa tagccctttg gtcttctgag 8760
actgtatctt tgatattctt ggagtagacg agagtgtcgt gctccaccat gttggcaagc 8820
tgctctagcc aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct 8880
ggcacgacag gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt 8940
agctcactca ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg 9000
gaattgtgag cggataacaa tttcacacag gaaacagcta tgaccatgat tacgaattcg 9060
agctcggtac cagattagcc ttttcaattt cagaaagaat gctaacccac agatggttag 9120
agaggcttac gcagcaggtc tcatcaagac gatctacccg agcaataatc tccaggaaat 9180
caaatacctt cccaagaagg ttaaagatgc agtcaaaaga ttcaggacta actgcatcaa 9240
gaacacagag aaagatatat ttctcaagat cagaagtact attccagtat ggacgattca 9300
aggcttgctt cacaaaccaa ggcaagtaat agagattgga gtctctaaaa aggtagttcc 9360
cactgaatca aaggccatgg agtcaaagat tcaaatagag gacctaacag aactcgccgt 9420
aaagactggc gaacagttca tacagagtct cttacgactc aatgacaaga agaaaatctt 9480
cgtcaacatg gtggagcacg acacacttgt ctactccaaa aatatcaaag atacagtctc 9540
agaagaccaa agggcaattg agacttttca acaaagggta atatccggaa acctcctcgg 9600
attccattgc ccagctatct gtcactttat tgtgaagata gtggaaaagg aaggtggctc 9660
ctacaaatgc catcattgcg ataaaggaaa ggccatcgtt gaagatgcct ctgccgacag 9720
tggtcccaaa gatggacccc cacccacgag gagcatcgtg gaaaaagaag acgttccaac 9780
cacgtcttca aagcaagtgg attgatgtga tatctccact gacgtaaggg atgacgcaca 9840
atcccactat ccttcgcaag acccttcctc tatataagga agttcatttc atttggagag 9900
aacacggggg actctagagg atccaccatg gaggagaaca atcagaacca gtgtatccct 9960
tacaattgtc tttctaatcc tgaagaagtt cttttggatg gagaaaggat ctcaactggt 10020
aactcatcaa ttgacatctc tctctcactt gttcagttct tggtttctaa ctttgtgcca 10080
ggaggaggat tccttgttgg acttatcgac ttcgtttggg gaatcgttgg accttctcaa 10140
tgggatgcat ttctcgttca gatcgaacag ctcatcaacg aaagaatcgc tgagttcgct 10200
aggaatgctg ctattgctaa ccttgaagga cttggaaaca acttcaacat ctacgtggag 10260
gcattcaagg aatgggaaga agatcctaac aacccagcaa ccaggaccag agtgatcgat 10320
aggttccgta tccttgatgg acttcttgaa agggacattc ctagctttag gatctctgga 10380
tttgaagttc cacttctctc tgtttacgct caagctgcta atctccatct tgctatcctt 10440
agagattctg tgatcttcgg agaaagatgg ggattgacaa ccatcaacgt gaacgagaac 10500
tacaacagac tcatcaggca catcgatgag tacgctgatc actgtgctaa cacttacaac 10560
cgtggactca acaaccttcc taagtctacc tatcaagatt ggatcacata caaccgactt 10620
aggagagacc ttacattgac tgttcttgat atcgctgctt tctttccaaa ctatgacaat 10680
aggagatatc caattcagcc agttggtcaa cttacaaggg aagtttacac tgacccactc 10740
atcaacttca acccacagct tcagtctgtt gctcagcttc ctaccttcaa cgttatggag 10800
agcagcgcaa tcagaaatcc tcacctcttc gacatcttga acaaccttac aatctttacc 10860
gattggttta gtgttggacg taacttctac tggggaggac atcgagtgat ctctagcctc 10920
atcggaggtg gtaacatcac atctcctatc tacggaagag aggctaacca ggagcctcca 10980
agatcattca ctttcaacgg acctgtgttc aggactcttt caaatcctac tcttcgactt 11040
cttcagcaac cttggccagc tccaccattc aaccttcgtg gtgttgaagg agttgagttc 11100
tctacaccta caaacagctt cacctatcgt ggaagaggta ctgttgattc tcttactgaa 11160
cttccacctg aggaaacagt gtgccacctc gtgaaggata cagtcatcgt ctttgtcatg 11220
caaccttcgt tcaaagatct ggaacacctt tccttacaac tggtgttgtg ttctcttgga 11280
ctcatcgtag tgcaactctt accaacacaa ttgatccaga gaggatcaac cagatccctc 11340
ttgtgaaagg attcagagtt tggggaggaa cctctgtgat tacaggacca ggattcacag 11400
gaggtgatat ccttcgaaga aacacctttg gtgacttcgt ttctcttcaa gtgaacatca 11460
actcaccaat cacccaaaga taccgtctta gatttcgtta cgcttctagt agggatgcac 11520
