CN114853075A - Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof - Google Patents
Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof Download PDFInfo
- Publication number
- CN114853075A CN114853075A CN202210458964.5A CN202210458964A CN114853075A CN 114853075 A CN114853075 A CN 114853075A CN 202210458964 A CN202210458964 A CN 202210458964A CN 114853075 A CN114853075 A CN 114853075A
- Authority
- CN
- China
- Prior art keywords
- inorganic
- fes
- salt
- doped
- sulfide material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 40
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 23
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims abstract description 12
- 239000007773 negative electrode material Substances 0.000 claims abstract description 7
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 34
- 150000002696 manganese Chemical class 0.000 claims description 23
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 23
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 23
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 22
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 13
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 13
- 239000011790 ferrous sulphate Substances 0.000 claims description 13
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 7
- 229960002089 ferrous chloride Drugs 0.000 claims description 4
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 3
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical group Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 235000002867 manganese chloride Nutrition 0.000 claims description 3
- 239000011565 manganese chloride Substances 0.000 claims description 3
- 229940099607 manganese chloride Drugs 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000003763 carbonization Methods 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 4
- 229910052976 metal sulfide Inorganic materials 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 2
- 239000002041 carbon nanotube Substances 0.000 abstract 1
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract 1
- 239000007772 electrode material Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 15
- CNFDGXZLMLFIJV-UHFFFAOYSA-L manganese(II) chloride tetrahydrate Chemical compound O.O.O.O.[Cl-].[Cl-].[Mn+2] CNFDGXZLMLFIJV-UHFFFAOYSA-L 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000004685 tetrahydrates Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- -1 Transition metal chalcogenides Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- RGVLTEMOWXGQOS-UHFFFAOYSA-L manganese(2+);oxalate Chemical group [Mn+2].[O-]C(=O)C([O-])=O RGVLTEMOWXGQOS-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于纳米材料和电化学能源的存储技术领域,特别是大晶格间距的Mn-doped FeS/CN双金属硫化物材料及其制备方法和应用。The invention belongs to the technical field of nanometer materials and electrochemical energy storage, in particular to a Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing and a preparation method and application thereof.
背景技术Background technique
在当前日益严峻的生态环境下,新能源已经演变为化石能源的有力替代者,开发一种具有高效能量转换和存储的材料是利用这些新型能源的迫切需求。锂离子电池(LIBs)以其重量轻、能量密度高、充放电快而闻名。然而,锂源的短缺和分布不均难以满足日益增长的电力设备需求。钠源便宜($150t-1),且在地球上广泛分布(23.6×103mg·kg-1),容易获得。钠离子电池与锂离子电池的工作原理十分相似,具有与锂离子电池相同的“摇椅”充放电原理,是锂离子电池的合理替代品。两种电池的充电放电的过程一般依靠电池中的带电离子穿梭与脱嵌在该电池的电极材料之间以完成。钠离子电池和锂离子电池一样也隶属于离子迁移摇椅电池。此概念最初被Armand等人在20世纪80年代定义,方法是用低嵌锂电位的层状化合物来作为锂离子电池的负极材料,使用高嵌锂电位的包括锂元素的层状化合物充当正极材料,创立一个在充电放电循环过程,锂离子在两种电极材料之间来回循环的一种电池模型。电池充电的过程里,电场力使钠离子从电池的正极材料中脱嵌至电解液中,通过电解液向电池的负极材料移动,并与通过外电路抵达电池负极材料的电子相遇,最后通过钠单质的状态嵌入钠离子电池的负极材料上。电池放电的过程里,钠离子电池负极材料中的钠输出一个电子变为钠离子进入电解液,通过电解液钠离子向正极移动,并与通过外电路的电子结合,重新变为钠单质后再次嵌入钠离子电池的正极材料,最终完成一个充放电循环。Under the current increasingly severe ecological environment, new energy has evolved into a powerful substitute for fossil energy, and the development of a material with efficient energy conversion and storage is an urgent need to utilize these new energy. Lithium-ion batteries (LIBs) are known for their light weight, high energy density, and fast charge and discharge. However, the shortage and uneven distribution of lithium sources make it difficult to meet the growing demand for power equipment. Sodium sources are cheap ($150t -1 ), widely distributed on earth (23.6×103 mg·kg -1 ), and readily available. The working principle of sodium-ion battery is very similar to that of lithium-ion battery. It has the same "rocking chair" charge and discharge principle as lithium-ion battery, and is a reasonable substitute for lithium-ion battery. The process of charging and discharging of the two batteries generally relies on the shuttle and deintercalation of charged ions in the battery to be completed between the electrode materials of the battery. Sodium-ion batteries, like lithium-ion batteries, are also classified as ion-transfer rocking-chair batteries. This concept was originally defined by Armand et al. in the 1980s by using layered compounds with low lithium intercalation potential as anode materials for lithium-ion batteries, and using layered compounds including lithium elements with high lithium intercalation potential as cathode materials , creating a battery model in which lithium ions cycle back and forth between two electrode materials during charge-discharge cycles. During the charging process of the battery, the electric field force makes the sodium ions deintercalate from the positive electrode material of the battery into the electrolyte, move to the negative electrode material of the battery through the electrolyte, and meet the electrons that reach the negative electrode material of the battery through the external circuit, and finally pass through the sodium ions. The elemental state is embedded in the anode material of sodium-ion batteries. In the process of battery discharge, the sodium in the negative electrode material of the sodium ion battery outputs an electron into sodium ions and enters the electrolyte, moves to the positive electrode through the electrolyte, and combines with the electrons passing through the external circuit, and then becomes sodium element again. The cathode material of the intercalated sodium-ion battery finally completes a charge-discharge cycle.
