CN114847905B - 一种心率失常数据检测识别方法及系统 - Google Patents
一种心率失常数据检测识别方法及系统 Download PDFInfo
- Publication number
- CN114847905B CN114847905B CN202210507105.0A CN202210507105A CN114847905B CN 114847905 B CN114847905 B CN 114847905B CN 202210507105 A CN202210507105 A CN 202210507105A CN 114847905 B CN114847905 B CN 114847905B
- Authority
- CN
- China
- Prior art keywords
- layer
- data
- convolution
- neural network
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010003119 arrhythmia Diseases 0.000 title claims abstract description 47
- 230000006793 arrhythmia Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000001514 detection method Methods 0.000 title claims description 13
- 238000003062 neural network model Methods 0.000 claims abstract description 52
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000007781 pre-processing Methods 0.000 claims abstract description 10
- 238000012549 training Methods 0.000 claims description 30
- 238000011176 pooling Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 23
- 230000004913 activation Effects 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 13
- 238000012795 verification Methods 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 2
- 238000010200 validation analysis Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 11
- 206010006578 Bundle-Branch Block Diseases 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 208000009729 Ventricular Premature Complexes Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 208000002102 Atrial Premature Complexes Diseases 0.000 description 4
- 206010006580 Bundle branch block left Diseases 0.000 description 4
- 206010006582 Bundle branch block right Diseases 0.000 description 4
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 4
- 201000001715 left bundle branch hemiblock Diseases 0.000 description 4
- 201000007916 right bundle branch block Diseases 0.000 description 4
- 239000005495 thyroid hormone Substances 0.000 description 4
- 229940036555 thyroid hormone Drugs 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 206010019280 Heart failures Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 210000004351 coronary vessel Anatomy 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000002565 electrocardiography Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003671 Atrioventricular Block Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 208000004301 Sinus Arrhythmia Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 239000003434 antitussive agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001314 paroxysmal effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507105.0A CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210507105.0A CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Publications (3)
Publication Number | Publication Date |
---|---|
CN114847905A CN114847905A (zh) | 2022-08-05 |
CN114847905B true CN114847905B (zh) | 2024-06-14 |
CN114847905B9 CN114847905B9 (zh) | 2024-07-30 |
Family
ID=82638240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210507105.0A Active CN114847905B9 (zh) | 2022-05-10 | 2022-05-10 | 一种心律失常数据检测识别方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114847905B9 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115778400A (zh) * | 2022-11-07 | 2023-03-14 | 广东省人民医院 | 一种针对心电图的分析识别方法、系统以及存储介质 |
CN116503673B (zh) * | 2023-06-26 | 2023-09-19 | 亿慧云智能科技(深圳)股份有限公司 | 一种基于心电图的心律失常识别检测方法及系统 |
CN117797406A (zh) * | 2024-02-22 | 2024-04-02 | 中国人民解放军空军军医大学 | 闭环经皮穴位电刺激镇静方法及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107822622B (zh) * | 2017-09-22 | 2022-09-09 | 成都比特律动科技有限责任公司 | 基于深度卷积神经网络的心电图诊断方法和系统 |
KR102163217B1 (ko) * | 2018-06-14 | 2020-10-08 | 한국과학기술원 | 심층 컨볼루션 신경망을 이용한 심전도 부정맥 분류 방법 및 장치 |
CN110717415B (zh) * | 2019-09-24 | 2020-12-04 | 上海数创医疗科技有限公司 | 基于特征选取的st段分类卷积神经网络及其使用方法 |
CN111626114B (zh) * | 2020-04-20 | 2022-11-18 | 哈尔滨工业大学 | 基于卷积神经网络的心电信号心律失常分类系统 |
GB2606700A (en) * | 2021-04-21 | 2022-11-23 | Prevayl Innovations Ltd | Method of preparing training data for use in training a health event identification machine-learning model |
CN113768514B (zh) * | 2021-08-09 | 2024-03-22 | 西安理工大学 | 基于卷积神经网络与门控循环单元的心律失常分类方法 |
-
2022
- 2022-05-10 CN CN202210507105.0A patent/CN114847905B9/zh active Active
Non-Patent Citations (2)
Title |
---|
代子玄 ; 赵庆彦 ; 黄从新 ; .脊髓神经在心律失常发生和发展中的作用.中国心脏起搏与心电生理杂志.(01),全文. * |
基于深度学习的心律失常检测算法研究;张坤;李鑫;谢学建;王倩云;;医疗卫生装备;20181215(12);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114847905B9 (zh) | 2024-07-30 |
CN114847905A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6567728B2 (ja) | 患者の生存性を予測する方法 | |
CN114847905B (zh) | 一种心率失常数据检测识别方法及系统 | |
CN111990989A (zh) | 一种基于生成对抗及卷积循环网络的心电信号识别方法 | |
CN107392109A (zh) | 一种基于深度神经网络的新生儿疼痛表情识别方法 | |
US20080103403A1 (en) | Method and System for Diagnosis of Cardiac Diseases Utilizing Neural Networks | |
CN110619322A (zh) | 一种基于多流态卷积循环神经网络的多导联心电异常信号识别方法及系统 | |
CN111887858B (zh) | 基于跨模态映射的心冲击图信号心率估计方法 | |
CN112906748A (zh) | 基于残差网络的12导联ecg心律失常检测分类模型构建方法 | |
CN113095302A (zh) | 用于心律失常分类的深度模型、利用该模型的方法及装置 | |
CN113080993B (zh) | 一种基于改进多基分类器集成的自动心律失常分析方法 | |
CN111000551A (zh) | 一种基于深度卷积神经网络模型的心脏病发风险诊断方法 | |
Wu et al. | A novel features learning method for ECG arrhythmias using deep belief networks | |
CN114041800A (zh) | 心电信号实时分类方法、装置及可读存储介质 | |
Subramanyan et al. | A novel deep neural network for detection of Atrial Fibrillation using ECG signals | |
Kumari et al. | Performance evaluation of neural networks and adaptive neuro fuzzy inference system for classification of cardiac arrhythmia | |
Alim et al. | Application of machine learning on ecg signal classification using morphological features | |
WO2013186634A2 (en) | Predicting acute cardiopulmonary events and survivability of a patient | |
Nugent et al. | An intelligent framework for the classification of the 12-lead ECG | |
Zhang et al. | Multi-scale and multi-channel information fusion for exercise electrocardiogram feature extraction and classification | |
CN112022140B (zh) | 一种心电图的诊断结论自动诊断方法及系统 | |
Odugoudar et al. | Ecg classification system for arrhythmia detection using convolutional neural networks | |
Rayavarapu et al. | Synthesis of ECG signals using Generative Adversarial Networks | |
Sabbah et al. | Murine Atherosclerosis Detection Using Machine Learning Under Magnetic Resonance Imaging | |
Vallathan et al. | Automatic Detection of Irregular Contraction and Relaxation of Cardiac Muscle using Alexnet | |
Huang | Sensor-Based Sleep Stage Classification Using Deep Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CI03 | Correction of invention patent | ||
CI03 | Correction of invention patent |
Correction item: Denomination of Invention|Abstract|Claims|Description Correct: A method and system for detecting and identifying arrhythmia data|The term 'heart rhythm' in the authorization text False: A method and system for detecting and identifying arrhythmia data|Heart rate in authorization text Number: 24-02 Page: ?? Volume: 40 Correction item: Denomination of Invention Correct: A method and system for detecting and identifying arrhythmia data False: A method and system for detecting and identifying arrhythmia data Number: 24-02 Volume: 40 |
|
OR01 | Other related matters | ||
OR01 | Other related matters |