gagttatcgt tcttacagga gctgcatcta caggagtggg aggtcaagtt agtgtgaaca 11580
tgcctcttca gaaaactatg gagatcggag agaacctcac atctagaaca ttcagataca 11640
ccgacttcag taatcctttc tcattcagag ctaatccaga catcatcggt atcagtgaac 11700
aacctctctt cggtgcaggt tctatcagta gcggtgaact ttacatcgac aagatcgaga 11760
tcatccttgc agatgcaaca tttgaagcag aatctgacct tgaaagagca caaaagtagt 11820
gaccaacgta tttatatcag aaaatagatg agtcgaaatt aaaagcttat acccgttaat 11880
gagatcgttc aaacatttgg caataaagtt tcttaagatt gaatcctgtt gccggtcttg 11940
cgatgattat catataattt ctgttgaatt acgttaagca tgtaataatt aacatgtaat 12000
gcatgacgtt atttatgaga tgggttttta tgattagagt cccgcaatta tacatttaat 12060
acgcgataga aaacaaaata tagcgcgcaa actaggataa attatcgcgc gcggtgtcat 12120
ctatgttact agatccctag gcatggagtc aaagattcaa atagaggacc taacagaact 12180
cgccgtaaag actggcgaac agttcataca gagtctctta cgactcaatg acaagaagaa 12240
aatcttcgtc aacatggtgg agcacgacac acttgtctac tccaaaaata tcaaagatac 12300
agtctcagaa gaccaaaggg caattgagac ttttcaacaa agggtaatat ccggaaacct 12360
cctcggattc cattgcccag ctatctgtca ctttattgtg aagatagtgg aaaaggaagg 12420
tggctcctac aaatgccatc attgcgataa aggaaaggcc atcgttgaag atgcctctgc 12480
cgacagtggt cccaaagatg gacccccacc cacgaggagc atcgtggaaa aagaagacgt 12540
tccaaccacg tcttcaaagc aagtggattg atgtgatatc tccactgacg taagggatga 12600
cgcacaatcc cactatcctt cgcaagaccc ttcctctata taaggaagtt catttcattt 12660
ggagagaaca cgggggacta tgtcggatgc accggcgagt ccgagtcacg agagtggtgg 12720
cgagcagagc cctcgcggct cgttgtccgg cgcggctaga gagcaggacc ggtaccttcc 12780
cattgccaac atcagccgca tcatgaagaa ggctctgcct cccaatggca agattgcgaa 12840
ggatgcaaaa gacacaatgc aagaatgcgt ttctgaattc atcagcttca ttaccagcga 12900
ggcgagtgag aaatgccaga aggagaagag aaagacaatc aatggagacg atttactatg 12960
ggccatggca actttagggt ttgaagacta cattgagccg cttaaggtgt acctggctag 13020
gtacagagag gcggagggtg acactaaagg atctgctaga agtggtgatg gatctgctag 13080
accagatcaa gttggccttg caggtcaaaa tgctcagctt gttcatcagg gttcgctgaa 13140
ctatattggt ttgcaggtgc aaccacaaca tctggttatg ccttcaatgc aaggccatga 13200
atagcgttca aacatttggc aataaagttt cttaagattg aatcctgttg ccggtcttgc 13260
gatgattatc atataatttc tgttgaatta cgttaagcat gtaataatta acatgtaatg 13320
catgacgtta tttatgagat gggtttttat gattagagtc ccgcaattat acatttaata 13380
cgcgatagaa aacaaaatat agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc 13440
tatgttacta gatcgtttaa actatcagtg tttgacagga tatattggcg ggtaaaccta 13500
agagaaaaga gcgtttatta gaataacgga tatttaaaag ggcgtgaaaa ggtttatccg 13560
ttcgtccatt tgtatgtg 13578
<210> 5
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
cgtaagggat gacgcacaat 20
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
cgaggaacag aggctgagct 20
<210> 7
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
ttctactggg gaggacatcg 20
<210> 8
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
cggtatcttt gggtgattgg 20
<210> 9
<211> 20
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
cgtaagggat gacgcacaat 20
<210> 10
<211> 23
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
caatatagtt cagcgaaccc tga 23
<210> 11
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 11
gaagatctat gtcggatgca ccggcga 27
<210> 12
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
gggttaccct attcatggcc ttgcattga 29
<210> 13
<211> 541
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 13