然而,钠离子(Na+)半径比锂离子(Li+)大,质量比Li+重,在循环过程中对活性电极材料的结构损伤更大;这导致许多适合于锂离子电池的电极材料不能用于钠离子电池。因此,制备适合钠离子电池的电极材料至关重要。However, sodium ions (Na + ) have a larger radius and heavier mass than Li + , and cause more structural damage to active electrode materials during cycling; this results in that many electrode materials suitable for lithium ion batteries cannot be for sodium-ion batteries. Therefore, it is crucial to prepare electrode materials suitable for sodium-ion batteries.
过渡金属硫族化合物由于其开放式框架结构、高理论容量和低成本已被证明是一种替代阳极材料。硫化铁是一种典型的过渡金属硫化物,理论比容量高达609mAh·g-1,成本低,环境友好,资源丰富。遗憾的是,循环过程中FeS体积膨胀大,导电性低,导致其电化学性能较差。杂原子掺杂被认为是改善单金属硫化物电化学性能的一种简单可行的方法。掺杂可以通过在铁、硫和杂原子之间建立化学键来增强电子/离子输运。更大的原子掺杂也改善了晶格参数,以容纳更多的钠离子。此外,一些掺杂可以改变材料的结构和形态,从根本上解决了单一金属硫化物的难题。Transition metal chalcogenides have been shown to be an alternative anode material due to their open framework structure, high theoretical capacity, and low cost. Iron sulfide is a typical transition metal sulfide with a theoretical specific capacity of up to 609mAh·g -1 , low cost, environmental friendliness and abundant resources. Unfortunately, FeS suffers from large volume expansion and low electrical conductivity during cycling, resulting in its poor electrochemical performance. Heteroatom doping is considered as a simple and feasible method to improve the electrochemical performance of single metal sulfides. Doping can enhance electron/ion transport by creating chemical bonds between iron, sulfur and heteroatoms. Greater atomic doping also improves lattice parameters to accommodate more sodium ions. In addition, some doping can change the structure and morphology of the material, fundamentally solving the problem of single metal sulfides.
现有技术中,例如《Na2MnFe(CN)6@Na2NiFe(CN)6的合成及其在钠离子电池中的应用》(周庶,戴建勇等,《电源技术研究与设计》,2020年08月,1108-1111、1203)中提供了可以用作钠离子电池正极材料的Na2MnFe(CN)6@Na2NiFe(CN)6电极材料,采用这种材料的钠离子半电池首次放电比容量为137.1mAh/g,充放电循环200次后容量保持率达到94.91%。然而,这种材料由于结晶水的存在影响了材料稳定性和容量,当应用在钠离子电池的电极材料中时,其容量和循环稳定性均有待提高。In the prior art, for example, "Synthesis of Na 2 MnFe(CN) 6 @Na 2 NiFe(CN) 6 and its application in sodium-ion batteries" (Zhou Shu, Dai Jianyong, etc., "Power Technology Research and Design", 2020 In August, 1108-1111, 1203), a Na 2 MnFe(CN) 6 @Na 2 NiFe(CN) 6 electrode material that can be used as a cathode material for sodium-ion batteries was provided, and the sodium-ion half-cell using this material was the first time. The specific discharge capacity was 137.1mAh/g, and the capacity retention rate reached 94.91% after 200 charge-discharge cycles. However, due to the presence of crystal water, this material affects the material stability and capacity, and its capacity and cycle stability need to be improved when it is used in the electrode material of sodium-ion batteries.
