CN114847905B9 - 一种心律失常数据检测识别方法及系统 - Google Patents
一种心律失常数据检测识别方法及系统 Download PDFInfo
- Publication number
- CN114847905B9 CN114847905B9 CN202210507105.0A CN202210507105A CN114847905B9 CN 114847905 B9 CN114847905 B9 CN 114847905B9 CN 202210507105 A CN202210507105 A CN 202210507105A CN 114847905 B9 CN114847905 B9 CN 114847905B9
- Authority
- CN
- China
- Prior art keywords
- layer
- data
- convolution
- neural network
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010003119 arrhythmia Diseases 0.000 title claims abstract description 45
- 230000006793 arrhythmia Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000001514 detection method Methods 0.000 title claims description 10
- 238000003062 neural network model Methods 0.000 claims abstract description 52
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000007781 pre-processing Methods 0.000 claims abstract description 10
- 238000012549 training Methods 0.000 claims description 30
- 238000011176 pooling Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 23
- 239000013598 vector Substances 0.000 claims description 15
- 230000004913 activation Effects 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 13
- 238000012795 verification Methods 0.000 claims description 12
- 230000003213 activating effect Effects 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 238000012806 monitoring device Methods 0.000 claims description 2
- 238000010200 validation analysis Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 11
- 206010006578 Bundle-Branch Block Diseases 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 208000009729 Ventricular Premature Complexes Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 208000002102 Atrial Premature Complexes Diseases 0.000 description 4
- 206010006580 Bundle branch block left Diseases 0.000 description 4
- 206010006582 Bundle branch block right Diseases 0.000 description 4
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 4
- 201000001715 left bundle branch hemiblock Diseases 0.000 description 4
- 201000007916 right bundle branch block Diseases 0.000 description 4
- 239000005495 thyroid hormone Substances 0.000 description 4
- 229940036555 thyroid hormone Drugs 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 206010019280 Heart failures Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000002565 electrocardiography Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003671 Atrioventricular Block Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 208000004301 Sinus Arrhythmia Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Artificial Intelligence (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physiology (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507105.0A CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507105.0A CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Publications (3)
Publication Number | Publication Date |
---|---|
CN114847905A CN114847905A (zh) | 2022-08-05 |
CN114847905B CN114847905B (zh) | 2024-06-14 |
CN114847905B9 true CN114847905B9 (zh) | 2024-07-30 |
Family
ID=82638240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210507105.0A Active CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114847905B9 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115778400A (zh) * | 2022-11-07 | 2023-03-14 | 广东省人民医院 | 一种针对心电图的分析识别方法、系统以及存储介质 |
CN116503673B (zh) * | 2023-06-26 | 2023-09-19 | 亿慧云智能科技(深圳)股份有限公司 | 一种基于心电图的心律失常识别检测方法及系统 |
CN117797406A (zh) * | 2024-02-22 | 2024-04-02 | 中国人民解放军空军军医大学 | 闭环经皮穴位电刺激镇静方法及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107822622B (zh) * | 2017-09-22 | 2022-09-09 | 成都比特律动科技有限责任公司 | 基于深度卷积神经网络的心电图诊断方法和系统 |
KR102163217B1 (ko) * | 2018-06-14 | 2020-10-08 | 한국과학기술원 | 심층 컨볼루션 신경망을 이용한 심전도 부정맥 분류 방법 및 장치 |
CN110717415B (zh) * | 2019-09-24 | 2020-12-04 | 上海数创医疗科技有限公司 | 基于特征选取的st段分类卷积神经网络及其使用方法 |
CN111626114B (zh) * | 2020-04-20 | 2022-11-18 | 哈尔滨工业大学 | 基于卷积神经网络的心电信号心律失常分类系统 |
GB2606700A (en) * | 2021-04-21 | 2022-11-23 | Prevayl Innovations Ltd | Method of preparing training data for use in training a health event identification machine-learning model |
CN113768514B (zh) * | 2021-08-09 | 2024-03-22 | 西安理工大学 | 基于卷积神经网络与门控循环单元的心律失常分类方法 |
-
2022
- 2022-05-10 CN CN202210507105.0A patent/CN114847905B9/zh active Active
Non-Patent Citations (2)
Title |
---|
代子玄;赵庆彦;黄从新;.脊髓神经在心律失常发生和发展中的作用.中国心脏起搏与心电生理杂志.(01),全文. * |
基于深度学习的心律失常检测算法研究;张坤;李鑫;谢学建;王倩云;;医疗卫生装备;20181215(12);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114847905B (zh) | 2024-06-14 |
CN114847905A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6567728B2 (ja) | 患者の生存性を予測する方法 | |
Vijayakumar et al. | Fusion based feature extraction analysis of ECG signal interpretation–a systematic approach | |
CN114847905B9 (zh) | 一种心律失常数据检测识别方法及系统 | |
Goh et al. | Robust PPG motion artifact detection using a 1-D convolution neural network | |
CN111990989A (zh) | 一种基于生成对抗及卷积循环网络的心电信号识别方法 | |
US20080103403A1 (en) | Method and System for Diagnosis of Cardiac Diseases Utilizing Neural Networks | |
CN113095302B (zh) | 用于心律失常分类的深度模型、利用该模型的方法及装置 | |
CN111887858B (zh) | 基于跨模态映射的心冲击图信号心率估计方法 | |
CN111000551A (zh) | 一种基于深度卷积神经网络模型的心脏病发风险诊断方法 | |
Wu et al. | A novel features learning method for ECG arrhythmias using deep belief networks | |
JP7487965B2 (ja) | グラフ畳み込みに基づく心電図心拍数マルチタイプの予測方法 | |
CN114041800A (zh) | 心电信号实时分类方法、装置及可读存储介质 | |
Subramanyan et al. | A novel deep neural network for detection of Atrial Fibrillation using ECG signals | |
WO2013186634A2 (en) | Predicting acute cardiopulmonary events and survivability of a patient | |
Begum et al. | Detection of cardiomyopathy using support vector machine and artificial neural network | |
Zhang et al. | Multi-scale and multi-channel information fusion for exercise electrocardiogram feature extraction and classification | |
CN112022140B (zh) | 一种心电图的诊断结论自动诊断方法及系统 | |
Odugoudar et al. | Ecg classification system for arrhythmia detection using convolutional neural networks | |
Huang | Sensor-Based Sleep Stage Classification Using Deep Learning | |
Vallathan et al. | Automatic Detection of Irregular Contraction and Relaxation of Cardiac Muscle using Alexnet | |
Siekierski et al. | Heart beats classification method using a multi-signal ECG spectrogram and convolutional neural network with residual blocks | |
Salami | A Deep Learning (Neural Network) Approach for ECG Heartbeat Classification: Arrhythmia Detection | |
Patel et al. | Multi-Modal Data Fusion Based Cardiac Disease Prediction using Late Fusion and 2D CNN Architectures | |
Alnajjar | HEART RHYTHM CLASSIFICATION FROM STATIC AND ECG TIME-SERIES DATA USING HYBRID MULTIMODAL DEEP LEARNING | |
Özseven | Comparative Performance Analysis of Time-Frequency Domain Images and Raw Signal Data for Classification of ECG Signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CI03 | Correction of invention patent |
Correction item: Denomination of Invention|Abstract|Claims|Description Correct: A method and system for detecting and identifying arrhythmia data|The term 'heart rhythm' in the authorization text False: A method and system for detecting and identifying arrhythmia data|Heart rate in authorization text Number: 24-02 Page: ?? Volume: 40 Correction item: Denomination of Invention Correct: A method and system for detecting and identifying arrhythmia data False: A method and system for detecting and identifying arrhythmia data Number: 24-02 Volume: 40 |
|
CI03 | Correction of invention patent | ||
OR01 | Other related matters | ||
OR01 | Other related matters |