gaagatctat gtcggatgca ccggcgagtc cgagtcacga gagtggtggc gagcagagcc 60
ctcgcggctc gttgtccggc gcggctagag agcaggaccg gtaccttccc attgccaaca 120
tcagccgcat catgaagaag gctctgcctc ccaatggcaa gattgcgaag gatgcaaaag 180
acacaatgca agaatgcgtt tctgaattca tcagcttcat taccagcgag gcgagtgaga 240
aatgccagaa ggagaagaga aagacaatca atggagacga tttactatgg gccatggcaa 300
ctttagggtt tgaagactac attgagccgc ttaaggtgta cctggctagg tacagagagg 360
cggagggtga cactaaagga tctgctagaa gtggtgatgg atctgctaga ccagatcaag 420
ttggccttgc aggtcaaaat gctcagcttg ttcatcaggg ttcgctgaac tatattggtt 480
tgcaggtgca accacaacat ctggttatgc cttcaatgca aggccatgaa tagggtaacc 540
c 541
<210> 14
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 14
cgggatccat ggaggagaac aatcaga 27
<210> 15
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 15
cgagctccta cttttgtgct ctttcaa 27
<210> 16
<211> 1907
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 16
cgggatccat ggaggagaac aatcagaacc agtgtatccc ttacaattgt ctttctaatc 60
ctgaagaagt tcttttggat ggagaaagga tctcaactgg taactcatca attgacatct 120
ctctctcact tgttcagttc ttggtttcta actttgtgcc aggaggagga ttccttgttg 180
gacttatcga cttcgtttgg ggaatcgttg gaccttctca atgggatgca tttctcgttc 240
agatcgaaca gctcatcaac gaaagaatcg ctgagttcgc taggaatgct gctattgcta 300
accttgaagg acttggaaac aacttcaaca tctacgtgga ggcattcaag gaatgggaag 360
aagatcctaa caacccagca accaggacca gagtgatcga taggttccgt atccttgatg 420
gacttcttga aagggacatt cctagcttta ggatctctgg atttgaagtt ccacttctct 480
ctgtttacgc tcaagctgct aatctccatc ttgctatcct tagagattct gtgatcttcg 540
gagaaagatg gggattgaca accatcaacg tgaacgagaa ctacaacaga ctcatcaggc 600
acatcgatga gtacgctgat cactgtgcta acacttacaa ccgtggactc aacaaccttc 660
ctaagtctac ctatcaagat tggatcacat acaaccgact taggagagac cttacattga 720
ctgttcttga tatcgctgct ttctttccaa actatgacaa taggagatat ccaattcagc 780
cagttggtca acttacaagg gaagtttaca ctgacccact catcaacttc aacccacagc 840
ttcagtctgt tgctcagctt cctaccttca acgttatgga gagcagcgca atcagaaatc 900
ctcacctctt cgacatcttg aacaacctta caatctttac cgattggttt agtgttggac 960
gtaacttcta ctggggagga catcgagtga tctctagcct catcggaggt ggtaacatca 1020
catctcctat ctacggaaga gaggctaacc aggagcctcc aagatcattc actttcaacg 1080
gacctgtgtt caggactctt tcaaatccta ctcttcgact tcttcagcaa ccttggccag 1140
ctccaccatt caaccttcgt ggtgttgaag gagttgagtt ctctacacct acaaacagct 1200
tcacctatcg tggaagaggt actgttgatt ctcttactga acttccacct gaggaaacag 1260
tgtgccacct cgtgaaggat acagtcatcg tctttgtcat gcaaccttcg ttcaaagatc 1320
tggaacacct ttccttacaa ctggtgttgt gttctcttgg actcatcgta gtgcaactct 1380
taccaacaca attgatccag agaggatcaa ccagatccct cttgtgaaag gattcagagt 1440
ttggggagga acctctgtga ttacaggacc aggattcaca ggaggtgata tccttcgaag 1500
aaacaccttt ggtgacttcg tttctcttca agtgaacatc aactcaccaa tcacccaaag 1560
ataccgtctt agatttcgtt acgcttctag tagggatgca cgagttatcg ttcttacagg 1620
agctgcatct acaggagtgg gaggtcaagt tagtgtgaac atgcctcttc agaaaactat 1680
ggagatcgga gagaacctca catctagaac attcagatac accgacttca gtaatccttt 1740
ctcattcaga gctaatccag acatcatcgg tatcagtgaa caacctctct tcggtgcagg 1800
ttctatcagt agcggtgaac tttacatcga caagatcgag atcatccttg cagatgcaac 1860
atttgaagca gaatctgacc ttgaaagagc acaaaagtag gagctcg 1907
<210> 17
<211> 30
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 17
ctcggtacca gattagcctt ttcaatttca 30
<210> 18
<211> 28
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 18