发明内容SUMMARY OF THE INVENTION
针对以上现有技术的不足,本发明提供了大晶格间距的Mn-doped FeS/CN双金属硫化物材料,通过先利用PVP、硫酸亚铁、氯化锰、硫脲和硫粉制备Mn-doped FeS2/PVP前驱体,然后再将前驱体再多性环境下碳化制成成品。这种成品应用在钠离子电池的负极材料时,具有更高的容量和更持久的循环稳定性。具体通过以下技术实现。In view of the above deficiencies of the prior art, the present invention provides a Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing. Doped FeS 2 /PVP precursor, and then carbonized the precursor in a multiplicity environment to make the finished product. This finished product has higher capacity and longer lasting cycle stability when used in the anode material of sodium-ion batteries. Specifically, it is realized by the following techniques.
大晶格间距的Mn-doped FeS/CN双金属硫化物材料的制备方法,包括以下步骤:The preparation method of Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing comprises the following steps:
S1、取聚乙烯吡咯烷酮的乙二醇溶液,加入无机亚铁盐、无机锰盐搅拌至溶解;然后加入硫脲和硫粉,搅拌、超声10-30min,180℃保持18h,离心收集得到黑色粉末状的Mn-doped FeS2/PVP前驱体;用去离子水和酒精洗涤后,真空干燥(一般在真空烘箱中65℃烘干);S1. Take the ethylene glycol solution of polyvinylpyrrolidone, add inorganic ferrous salt and inorganic manganese salt and stir until dissolved; then add thiourea and sulfur powder, stir, ultrasonicate for 10-30min, keep at 180°C for 18h, and collect by centrifugation to obtain black powder Mn-doped FeS 2 /PVP precursor; after washing with deionized water and alcohol, vacuum drying (usually drying in a vacuum oven at 65°C);
S2、将步骤S1所得Mn-doped FeS2/PVP前驱体在惰性气体(一般为氮气、氩气等)环境下500-800℃碳化2-4h,得到Mn-doped FeS双金属硫化物材料。S2. Carbonize the Mn-doped FeS 2 /PVP precursor obtained in step S1 at 500-800° C. for 2-4 hours in an inert gas (generally nitrogen, argon, etc.) environment to obtain a Mn-doped FeS bimetallic sulfide material.
上述Mn-doped FeS/CN双金属硫化物材料的制备方法中,步骤S1的无机亚铁盐、无机锰盐需要选用能够溶解于乙二醇的盐类。为了促进这些盐的溶解,可将无机亚铁盐、无机锰盐研磨/粉碎以降低其粒径,一般粒径为10-100μm。为了促进硫粉溶解在乙二醇中,采用超声等方法。In the above-mentioned preparation method of the Mn-doped FeS/CN bimetallic sulfide material, the inorganic ferrous salt and the inorganic manganese salt in step S1 need to be salts that can be dissolved in ethylene glycol. In order to promote the dissolution of these salts, inorganic ferrous salts and inorganic manganese salts can be ground/pulverized to reduce their particle size, generally 10-100 μm. In order to promote the dissolution of sulfur powder in ethylene glycol, methods such as ultrasound are used.
优选地,步骤S1中,聚乙烯吡咯烷酮的质量与所述无机亚铁盐、无机锰盐的总物质的量的比例为50-250g/mol,所述无机亚铁盐、无机锰盐的总物质的量,与硫脲、硫粉的物质的量的比例为1:1:(1-2)。Preferably, in step S1, the ratio of the mass of polyvinylpyrrolidone to the total amount of the inorganic ferrous salt and the inorganic manganese salt is 50-250 g/mol, and the total amount of the inorganic ferrous salt and the inorganic manganese salt is 50-250 g/mol. The ratio of the amount of thiourea and the amount of sulfur powder is 1:1:(1-2).
更优选地,上述制备方法的步骤S1中,所述无机亚铁盐和无机锰盐的物质的量比例为4:(1-4)。More preferably, in step S1 of the above preparation method, the material ratio of the inorganic ferrous salt and the inorganic manganese salt is 4:(1-4).
进一步优选地,上述制备方法的步骤S1中,所述无机亚铁盐和无机锰盐的物质的量比例为3:1。Further preferably, in step S1 of the above preparation method, the material ratio of the inorganic ferrous salt and the inorganic manganese salt is 3:1.
优选地,上述制备方法的步骤S1中,在加入硫脲和硫粉并超声搅拌后,180℃保持18h。Preferably, in step S1 of the above preparation method, after adding thiourea and sulfur powder and stirring ultrasonically, the temperature is kept at 180° C. for 18 hours.
更优选地,步骤S1中,聚乙烯吡咯烷酮的质量与所述无机亚铁盐、无机锰盐的总物质的量的比例为100g/mol,所述无机亚铁盐、无机锰盐的总物质的量,与硫脲、硫粉的物质的量的比例为2:2:3。More preferably, in step S1, the ratio of the mass of polyvinylpyrrolidone to the total amount of the inorganic ferrous salt and the inorganic manganese salt is 100 g/mol, and the total amount of the inorganic ferrous salt and the inorganic manganese salt is 100 g/mol. The ratio to the amount of thiourea and sulfur powder is 2:2:3.
优选地,所述无机亚铁盐为硫酸亚铁、氯化亚铁,所述无机锰盐为氯化锰。Preferably, the inorganic ferrous salt is ferrous sulfate and ferrous chloride, and the inorganic manganese salt is manganese chloride.
本发明还提供了一种利用上述制备方法制备的大晶格间距的Mn-doped FeS/CN双金属硫化物材料,以及将这种材料应用于制备钠离子电池的负极材料的方法。The present invention also provides a Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing prepared by the above preparation method, and a method for applying this material to the preparation of a negative electrode material for a sodium ion battery.
本发明提供的上述大晶格间距的Mn-doped FeS/CN双金属硫化物材料,采用一次溶剂热和退火工艺合成了多核Mn-doped FeS/CN。本发明选择Mn原子作为掺杂原子有四个重要原因:(1)掺杂的前提是基体原子(Fe)和掺杂原子(Mn)的半径相近;(2)Mn的原子半径(0.067nm)略大于Fe的原子半径(0.061nm),因此可以适当增大晶格间距以增强钠的贮存能力;(3)地球上锰矿和铁矿的储量同样丰富,价格同样低廉;(4)由于核外电子的不同,Mn掺杂带来了大量的空穴,从而提高了导电性。The above-mentioned Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing provided by the present invention adopts one solvothermal and annealing process to synthesize multi-nuclear Mn-doped FeS/CN. There are four important reasons for selecting Mn atoms as doping atoms in the present invention: (1) the premise of doping is that the radius of the matrix atom (Fe) and the doping atom (Mn) are similar; (2) the atomic radius of Mn (0.067 nm) It is slightly larger than the atomic radius of Fe (0.061nm), so the lattice spacing can be appropriately increased to enhance the storage capacity of sodium; (3) the reserves of manganese ore and iron ore are equally abundant on the earth, and the price is equally low; (4) due to the extra-nuclear Different from electrons, Mn doping brings a large number of holes, which improves the conductivity.
与现有技术相比,本发明的有益之处在于:Compared with the prior art, the advantages of the present invention are:
1、本发明使用Mn原子掺杂引起的更大的晶格间距,为钠离子的存储提供了更多的空间;原子的掺杂增加了电导率,增强了载流子的输运和速率性能;1. The present invention uses the larger lattice spacing caused by the doping of Mn atoms, which provides more space for the storage of sodium ions; the doping of atoms increases the electrical conductivity and enhances the transport and rate performance of carriers ;
2、多核结构和碳的存在可以提高体积膨胀的耐受性,有利于长期循环性能;2. The existence of multi-nuclear structure and carbon can improve the tolerance of volume expansion, which is beneficial to long-term cycle performance;
3、对Mn-doped FeS/CN双金属硫化物材料的电化学性能的检测结果表明,其作为sib阳极具有较高的可逆容量,0.5A·g-1时为563.3mAh·g-1;具有更优异的倍率性能,8A·g-1时为442.8mAh·g-1;更持久的循环稳定性,8000次循环后为206.2mAh·g-1;具有较高的能量密度和容量保持率;为提高单金属硫化物的电化学性能提供了一种有前途的策略。3. The detection results of the electrochemical properties of the Mn-doped FeS/CN bimetallic sulfide material show that it has a high reversible capacity as a sib anode, which is 563.3mAh·g -1 at 0.5A·g -1 ; Better rate performance, 442.8mAh·g -1 at 8A·g -1 ; longer cycle stability, 206.2mAh·g -1 after 8000 cycles; higher energy density and capacity retention; This provides a promising strategy for improving the electrochemical performance of single-metal sulfides.
附图说明Description of drawings
图1为实施例1的Mn-doped FeS/CN电极材料的SEM图;1 is a SEM image of the Mn-doped FeS/CN electrode material of Example 1;
图2、3为实施例1的Mn-doped FeS/CN电极材料的TEM图;2 and 3 are TEM images of the Mn-doped FeS/CN electrode material of Example 1;
图4为实施例1中Mn-doped FeS/CN电极材料的HRTEM图;4 is an HRTEM image of the Mn-doped FeS/CN electrode material in Example 1;
图5为实施例2中Mn-doped FeS/CN电极材料的SEM图;5 is a SEM image of the Mn-doped FeS/CN electrode material in Example 2;
图6为实施例3中Mn-doped FeS/CN电极材料的SEM图;6 is a SEM image of the Mn-doped FeS/CN electrode material in Example 3;
图7为对比例1制备的复合物MnS/FeS电极材料的SEM图;7 is a SEM image of the composite MnS/FeS electrode material prepared in Comparative Example 1;
图8为实施例1-3制备的Mn-doped FeS/CN电极材料在4A·g-1条件下1000次循环的循环图;8 is a cycle diagram of 1000 cycles of the Mn-doped FeS/CN electrode materials prepared in Examples 1-3 under the condition of 4A·g −1 ;
图9为对比例2制备的FeS电极材料在4A·g-1条件下进行1000次循环的循环图;9 is a cycle diagram of the FeS electrode material prepared in Comparative Example 2 under the condition of 4A·g -1 for 1000 cycles;
图10为对比例3制备的MnS电极材料在4A·g-1条件下进行500次循环的循环图;Figure 10 is a cycle diagram of the MnS electrode material prepared in Comparative Example 3 under the condition of 4A·g -1 for 500 cycles;
图11为实施例1制备的Mn-doped FeS/CN电极材料在0.5A·g-1条件下循环100次的循环图;11 is a cycle diagram of the Mn-doped FeS/CN electrode material prepared in Example 1 under the condition of 0.5 A·g −1 for 100 cycles;
图12为实施例1制备的Mn-doped FeS/CN电极材料的倍率性能图;12 is a graph of the rate performance of the Mn-doped FeS/CN electrode material prepared in Example 1;
图13为实施例1制备的Mn-doped FeS/CN电极材料在8A·g-1条件下经过8000次循环后的循环图;13 is a cycle diagram of the Mn-doped FeS/CN electrode material prepared in Example 1 after 8000 cycles under the condition of 8 A·g −1 ;
图14为实施例1-3制备的Mn-doped FeS/CN电极材料的XRD图谱;Fig. 14 is the XRD pattern of the Mn-doped FeS/CN electrode material prepared by Example 1-3;
图15为实施例1的Mn-doped FeS2/PVP前驱体的XRD图谱。15 is an XRD pattern of the Mn-doped FeS 2 /PVP precursor of Example 1. FIG.
具体实施方式Detailed ways
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
以下实施例和对比例中,使用的聚乙烯吡咯烷酮(PVP)采购自国药集团公司,分子量为约5800,聚合度为单体聚合;所使用的无机亚铁盐为四水合氯化亚铁和四水合硫酸亚铁,所使用的无机亚锰盐为四水合氯化锰,采购自国药集团公司,使用时先进行研磨至粒径为10-100μm;硫脲(化学式为CH4N2S)和硫粉采购自国药集团公司,纯度99.8%。In the following examples and comparative examples, the polyvinylpyrrolidone (PVP) used was purchased from Sinopharm Corporation, the molecular weight was about 5800, and the degree of polymerization was monomer polymerization; the inorganic ferrous salts used were ferrous chloride tetrahydrate and tetrahydrate Hydrated ferrous sulfate, the inorganic manganese salt used is manganese chloride tetrahydrate, purchased from Sinopharm Group Corporation, and ground to a particle size of 10-100 μm before use; thiourea (chemical formula CH 4 N 2 S) and Sulfur powder was purchased from Sinopharm Corporation, with a purity of 99.8%.
实施例1Example 1
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法为:The preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided by the present embodiment is:
S1、取0.4g聚乙烯吡咯烷酮加至50ml乙二醇中,搅拌30min直至溶解配制成溶液;加入3mmol四水合硫酸亚铁、1mmol四水合氯化锰搅拌至溶解;然后加入4mmol硫脲和6mmol硫粉,搅拌、超声30min,再放入烘箱180℃保持18h,离心收集得到黑色粉末状的Mn-dopedFeS2/PVP前驱体;用去离子水和酒精洗涤后,在真空烘箱中65℃烘干;S1, get 0.4g polyvinylpyrrolidone and add it in 50ml ethylene glycol, stir for 30min until dissolving and prepare a solution; add 3mmol ferrous sulfate tetrahydrate, 1mmol tetrahydrate manganese chloride and stir until dissolved; then add 4mmol thiourea and 6mmol sulfur powder, stirred and sonicated for 30 min, then placed in an oven at 180 °C for 18 h, and collected by centrifugation to obtain a black powdery Mn-doped FeS 2 /PVP precursor; washed with deionized water and alcohol, and dried in a vacuum oven at 65 °C;
S2、将100mg步骤S1所得Mn-doped FeS2/PVP前驱体在氩气保护的管式炉中600℃碳化3h,使PVP碳化并且Mn-doped FeS2相变,得到Mn-doped FeS双金属硫化物材料。S2.
实施例2Example 2
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法,与实施例1的区别在于,所使用的四水合硫酸亚铁为3.5mmol、四水合氯化锰为0.5mmol;硫脲为4mmol,硫粉为4mmol。即四水合硫酸亚铁和四水合氯化锰的物质的量为7:1,四水合硫酸亚铁和四水合氯化锰的总物质的量与硫脲、硫粉的物质的量的比例为1:1:1。The difference between the preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this embodiment and the
实施例3Example 3
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法,与实施例1的区别在于,所使用的四水合硫酸亚铁为2mmol、四水合氯化锰为2mmol;硫脲为4mmol,硫粉为8mmol。即四水合硫酸亚铁和四水合氯化锰的物质的量为1:1,四水合硫酸亚铁和四水合氯化锰的总物质的量与硫脲、硫粉的物质的量的比例为1:1:2。The difference between the preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this embodiment and the
实施例4Example 4
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法,与实施例1的区别在于,用水合氯化亚铁替换四水合硫酸亚铁。The difference between the preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this embodiment and
实施例5Example 5
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法,与实施例1的区别在于,聚乙烯吡咯烷酮的用量为1g,即聚乙烯吡咯烷酮的质量与所述无机亚铁盐、无机锰盐的总物质的量的比例为250g/mol。The difference between the preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this embodiment and the
实施例6Example 6
本实施例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法,与实施例1的区别在于,聚乙烯吡咯烷酮的用量为0.2g,即聚乙烯吡咯烷酮的质量与所述无机亚铁盐、无机锰盐的总物质的量的比例为50g/mol。The difference between the preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this embodiment and the
对比例1Comparative Example 1
本对比例提供的钠离子电池负极材料,与实施例1的区别在于,在制备时将四水合氯化锰替换成草酸锰。具体制备方法与实施例1相同。The difference between the negative electrode material of the sodium ion battery provided in this comparative example and that of Example 1 is that manganese chloride tetrahydrate is replaced with manganese oxalate during preparation. The specific preparation method is the same as that of Example 1.
对比例2Comparative Example 2
本对比例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法为:与实施例1的区别在于,步骤S1中未使用四水合氯化锰等任何锰盐,即直接全部使用4mmol四水合硫酸亚铁;制备方法与实施例1相同。The preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided by this comparative example is as follows: the difference from Example 1 is that no manganese salt such as manganese chloride tetrahydrate is used in step S1, that is, 4 mmol of tetrahydrate is directly used. Hydrated ferrous sulfate; the preparation method is the same as that in Example 1.
对比例3Comparative Example 3
本对比例提供的Mn-doped FeS/CN双金属硫化物材料的制备方法为:与实施例1的区别在于,步骤S1中未使用四水合硫酸亚铁等任何亚铁盐,即直接全部使用4mmol四水合氯化锰;制备方法与实施例1相同。The preparation method of the Mn-doped FeS/CN bimetallic sulfide material provided in this comparative example is as follows: the difference from Example 1 is that no ferrous salt such as ferrous sulfate tetrahydrate is used in step S1, that is, 4 mmol is directly used. Manganese chloride tetrahydrate; the preparation method is the same as that of Example 1.
试验例:实施例1-3和对比例1制备的电极材料的微观形态,以及实施例1-5和对比例1-3和电化学性能测试Test Example: Microscopic morphology of electrode materials prepared in Examples 1-3 and Comparative Example 1, as well as Examples 1-5 and Comparative Examples 1-3 and electrochemical performance tests
实施例1制备的Mn-doped FeS/CN双金属硫化物材料的微观形态如图1-4所示,实施例2、3制备的Mn-doped FeS/CN双金属硫化物材料的微观形态如图5、6所示。对比例1制备得到的是复合物MnS/FeS的微观形态如图7所示,这种复合物并非掺杂的样品,在作为钠离子电池的电极材料时,可逆容量不高。The microscopic morphology of the Mn-doped FeS/CN bimetallic sulfide material prepared in Example 1 is shown in Figures 1-4, and the microscopic morphology of the Mn-doped FeS/CN bimetallic sulfide material prepared in Examples 2 and 3 is shown in Figures 1-4 5 and 6 are shown. The microscopic morphology of the composite MnS/FeS prepared in Comparative Example 1 is shown in Figure 7. This composite is not a doped sample, and when used as an electrode material for sodium-ion batteries, the reversible capacity is not high.
如图8所示,在4A·g-1条件下,采用实施例1-3制备的Mn-doped FeS/CN电极材料,使用蓝电电池测试系统进行1000次循环后的可逆容量分别为488mAh·g-1、370mAh·g-1、368mAh·g-1。As shown in Figure 8, under the condition of 4A·g -1 , using the Mn-doped FeS/CN electrode material prepared in Examples 1-3, the reversible capacity after 1000 cycles using the blue battery test system was 488mAh· g -1 , 370mAh·g -1 , 368mAh·g -1 .
如图9所示,对比例2制备的FeS电极材料进行1000次循环后的可逆容量分别为300mAh·g-1。As shown in Fig. 9, the reversible capacities of the FeS electrode materials prepared in Comparative Example 2 after 1000 cycles were 300 mAh·g -1 , respectively.
如图10所示,对比例3制备的MnS电极材料进行500次循环后的可逆容量分别为117mAh·g-1。As shown in Fig. 10, the reversible capacities of the MnS electrode materials prepared in Comparative Example 3 after 500 cycles were 117 mAh·g -1 , respectively.
如图11所示,在0.5A·g-1条件下,采用实施例1制备的Mn-doped FeS/CN电极材料,使用蓝电电池测试系统进行100次循环后的可逆容量为562.7mAh·g-1。As shown in Figure 11, under the condition of 0.5A·g -1 , using the Mn-doped FeS/CN electrode material prepared in Example 1, the reversible capacity after 100 cycles using the blue battery test system is 562.7mAh·g -1 .
如图12所示,在8A·g-1条件下,实施例1制备的Mn-doped FeS/CN电极材料具有优异的倍率性能(270.4mAh·g-1)。As shown in Figure 12, under the condition of 8A·g -1 , the Mn-doped FeS/CN electrode material prepared in Example 1 has excellent rate performance (270.4mAh·g -1 ).
如图13所示,在8A·g-1条件下,采用实施例1制备的Mn-doped FeS/CN电极材料,经过8000次循环后仍能保持206.2mAh·g-1的容量。As shown in Figure 13, under the condition of 8A·g -1 , the Mn-doped FeS/CN electrode material prepared in Example 1 can still maintain a capacity of 206.2mAh·g -1 after 8000 cycles.
图14是实施例1-3的电极材料的XRD图谱;图15是实施例1的步骤S1的Mn-dopedFeS2/PVP前驱体的XRD图谱。14 is the XRD pattern of the electrode materials of Examples 1-3; FIG. 15 is the XRD pattern of the Mn-doped FeS 2 /PVP precursor in step S1 of Example 1.
从以上测试结果可以发现,采用本发明提供的制备方法制备的Mn-doped FeS/CN电极材料,作为sib阳极具有较高的可逆容量(0.5A·g-1时为563.3mAh·g-1),优异的倍率性能(8A·g-1时为442.8mAh·g-1)和持久的循环稳定性(8000次循环后为206.2mAh·g-1),即具有较高的能量密度和容量保持率。From the above test results, it can be found that the Mn-doped FeS/CN electrode material prepared by the preparation method provided by the present invention has a relatively high reversible capacity as a sib anode (563.3mAh·g -1 at 0.5A·g -1 ) , excellent rate performance (442.8mAh·g -1 at 8A·g -1 ) and long-lasting cycle stability (206.2mAh·g -1 after 8000 cycles), namely high energy density and capacity retention Rate.
以上具体实施方式详细描述了本发明的实施,但是,本发明并不限于上述实施方式中的具体细节。在本发明的权利要求书和技术构思范围内,可以对本发明的技术方案进行多种简单改型和改变,这些简单变型均属于本发明的保护范围。The above specific embodiments describe the implementation of the present invention in detail, however, the present invention is not limited to the specific details in the above-mentioned embodiments. Within the scope of the claims and technical concepts of the present invention, various simple modifications and changes can be made to the technical solutions of the present invention, and these simple modifications all belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210458964.5A CN114853075A (en) | 2022-04-25 | 2022-04-25 | Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210458964.5A CN114853075A (en) | 2022-04-25 | 2022-04-25 | Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114853075A true CN114853075A (en) | 2022-08-05 |
Family
ID=82633158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210458964.5A Pending CN114853075A (en) | 2022-04-25 | 2022-04-25 | Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114853075A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111933904A (en) * | 2020-07-14 | 2020-11-13 | 银隆新能源股份有限公司 | Bimetal sulfide and preparation method thereof, compound and preparation method thereof, lithium-sulfur positive electrode material and lithium-sulfur battery |
CN112436145A (en) * | 2020-11-16 | 2021-03-02 | 长沙理工大学 | Preparation method and application of MOF-74 derived carbon-coated cobalt-nickel bimetallic sulfide for sodium ion battery negative electrode |
CN112928260A (en) * | 2021-02-23 | 2021-06-08 | 多助科技(武汉)有限公司 | Molybdenum disulfide/iron sulfide/nitrogen-doped carbon composite material and preparation and application thereof |
CN113764623A (en) * | 2021-08-30 | 2021-12-07 | 多助科技(武汉)有限公司 | Nitrogen-carbon coated iron-nickel sulfide hollow composite material and preparation and application thereof |
CN114229884A (en) * | 2021-10-28 | 2022-03-25 | 广东邦普循环科技有限公司 | Metal sulfide sodium ion battery cathode material and preparation method thereof |
-
2022
- 2022-04-25 CN CN202210458964.5A patent/CN114853075A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111933904A (en) * | 2020-07-14 | 2020-11-13 | 银隆新能源股份有限公司 | Bimetal sulfide and preparation method thereof, compound and preparation method thereof, lithium-sulfur positive electrode material and lithium-sulfur battery |
CN112436145A (en) * | 2020-11-16 | 2021-03-02 | 长沙理工大学 | Preparation method and application of MOF-74 derived carbon-coated cobalt-nickel bimetallic sulfide for sodium ion battery negative electrode |
CN112928260A (en) * | 2021-02-23 | 2021-06-08 | 多助科技(武汉)有限公司 | Molybdenum disulfide/iron sulfide/nitrogen-doped carbon composite material and preparation and application thereof |
CN113764623A (en) * | 2021-08-30 | 2021-12-07 | 多助科技(武汉)有限公司 | Nitrogen-carbon coated iron-nickel sulfide hollow composite material and preparation and application thereof |
CN114229884A (en) * | 2021-10-28 | 2022-03-25 | 广东邦普循环科技有限公司 | Metal sulfide sodium ion battery cathode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108598450B (en) | CoP/nitrogen-doped carbon/graphene nanocomposite and preparation method thereof | |
CN102208638B (en) | High-capacity lithium-ion battery negative electrode composite material and preparation method thereof | |
CN111276678A (en) | Preparation method and application of single-layer graphene-coated FeS2/carbon nanotube material | |
CN112952047B (en) | A kind of preparation method of carbon-supported potassium vanadate and its application in potassium ion battery | |
CN112110448A (en) | A kind of nitrogen-doped carbon and nano-silicon composite negative electrode material and preparation method thereof | |
CN105702958A (en) | Preparation method and application of a tin dioxide (SnO2) quantum dot solution and its composite material | |
CN111717934A (en) | Preparation method of metal iron ion doped MoS2 anode material for sodium ion battery | |
CN113097464B (en) | A kind of ZnS-SnS@3DC composite material and its preparation method and application | |
CN107742701A (en) | Graphene-titania airgel composites and their preparation and application | |
CN113488629B (en) | Spherical carbon-coated tungsten oxide/sulfur positive electrode material of core-shell structure loaded with multiple rare earth oxides and preparation method thereof | |
CN114735660A (en) | Copper selenide-molybdenum selenide heterojunction nano material and preparation method and application thereof | |
CN111816853A (en) | CuS-Cu7.2S4 nanocomposite material, lithium battery and preparation method | |
CN111747449A (en) | Electrode material with ultrafine MoO2 nanoparticles bridging uniformly inside a sheet-like carbon matrix and its preparation method and application | |
CN115092962B (en) | Molybdenum dioxide/carbon composite electrode material and preparation method and application thereof | |
CN108615613B (en) | MoP@C nanowires and their preparation methods and applications | |
CN112864357B (en) | Metal borate modified lithium ion battery electrode composite material and preparation method thereof | |
CN115084468A (en) | An intercalated-transformed composite magnesium storage cathode active material and its preparation method and application | |
CN114853075A (en) | Mn-doped FeS/CN bimetallic sulfide material with large lattice spacing as well as preparation method and application thereof | |
CN114695881A (en) | A kind of bismuth sulfide negative electrode material and its preparation method and application | |
CN114843459A (en) | A kind of antimony pentasulfide based material and preparation method and application thereof | |
CN115172678A (en) | Tin-iron-carbon composite negative electrode material of sodium ion battery and preparation method thereof | |
CN107572486A (en) | A kind of nano-sulfur particles, preparation and its preparation of lithium-sulphur cell positive electrode | |
CN107845787A (en) | Pomegranate shape Fe3O4@N C lithium cell cathode material preparation methods | |
CN108269990B (en) | Sodium ion battery negative electrode material, preparation method thereof and battery | |
CN108281652B (en) | A kind of preparation method of negative electrode active material of conversion type metal-based sulfide lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230801 Address after: Room 318-37, 3rd floor, unit B, R & D Building 1, modern service industry base, Science Park, Huazhong University of science and technology, No.13-1, daxueyuan Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000 Applicant after: Douzhu Science and Technology (Wuhan) Co.,Ltd. Applicant after: WUHAN University Address before: Room 318-37, 3rd floor, unit B, R & D Building 1, modern service industry base, Science Park, Huazhong University of science and technology, No.13-1, daxueyuan Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000 Applicant before: Douzhu Science and Technology (Wuhan) Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220805 |
|
RJ01 | Rejection of invention patent application after publication |