gtataagctt ttaatttcga ctcatcta 28
Claims (7)
1. A plant recombinant expression vector pGR, which is characterized by comprising a herbicide-resistant gene expression frame, an insect-resistant gene expression frame and a stress-resistant gene expression frame;
the herbicide-resistant gene expression frame sequentially comprises a CaMV35S promoter, a glyphosate-resistant gene with an optimized codon and a CaMV PolyA terminator;
the glyphosate-tolerant gene comprisesg2m-epsps;
The nucleotide sequence of the herbicide-resistant gene expression frame is a DNA fragment shown in SEQ ID NO. 1;
the insect-resistant gene expression frame sequentially comprises a CaMV35S promoter, an insect-resistant gene with optimized codons and an NOS terminator; the insect-resistant gene comprisescry1C;
The nucleotide sequence of the insect-resistant gene expression frame is a DNA fragment shown in SEQ ID NO. 2;
the stress-tolerant gene expression frame sequentially comprises a CaMV35S promoter, a soybean stress-tolerant gene and an NOS terminator; the stress-tolerant gene comprisesGmNFYB1;
The nucleotide sequence of the stress-resistant gene expression frame is a DNA fragment shown in SEQ ID NO. 3.
2. The plant recombinant expression vector pGR according to claim 1, wherein the multiple cloning site of the herbicide-resistant gene expression cassette isXhoI;
The multiple cloning site of the insect-resistant gene expression frame isKpnI/HindIII;
The multiple cloning site of the stress-resistant gene expression frame isBglII/BstEII;
The backbone vector of the recombinant expression vector pGR includes pCAMBIA3301.
3. The plant recombinant expression vector pGR according to claim 2, wherein the nucleotide sequence of pGR20 is set forth in SEQ ID No. 4.
4. A method for constructing the plant recombinant expression vector pGR20 according to any one of claims 1 to 3, comprising the steps of:
containingBglII and IIBstEII cleavage siteGmNFYB1The gene fragment and the commercial vector pCAMBIA3301 were used separatelyBglII and IIBstThe EII double enzyme is connected after cutting, and a p3301-NF carrier is constructed;
insect-resistant genecry1CAnd commercial vector pBI121BamHI andSaci, connecting after double enzyme digestion, and constructing a pBI121-crylC vector;
the pBI121-crylC vector is used as a template, and two ends are used for carryingKpnI andHindIII, specific primer of enzyme cutting site, amplifying to obtain fragment of insect-resistant gene expression frame, and utilizingKpnI andHindIII, connecting the digested p3301-NF vectors to construct a p3301-NF-cry1C plant expression vector;
containing by sequence synthesisXhoI cleavage siteg2m-epspsFragments and the p3301-NF-cry1C vectorXhoAnd I, connecting after enzyme digestion to form a plant recombinant expression vector pGR containing the herbicide-resistant gene expression frame.
5. Use of the plant recombinant expression vector pGR according to any one of claims 1 to 3 or the plant recombinant expression vector pGR according to the construction method of claim 4 for cultivating transgenic plants, wherein the transgenic plants are soybean.
6. The use according to claim 5, wherein the transgenic plant is a herbicide-resistant, pest-resistant and stress-tolerant complex trait-tolerant transgenic plant.
7. A method of breeding herbicide, pest and stress tolerant transgenic plants comprising the steps of: a transgenic plant obtained by introducing the plant recombinant expression vector pGR20 according to any one of claims 1 to 3 into a recipient plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210396439.5A CN114854787B (en) | 2022-04-15 | 2022-04-15 | Plant recombinant expression vector, construction method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210396439.5A CN114854787B (en) | 2022-04-15 | 2022-04-15 | Plant recombinant expression vector, construction method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114854787A CN114854787A (en) | 2022-08-05 |
CN114854787B true CN114854787B (en) | 2023-08-18 |
Family
ID=82630897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210396439.5A Active CN114854787B (en) | 2022-04-15 | 2022-04-15 | Plant recombinant expression vector, construction method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114854787B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102964437A (en) * | 2012-11-16 | 2013-03-13 | 东北农业大学 | Soybean nuclear factor protein and encoding genes of protein and applications of protein and encoding genes |
CN103981179A (en) * | 2014-05-27 | 2014-08-13 | 南京农业大学 | StNHX1 gene expression cassette, application thereof and salt-tolerant transgenic soybean cultivation method |
CN112322631A (en) * | 2020-11-06 | 2021-02-05 | 武汉天问生物科技有限公司 | Cultivation method of glyphosate-resistant transgenic soybean |
CN113717989A (en) * | 2021-09-06 | 2021-11-30 | 中国农业科学院作物科学研究所 | Herbicide-resistant insect-resistant transgenic soybean Jingdou 321 and specificity detection method thereof |
-
2022
- 2022-04-15 CN CN202210396439.5A patent/CN114854787B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102964437A (en) * | 2012-11-16 | 2013-03-13 | 东北农业大学 | Soybean nuclear factor protein and encoding genes of protein and applications of protein and encoding genes |
CN103981179A (en) * | 2014-05-27 | 2014-08-13 | 南京农业大学 | StNHX1 gene expression cassette, application thereof and salt-tolerant transgenic soybean cultivation method |
CN112322631A (en) * | 2020-11-06 | 2021-02-05 | 武汉天问生物科技有限公司 | Cultivation method of glyphosate-resistant transgenic soybean |
CN113717989A (en) * | 2021-09-06 | 2021-11-30 | 中国农业科学院作物科学研究所 | Herbicide-resistant insect-resistant transgenic soybean Jingdou 321 and specificity detection method thereof |
Non-Patent Citations (1)
Title |
---|
The soybean GmNFY-B1 transcription factor positively regulates flowering in transgenic Arabidopsis;Ali Inayat Mallano等;《Molecular Biology Reports》;第48卷;1589–1599 * |
Also Published As
Publication number | Publication date |
---|---|
CN114854787A (en) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016188332A1 (en) | Corn transformation event and specificity identification method and use thereof | |
CN108699560A (en) | Florescence control gene and relevant carriers and its application | |
CN109312350A (en) | The plant of abiotic stress tolerance and method | |
CN111406117A (en) | Nucleic acid sequence for detecting soybean plant DBN8002 and detection method thereof | |
CN107418954A (en) | Chinese white poplar gene PtomiR390a and its application | |
CN103205458B (en) | Intermediate expression carrier applicable to monocotyledon transformation and construction method thereof | |
WO2023155193A1 (en) | Nucleic acid sequence for detecting glycine max plant dbn8205 and detection method therefor | |
CN110818785B (en) | Corn sucrose transporter ZmSUT3J and coding gene and application thereof | |
CN112778405B (en) | Protein related to plant flowering phase and coding gene and application thereof | |
CN110564739B (en) | Poplar PtMYB158 gene and application thereof in creating new poplar seed material | |
CN110408646B (en) | Plant genetic transformation screening vector and application thereof | |
CN114854787B (en) | Plant recombinant expression vector, construction method and application thereof | |
CN113121662B (en) | Application of cotton GhBZR3 protein and coding gene thereof in regulating plant growth and development | |
CN106399333A (en) | Soybean holy bean 9# LAMMER protein kinase gene GmPK6 and application thereof | |
CN116219063A (en) | Nucleic acid sequence for detecting corn plant DBN9235 and detection method thereof | |
CN111154797B (en) | Genetic transformation method of maize backbone inbred line mediated by gene gun | |
CN110643628A (en) | Application of rice bZIP gene and downstream gene qLTG3-1 thereof in improving low temperature resistance of plants | |
CN110923263B (en) | Rice beta-amylase BA1 and coding gene and application thereof | |
Beever et al. | “Candidatus phytoplasma australiense” in Coprosma robusta in New Zealand | |
CN103695446B (en) | A kind of epsp synthase gene deriving from pseudomonas putida and application thereof | |
CN109321594B (en) | Method for improving artemisinin content in artemisia annua by taking artemisia annua suspension cell line as receptor through iaaM gene transfer | |
JP3755876B2 (en) | Method for producing recombinant plant not containing selectable marker, and recombinant plant produced by the method | |
CN111154796B (en) | Genetic transformation method of agrobacterium-mediated corn backbone inbred line | |
CN112458112A (en) | RNAi plant expression vector of triketone resistance gene and application thereof | |
CN112522303A (en) | RNAi plant expression vector of HSL1 for dominant inhibition of herbicide and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |