CN114844050A - 基于事件触发机制的配电网分层分区切负荷协调控制方法 - Google Patents

基于事件触发机制的配电网分层分区切负荷协调控制方法 Download PDF

Info

Publication number
CN114844050A
CN114844050A CN202210786025.3A CN202210786025A CN114844050A CN 114844050 A CN114844050 A CN 114844050A CN 202210786025 A CN202210786025 A CN 202210786025A CN 114844050 A CN114844050 A CN 114844050A
Authority
CN
China
Prior art keywords
distribution network
power
load shedding
load
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210786025.3A
Other languages
English (en)
Other versions
CN114844050B (zh
Inventor
张腾飞
陈洪凯
程奕凌
徐俊俊
吴巨爱
杨杨
邹花蕾
刘明祥
蔡月明
朱三立
姚金明
欧传刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210786025.3A priority Critical patent/CN114844050B/zh
Publication of CN114844050A publication Critical patent/CN114844050A/zh
Application granted granted Critical
Publication of CN114844050B publication Critical patent/CN114844050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,首先定义电气距离,结合区域划分方法将配电网划分为若干个子区域,并基于事件触发机制建立有源配电网分层分区协调控制架构;其次,建立以用户满意度最大和全网需求响应成本最小为目标函数,考虑子区域内安全运行、空间耦合等约束的有源配电网负荷切除优化模型。为精确求解优化模型,引入改进二阶锥松弛方法将原非线性函数松弛为线性可解形式,并采用混合整数二阶锥规划算法对模型进行高效求解;本发明不仅改善不同渗透率分布式电源接入的电压水平、减少切负荷成本、提高需求响应机制的用户满意度,还节约配电网分层分区协调控制所需通信资源,缓解配电网多层级通信传输压力。

Description

基于事件触发机制的配电网分层分区切负荷协调控制方法
技术领域
本发明涉及配电网优化调度技术领域,具体是涉及一种基于事件触发机制的配电网分层分区切负荷协调控制方法。
背景技术
配电网包含大量用户,其运行状况直接影响用户体验和供电可靠性。随着大量分布式电源的接入和先进通信技术的应用,传统配电网正逐步发展为多方协调控制的主动配电网,而源荷双端的不确定性增加了配电网运行风险,当系统发生线路故障或出现功率缺额时需切除部分负荷以保障系统整体安全可靠运行。近两年随着电力、煤炭市场供应持续偏紧,多种不利因素导致大部分地区开展不同程度的“拉闸限电”,甚至出现传统“一刀切”式的切负荷方案,这直接影响社会正常经济发展和用户生活水平,易恶化电力供需双端关系。因此,如何精准实施切负荷操作以确保非故障区域持续供电,同时尽可能考虑需求侧用户满意度与经济损失,是目前亟待解决的难题。
目前,现有的配电网分区切负荷方法,如在电网发生严重故障后对配电网进行分层分区切负荷时,通常是采用“主站-子站”配置,主站接受各配网子站的运行信息并下发切负荷指令;然而,并未考虑配电网分区后各个配网子区域的信息传递与协调控制,未来配电网规模将不断变大,互联思维下负荷控制过程中的信息传递将呈几何倍数增加,传统的周期触发方式受网络传输带宽的限制。事件触发机制能够减少不必要的信息传递,对缓解通信通道压力、节省通信资源有重要意义。
发明内容
本发明提供一种基于事件触发机制的配电网分层分区切负荷协调控制方法,不仅可以减少切负荷代价和提高用户满意度,还可以缓解配电网各区域之间的通信压力。
本发明所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,步骤为:
步骤S1、将一个完整的配电网进行分区解耦,形成若干个相对独立的配网子区域;然后在此基础上制定分区协调控制策略,并采用事件触发机制来协调各配网子区域之间的通信;
步骤S2、以切负荷过程中综合考虑需求响应成本和用户满意度,需求响应成本主要包括切除负荷的代价和与主电网的交易,确定目标函数和配电网安全运行约束条件,建立切负荷数学模型;
步骤S3、采用二阶锥规划对上述建立的切负荷数学模型进行优化求解。
进一步的,步骤S1中,将配电网划分为若干区域并建立包含决策层、协调层和设备层的配电网分区协调控制架构,制定基于事件触发机制的分层分区切负荷策略,具体如下:
当某一区域内发生永久性故障时,确定各配网子区域内部的切负荷量;然后基于负荷等级分类以及需求响应技术,利用本区域内等级最低的可中断负荷对支路功率越限、电压越限故障进行调节;当该区域内部的支路功率、电压水平还没有恢复到安全范围内或本区域的可中断负荷切除量已达到极限值却尚未达到计算应切负荷量,则选择与该区域电气距离最近且具有一定调节能力的可中断负荷对其进行跨区域切负荷;若此时仍不满足要求时,则继续选择相对电气距离较小的可中断负荷进行切除。
进一步的,步骤S1中,针对划分后的配网子区域建立配电子站,每个配电子站设置事件触发控制器和事件触发检测器,每个事件触发控制器独立检测邻接子站传递的数据是否满足所设定的触发函数,且触发控制器依据触发函数对子站之间的通信进行一定限制,将满足触发函数的数据才会传输到邻接子站;具体包括:
定义测量误差为:
Figure 482571DEST_PATH_IMAGE001
其中,
Figure 462028DEST_PATH_IMAGE002
为第i个配网子站在第k次触发时刻的间隔
Figure 786306DEST_PATH_IMAGE003
的状态;
配网子站i在上一次触发时刻
Figure 745297DEST_PATH_IMAGE003
和当前时刻
Figure 629508DEST_PATH_IMAGE004
的状态之差为:
Figure 311026DEST_PATH_IMAGE005
其中,
Figure 204157DEST_PATH_IMAGE006
为配网子站i在两次触发时刻的间隔
Figure 527691DEST_PATH_IMAGE007
上的状态,
Figure 819739DEST_PATH_IMAGE008
…;
Figure 937737DEST_PATH_IMAGE009
为触发控制器的第k次触发时 刻,其中
Figure 318165DEST_PATH_IMAGE010
事件触发函数:
Figure 851914DEST_PATH_IMAGE011
其中,
Figure 535486DEST_PATH_IMAGE012
是触发参数,当
Figure 89964DEST_PATH_IMAGE013
时,事件触发机制退化为周期触发;
事件触发函数逻辑变量:
Figure 957688DEST_PATH_IMAGE014
根据
Figure 357446DEST_PATH_IMAGE015
的取值决定是否将配网子站i的状态数据
Figure 279878DEST_PATH_IMAGE016
通过固定的通信网络传 输到邻近的配网子站,当
Figure 975564DEST_PATH_IMAGE015
的取值为1时满足触发函数,该配网子站更新自身控制器,并将 该配网子站的状态数据传输到邻近的配网子站i,同时测量误差将被置0,触发函数将小于 零,逻辑变量
Figure 829119DEST_PATH_IMAGE017
,直到下次触发函数再次满足。
进一步的,步骤S2中,综合考虑需求响应成本和用户满意度,建立成本最小和用户满意度最大并计及配电网安全运行约束条件的切负荷数学模型,具体如下:
以需求响应成本最小为目标函数1的计算公式如下:
Figure 345418DEST_PATH_IMAGE018
其中,f 1 为需求响应总成本;
Figure 968029DEST_PATH_IMAGE019
为节点i在第t时段切负荷的赔偿系数,用以反应 不同停电发生时间对不同用户停电损失的影响,取值范围为[0,1],值越大,代表被切除用 户得到的赔偿越多;
Figure 365775DEST_PATH_IMAGE020
为节点it时段的停电损失,可以与缺电量用一次函数来模拟
Figure 175468DEST_PATH_IMAGE021
Figure 353246DEST_PATH_IMAGE022
为负荷节点的中断意愿,取值范围为[0,1],值越大,表示中 断意愿越强烈;
Figure 830364DEST_PATH_IMAGE023
为节点i在时段t的负荷切除量;
Figure 399011DEST_PATH_IMAGE024
为节点it时段与主电网的购电 量,购电时为正值,售电时为负值;
Figure 696000DEST_PATH_IMAGE025
为节点it时段的购电成本;
以用户满意度最大为目标函数2的计算公式如下:
Figure 745645DEST_PATH_IMAGE026
其中, f 2 为用户满意度水平;
Figure 342849DEST_PATH_IMAGE027
为节点it时段的有功负荷;
采用min-max标准化的方法处理上述两个目标函数量纲差异问题,对各问题的目标函数值进行归一化处理,表达式为:
Figure 82397DEST_PATH_IMAGE028
其中,
Figure 397841DEST_PATH_IMAGE029
Figure 245317DEST_PATH_IMAGE030
分别为只考虑单个目标函数时得到的最大值与最小值;
Figure 165869DEST_PATH_IMAGE031
Figure 341898DEST_PATH_IMAGE032
分 别为目标函数的实际值与归一化值;
采用加权和法将多目标优化问题转化为单目标优化问题:
Figure 410217DEST_PATH_IMAGE033
Figure 976897DEST_PATH_IMAGE034
其中,
Figure 191102DEST_PATH_IMAGE035
Figure 505409DEST_PATH_IMAGE036
分别为目标函数对应的权重系数,按照实际情况进行调整;
约束条件计算公式如下:
(1)线路潮流约束:
Figure 293980DEST_PATH_IMAGE037
Figure 984725DEST_PATH_IMAGE038
Figure 443650DEST_PATH_IMAGE039
Figure 132120DEST_PATH_IMAGE040
其中,
Figure 148268DEST_PATH_IMAGE041
Figure 642703DEST_PATH_IMAGE042
分别为支路ij的电阻、电抗;
Figure 424976DEST_PATH_IMAGE043
Figure 346665DEST_PATH_IMAGE044
分别为以j为末、首端节点的支路 首、末端节点的集合;
Figure 313090DEST_PATH_IMAGE045
Figure 407954DEST_PATH_IMAGE046
Figure 44734DEST_PATH_IMAGE047
分别为节点jt时段的DG注入有功功率、储能装置的 发出的有功功率、储能装置的吸收的有功功率;
Figure 137324DEST_PATH_IMAGE048
分别为 节点jt时段的DG注入无功功率、储能装置的发出的无功功率、储能装置的吸收的无功功 率、电力负荷无功功率、切除的无功功率;
Figure 874203DEST_PATH_IMAGE049
Figure 710441DEST_PATH_IMAGE050
Figure 201727DEST_PATH_IMAGE051
Figure 465218DEST_PATH_IMAGE052
分别为节点和支路上的有功功率、 无功功率;
Figure 671815DEST_PATH_IMAGE053
分别为节点电压和支路电流;
(2)节点电压、电流约束:
Figure 249427DEST_PATH_IMAGE054
Figure 126379DEST_PATH_IMAGE055
其中,
Figure 560771DEST_PATH_IMAGE056
Figure 447474DEST_PATH_IMAGE057
分别为节点电压幅值上下限,
Figure 861400DEST_PATH_IMAGE058
为支路电流幅值的上限;
(3)储能装置运行约束:
Figure 356973DEST_PATH_IMAGE059
Figure 460801DEST_PATH_IMAGE060
Figure 877876DEST_PATH_IMAGE061
Figure 361073DEST_PATH_IMAGE062
其中,
Figure 179993DEST_PATH_IMAGE063
Figure 120968DEST_PATH_IMAGE064
分别为ESS充放电功率上限;
Figure 290918DEST_PATH_IMAGE065
为状态变量,取值为0和1,值为1 时表示充电,值为0时表示放电;
Figure 640122DEST_PATH_IMAGE066
Figure 985652DEST_PATH_IMAGE067
分别为充放电效率系数;
Figure 696863DEST_PATH_IMAGE068
为节点it时段 的电量;
Figure 416426DEST_PATH_IMAGE069
Figure 241425DEST_PATH_IMAGE070
分别为考虑EES寿命因素后电量的上下限值;
(4)分布式电源出力约束:
Figure 34938DEST_PATH_IMAGE071
其中,
Figure 922909DEST_PATH_IMAGE072
为DG在t时段的最大有功出力;
Figure 801872DEST_PATH_IMAGE073
为功率因数;
(5)静止无功补偿约束:
Figure 899403DEST_PATH_IMAGE074
其中,
Figure 547422DEST_PATH_IMAGE075
Figure 600436DEST_PATH_IMAGE076
分别为SVC的无功功率的上下限;
(6)可中断负荷约束:
Figure 373220DEST_PATH_IMAGE077
Figure 540021DEST_PATH_IMAGE078
Figure 308126DEST_PATH_IMAGE079
Figure 284039DEST_PATH_IMAGE080
其中,
Figure 465491DEST_PATH_IMAGE081
为可中断负荷最大中断量;
Figure 170404DEST_PATH_IMAGE082
为可中断负荷最大中断次数;
Figure 793015DEST_PATH_IMAGE083
为可中断 负荷最大中断持续时间;
Figure 922252DEST_PATH_IMAGE084
为可中断负荷最大中断时间间隔;
Figure 263103DEST_PATH_IMAGE086
为可中断负荷i的状态变 量,值为1时表示中断,值为0时表示不中断。
进一步的,步骤S3中,将约束条件中含二次项的线路潮流约束进行变量替换并松弛,采用二阶锥规划对上述建立的切负荷数学模型进行优化求解,具体如下:
Figure 771707DEST_PATH_IMAGE087
Figure 248825DEST_PATH_IMAGE088
再将上式替换上述包含
Figure 820401DEST_PATH_IMAGE089
Figure 648549DEST_PATH_IMAGE090
的约束条件,得到线性的潮流约束:
Figure 695265DEST_PATH_IMAGE091
Figure 292468DEST_PATH_IMAGE092
Figure 497928DEST_PATH_IMAGE093
采用二阶锥松弛技术,将原模型转化为一个MINSOCP问题:
Figure 813372DEST_PATH_IMAGE094
等价变形为标准的二阶锥形式:
Figure 663778DEST_PATH_IMAGE095
本发明所述的有益效果为:当配电网发生功率缺额故障时,利用可中断负荷的可切除特性,并结合负荷等级划分切除部分负荷以达到供需平衡消除故障,本发明基于这一特点,提出计及用户满意度的配电网切负荷算法,综合考虑切负荷代价最小和用户满意度最大,与传统切负荷方案相比,本发明能减少切负荷成本、提高用户参与切负荷控制的满意度;同时,本发明还采用事件触发机制保证各配网子区域传递信息时只传输满足触发函数的数据,能够节约配电网分层分区协调控制所需通信资源,缓解配电网多层级通信传输压力,有利于大规模配电网切负荷操作的在线应用。
附图说明
图1为本发明中建立的配电网分层分区切负荷协调控制框架;
图2为本发明中基于事件触发机制的配电网分层分区切负荷流程示意图;
图3为本发明中设计的事件触发机制示意图;
图4为本发明中采用的69节点有源配电网系统及分区结果图;
图5为本发明中各子区域事件触发时刻示意图;
图6为本发明中采用周期触发时系统松弛误差散点图;
图7为本发明中采用事件触发时系统松弛误差散点图。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
下面结合图1-3,对本发明的技术方案进行具体说明。
本发明的目的在于提供一种基于事件触发机制的配电网分层分区切负荷协调控制方法,不仅可以减少切负荷代价和提高用户满意度,还可以缓解配电网各区域之间的通信压力。
为实现上述目的,本发明所述的一种基于事件触发机制的配电网分层分区切负荷协调控制方法,包括以下步骤:
步骤S1、将一个完整的配电网进行分区解耦,形成若干个相对独立的配网子区域;然后在此基础上制定分区协调控制策略,并采用事件触发机制来协调各配网子区域之间的通信;
步骤S2、以切负荷过程中综合考虑需求响应成本和用户满意度,需求响应成本主要包括切除负荷的代价和与主电网的交易,确定目标函数和配电网安全运行约束条件,建立切负荷数学模型;
步骤S3、采用二阶锥规划对上述建立的切负荷数学模型进行优化求解。
结合图1、图2,步骤S1中所建立的基于事件触发机制的配电网分区切负荷协调控制策略,具体实现如下:
首先,基于空间区域分布将整个配电网划分为若干个区域,同时建立包含决策层、协调层和设备层的配电网分区协调控制架构;
根据配电网分区协调控制架构,给出切负荷策略:当某一区域内发生永久性故障时,确定各配网子区域内部的切负荷量;然后基于负荷等级分类以及需求响应技术,利用本区域内等级最低的可中断负荷对支路功率越限、电压越限等故障进行调节;当该区域内部的支路功率、电压水平还没有恢复到安全范围内或本区域的可中断负荷切除量已达到极限值却尚未达到计算应切负荷量,则选择与该区域电气距离最近且具有一定调节能力的可中断负荷对其进行跨区域切负荷;若此时仍不满足要求时,则继续选择相对电气距离较小的可中断负荷进行切除;
结合图3,在上述配电网分区切负荷策略中,采用事件触发机制进行信息传递,包括:
定义测量误差为:
Figure 115488DEST_PATH_IMAGE001
其中,
Figure 610624DEST_PATH_IMAGE002
为第i个配网子站在第k次触发时刻的间隔
Figure 383670DEST_PATH_IMAGE003
的状态;
配网子站i在上一次触发时刻
Figure 270724DEST_PATH_IMAGE003
和当前时刻
Figure 606634DEST_PATH_IMAGE004
的状态之差为:
Figure 186520DEST_PATH_IMAGE005
其中,
Figure 712441DEST_PATH_IMAGE006
为配网子站i在两次触发时刻的间隔
Figure 403185DEST_PATH_IMAGE007
上的状态,
Figure 68303DEST_PATH_IMAGE008
…;
Figure 84669DEST_PATH_IMAGE009
为触发控制器的第k次触发时 刻,其中
Figure 97887DEST_PATH_IMAGE010
事件触发函数:
Figure 326743DEST_PATH_IMAGE011
其中,
Figure 106087DEST_PATH_IMAGE096
是触发参数,当
Figure 168721DEST_PATH_IMAGE013
时,事件触发机制退化为周期触发;
事件触发函数逻辑变量:
Figure 403655DEST_PATH_IMAGE014
根据
Figure 701781DEST_PATH_IMAGE015
的取值决定是否将配网子站i的状态数据
Figure 353210DEST_PATH_IMAGE016
通过固定的通信网络传 输到邻近的配网子站,当
Figure 445799DEST_PATH_IMAGE015
的取值为1时满足触发函数,该配网子站更新自身控制器,并将 该配网子站的状态数据传输到邻近的配网子站i,同时测量误差将被置0,触发函数将小于 零,逻辑变量
Figure 433609DEST_PATH_IMAGE017
,直到下次触发函数再次满足。
在本发明一实施例中,所述步骤S2,具体实现如下:
建立切负荷模型,以需求响应成本最小为目标函数1表示如下:
Figure 4268DEST_PATH_IMAGE018
其中,f 1 为需求响应总成本;
Figure 758204DEST_PATH_IMAGE019
为节点i在第t时段切负荷的赔偿系数,用以反应 不同停电发生时间对不同用户停电损失的影响,取值范围为[0,1],值越大,代表被切除用 户得到的赔偿越多;
Figure 21695DEST_PATH_IMAGE020
为节点it时段的停电损失,可以与缺电量用一次函数来模拟
Figure 231222DEST_PATH_IMAGE021
Figure 605571DEST_PATH_IMAGE022
为负荷节点的中断意愿,取值范围为[0,1],值越大,表示中 断意愿越强烈;
Figure 547769DEST_PATH_IMAGE023
为节点i在时段t的负荷切除量;
Figure 982162DEST_PATH_IMAGE024
为节点it时段与主电网的购电 量,购电时为正值,售电时为负值;
Figure 678984DEST_PATH_IMAGE025
为节点it时段的购电成本;
以用户满意度最大为目标函数2表示如下:
Figure 529129DEST_PATH_IMAGE026
其中, f 2 为用户满意度水平;
Figure 319974DEST_PATH_IMAGE097
为节点i在时段t的负荷切除量;
Figure 925268DEST_PATH_IMAGE027
为节点it 时段的有功负荷;
采用min-max标准化的方法处理上述两个目标函数量纲差异问题,对各问题的目标函数值进行归一化处理,表达式为:
Figure 843807DEST_PATH_IMAGE028
其中,
Figure 91118DEST_PATH_IMAGE029
Figure 137135DEST_PATH_IMAGE030
分别为只考虑单个目标函数时得到的最大值与最小值;
Figure 913330DEST_PATH_IMAGE031
Figure 584745DEST_PATH_IMAGE032
分 别为目标函数的实际值与归一化值;
采用加权和法将多目标优化问题转化为单目标优化问题:
Figure 511112DEST_PATH_IMAGE033
Figure 214233DEST_PATH_IMAGE034
其中,
Figure 692488DEST_PATH_IMAGE035
Figure 320040DEST_PATH_IMAGE036
分别为目标函数对应的权重系数,可按照实际情况进行调整;
确定模型的约束条件,具体如下:
线路潮流约束:
Figure 643574DEST_PATH_IMAGE037
Figure 941481DEST_PATH_IMAGE038
Figure 325058DEST_PATH_IMAGE039
Figure 643169DEST_PATH_IMAGE040
其中,
Figure 770394DEST_PATH_IMAGE041
Figure 182527DEST_PATH_IMAGE042
分别为支路ij的电阻、电抗;
Figure 471426DEST_PATH_IMAGE098
Figure 339150DEST_PATH_IMAGE044
分别为以j为末(首)端节点的支 路首(末)端节点的集合;
Figure 535645DEST_PATH_IMAGE045
Figure 101205DEST_PATH_IMAGE046
Figure 826584DEST_PATH_IMAGE047
分别为节点jt时段的DG注入有功功率、储能装置 的发出的有功功率、储能装置的吸收的有功功率;
Figure 181605DEST_PATH_IMAGE099
分别 为节点jt时段的DG注入无功功率、储能装置的发出的无功功率、储能装置的吸收的无功 功率、电力负荷无功功率、切除的无功功率;
Figure 650632DEST_PATH_IMAGE049
Figure 771779DEST_PATH_IMAGE050
Figure 402480DEST_PATH_IMAGE051
Figure 244796DEST_PATH_IMAGE052
分别为节点和支路上的有功功 率、无功功率;
Figure 251935DEST_PATH_IMAGE053
分别为节点电压和支路电流;
节点电压、电流约束:
Figure 233448DEST_PATH_IMAGE054
Figure 238313DEST_PATH_IMAGE055
其中,
Figure 302346DEST_PATH_IMAGE056
Figure 113176DEST_PATH_IMAGE057
分别为节点电压幅值上下限,
Figure 943335DEST_PATH_IMAGE058
为支路电流幅值的上限;
储能装置运行约束:
Figure 181419DEST_PATH_IMAGE059
Figure 998327DEST_PATH_IMAGE060
Figure 347269DEST_PATH_IMAGE061
Figure 26076DEST_PATH_IMAGE062
其中,
Figure 435060DEST_PATH_IMAGE063
Figure 473686DEST_PATH_IMAGE064
分别为ESS充放电功率上限;
Figure 626318DEST_PATH_IMAGE065
为状态变量,取值为0和1,值为1 时表示充电,值为0时表示放电;
Figure 431070DEST_PATH_IMAGE066
Figure 10956DEST_PATH_IMAGE067
分别为充放电效率系数;
Figure 536877DEST_PATH_IMAGE068
为节点it时段 的电量;
Figure 227622DEST_PATH_IMAGE069
Figure 627160DEST_PATH_IMAGE070
分别为考虑EES寿命因素后电量的上下限值;
分布式电源出力约束:
Figure 643526DEST_PATH_IMAGE071
其中,
Figure 391165DEST_PATH_IMAGE072
为DG在t时段的最大有功出力;
Figure 885600DEST_PATH_IMAGE073
为功率因数;
静止无功补偿约束:
Figure 664944DEST_PATH_IMAGE074
其中,
Figure 321053DEST_PATH_IMAGE075
Figure 821567DEST_PATH_IMAGE076
分别为SVC的无功功率的上下限;
可中断负荷约束:
Figure 588534DEST_PATH_IMAGE077
Figure 771121DEST_PATH_IMAGE078
Figure 286547DEST_PATH_IMAGE079
Figure 585942DEST_PATH_IMAGE080
其中,
Figure 422179DEST_PATH_IMAGE081
为可中断负荷最大中断量;
Figure 97487DEST_PATH_IMAGE082
为可中断负荷最大中断次数;
Figure 862443DEST_PATH_IMAGE083
为可中断 负荷最大中断持续时间;
Figure 304926DEST_PATH_IMAGE084
为可中断负荷最大中断时间间隔;
Figure 183670DEST_PATH_IMAGE086
为可中断负荷i的状态变 量,值为1时表示中断,值为0时表示不中断。
在本发明一实施例中,所述步骤S3,具体实现如下:
对线路潮流约束通过变量替换,令:
Figure 559156DEST_PATH_IMAGE087
Figure 495013DEST_PATH_IMAGE088
再将上式替换上述包含
Figure 159213DEST_PATH_IMAGE089
Figure 835788DEST_PATH_IMAGE090
的约束条件,得到线性的潮流约束:
Figure 800202DEST_PATH_IMAGE091
Figure 906961DEST_PATH_IMAGE092
Figure 589615DEST_PATH_IMAGE093
采用二阶锥松弛技术,将原模型转化为一个MINSOCP问题:
Figure 595181DEST_PATH_IMAGE094
等价变形为标准的二阶锥形式:
Figure 820625DEST_PATH_IMAGE095
为了验证本发明所建立切负荷数学模型的准确性,定义松弛误差指标:
Figure 629444DEST_PATH_IMAGE100
其中,
Figure 953721DEST_PATH_IMAGE101
t时刻所有支路的偏差量的无穷范数。
对选定的69节点有源配电网系统进行Matlab仿真验证:
对于本实施例,如图4所示,该配电网络被划分为4个非重叠子区域,其中,子区域①和②以支路3-4为边界,子区域②和③以支路8-9为边界,子区域③和④以支路11-12为边界。该测试系统基准容量为10MVA,基准电压为12.66kV,各节点电压允许范围为0.95-1.05(p.u.),负荷总有功功率为3802kW,单个负荷的额定功率以及网络支路额定参数详见文献“杨丽君, 曹玉洁, 张子振. 基于博弈思想的主动配电网故障灵活分层恢复策略[J]. 电工技术学报, 2018, 33(6):1410-1421.”。在节点6、21分别接入额定容量为0.5MW的风电机组;在节点54、69分别接入额定容量为0.7MW的光伏电站;在节点4、11、17、28分别接入储能装置,单一装置的具体参数见表1;在节点3、8、12、42分别接入无功补偿装置,单一装置的可调节范围为0.3Mvar。此外,考虑切负荷过程中的需求响应成本,对该测试系统中所有负荷节点按重要程度进行分类,其中节点5、7、9、13、59为第一类负荷;节点19、20、29、36、40、49、50、66、67为第二类负荷;节点22、23、25、30、31、33、34、38、39、41、55、56为第三类负荷,每一类型负荷其具体参数见表2;每一时段用户购电价格和电网公司售电价格如表3所示。
表1储能装置参数
Figure 207985DEST_PATH_IMAGE103
表2可中断负荷约束条件参数
Figure 445194DEST_PATH_IMAGE105
表3主电网发布的分时电价
Figure 126711DEST_PATH_IMAGE107
所有模型与算法均在MatlabR2018b平台进行编程,在主频为2.5GHz、内存为16GB的PC上,内嵌CPLEX12.5求解器。
本发明分别对同一系统进行仿真,对比了场景1下不考虑用户满意度、负荷等级划分和场景2考虑用户满意度、用户满意度的优化结果。通过仿真得到了表4,可以看出,在场景2中,考虑用户满意度降低了切负荷的成本,也一定程度的降低了配电网运行的总成本,同时用户满意度也较高,说明本发明所建立的切负荷数学模型能够不仅能够满足配电网运行的经济性,也能够满足用户满意度的需求。
表4不同场景下切负荷优化结果对比
Figure 694876DEST_PATH_IMAGE109
同时,本发明还在场景2下设定两种触发机制(事件触发与周期触发)仿真时间均为10s,其中:周期触发机制的周期选为0.02s,同时触发参数设为
Figure 346306DEST_PATH_IMAGE111
;事件触发机制的触发参数设为
Figure 641284DEST_PATH_IMAGE113
,在该机制下各区域触发时刻如图5所示。由图5可知,在给定仿真时间内,可以计算出每个区域平均通信时间间隔为0.067s、0.161s、0.794s、0.893s,各子区域的最大通信时间间隔为1.02s、1.5s、0.6s、0.8s,各子区域的最小通信时间间隔均为0.02s,因此,事件触发比传统周期触发的平均通信时间间隔更长,这在一定程度上会占用更少的通信资源。
此外,表5为不同触发机制下各区域触发次数汇总情况,显然,本发明采用的事件触发机制能够大幅度减少各配电子区域之间切负荷信息交互的通信次数,这在一定程度上有利于减小通信网络的数据传输压力,从而提高切负荷过程的效率。
表5各子区域不同触发方式次数对比
Figure 759281DEST_PATH_IMAGE115
为进一步验证本发明的有效性,图6和图7为上述两种触发方式下系统的误差散点图。由图6可知,采用周期触发时,系统松弛误差指标为10-8量级;由图7可知,采用事件触发时,系统松弛误差指标为10-6量级,虽然其误差要比采用周期触发时大,但依然满足实际工程需求,在实际规划过程中其误差可忽略不计。同时,与周期触发相比,本发明采用的事件触发方式可以很大程度上减少通信次数,降低数据传输量。综上所述,本发明所提出的事件触发机制能够在节省通信资源的基础上保证切负荷算法的收敛精度。
以上所述仅为本发明的优选方案,并非作为对本发明的进一步限定,凡是利用本发明说明书及附图内容所作的各种等效变化均在本发明的保护范围之内。

Claims (5)

1.基于事件触发机制的配电网分层分区切负荷协调控制方法,其特征在于,所述方法步骤为:
步骤S1、将一个完整的配电网进行分区解耦,形成若干个相对独立的配网子区域;然后在此基础上制定分区协调控制策略,并采用事件触发机制来协调各配网子区域之间的通信;
步骤S2、以切负荷过程中综合考虑需求响应成本和用户满意度,需求响应成本主要包括切除负荷的代价和与主电网的交易,确定目标函数和配电网安全运行约束条件,建立切负荷数学模型;
步骤S3、采用二阶锥规划对上述建立的切负荷数学模型进行优化求解。
2.根据权利要求书1所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,其特征在于,步骤S1中,将配电网划分为若干区域并建立包含决策层、协调层和设备层的配电网分区协调控制架构,制定基于事件触发机制的分层分区切负荷策略,具体如下:
当某一区域内发生永久性故障时,确定各配网子区域内部的切负荷量;然后基于负荷等级分类以及需求响应技术,利用本区域内等级最低的可中断负荷对支路功率越限、电压越限故障进行调节;当该区域内部的支路功率、电压水平还没有恢复到安全范围内或本区域的可中断负荷切除量已达到极限值却尚未达到计算应切负荷量,则选择与该区域电气距离最近且具有一定调节能力的可中断负荷对其进行跨区域切负荷;若此时仍不满足要求时,则继续选择相对电气距离较小的可中断负荷进行切除。
3.根据权利要求书1所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,其特征在于,步骤S1中,针对划分后的配网子区域建立配电子站,每个配电子站设置事件触发控制器和事件触发检测器,每个事件触发控制器独立检测邻接子站传递的数据是否满足所设定的触发函数,且触发控制器依据触发函数对子站之间的通信进行一定限制,将满足触发函数的数据才会传输到邻接子站;具体包括:
定义测量误差为:
Figure 523269DEST_PATH_IMAGE001
其中,
Figure 338910DEST_PATH_IMAGE002
为第i个配网子站在第k次触发时刻的间隔
Figure 909567DEST_PATH_IMAGE003
的状态;
配网子站i在上一次触发时刻
Figure 886881DEST_PATH_IMAGE003
和当前时刻
Figure 925244DEST_PATH_IMAGE004
的状态之差为:
Figure 10488DEST_PATH_IMAGE005
其中,
Figure 935849DEST_PATH_IMAGE006
为配网子站i在两次触发时刻的间隔
Figure 572148DEST_PATH_IMAGE007
上的状态,
Figure 317381DEST_PATH_IMAGE008
…;
Figure 940736DEST_PATH_IMAGE009
为触发控制器的第k次触发时 刻,其中
Figure 720604DEST_PATH_IMAGE010
事件触发函数:
Figure 554568DEST_PATH_IMAGE011
其中,
Figure 856937DEST_PATH_IMAGE012
是触发参数,当
Figure 552492DEST_PATH_IMAGE013
时,事件触发机制退化为周期触发;
事件触发函数逻辑变量:
Figure 498451DEST_PATH_IMAGE014
根据
Figure 64168DEST_PATH_IMAGE015
的取值决定是否将配网子站i的状态数据
Figure 361157DEST_PATH_IMAGE016
通过固定的通信网络传输到 邻近的配网子站,当
Figure 407873DEST_PATH_IMAGE015
的取值为1时满足触发函数,该配网子站更新自身控制器,并将该配 网子站的状态数据传输到邻近的配网子站i,同时测量误差将被置0,触发函数将小于零,逻 辑变量
Figure 739497DEST_PATH_IMAGE017
,直到下次触发函数再次满足。
4.根据权利要求书1所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,其特征在于,步骤S2中,综合考虑需求响应成本和用户满意度,建立成本最小和用户满意度最大并计及配电网安全运行约束条件的切负荷数学模型,具体如下:
以需求响应成本最小为目标函数1的计算公式如下:
Figure 216396DEST_PATH_IMAGE018
其中,f 1 为需求响应总成本;
Figure 681DEST_PATH_IMAGE019
为节点i在第t时段切负荷的赔偿系数,用以反应不同 停电发生时间对不同用户停电损失的影响,取值范围为[0,1],值越大,代表被切除用户得 到的赔偿越多;
Figure 851088DEST_PATH_IMAGE020
为节点it时段的停电损失,可以与缺电量用一次函数来模拟
Figure 785021DEST_PATH_IMAGE021
Figure 928426DEST_PATH_IMAGE022
为负荷节点的中断意愿,取值范围为[0,1],值越大,表示中 断意愿越强烈;
Figure 967052DEST_PATH_IMAGE023
为节点i在时段t的负荷切除量;
Figure 854105DEST_PATH_IMAGE024
为节点it时段与主电网的购电 量,购电时为正值,售电时为负值;
Figure 488935DEST_PATH_IMAGE025
为节点it时段的购电成本;
以用户满意度最大为目标函数2的计算公式如下:
Figure 68821DEST_PATH_IMAGE026
其中, f 2 为用户满意度水平;
Figure 329163DEST_PATH_IMAGE027
为节点it时段的有功负荷;
采用min-max标准化的方法处理上述两个目标函数量纲差异问题,对各问题的目标函数值进行归一化处理,表达式为:
Figure 754328DEST_PATH_IMAGE028
其中,
Figure 679166DEST_PATH_IMAGE029
Figure 695532DEST_PATH_IMAGE030
分别为只考虑单个目标函数时得到的最大值与最小值;
Figure 177591DEST_PATH_IMAGE031
Figure 937606DEST_PATH_IMAGE032
分别为 目标函数的实际值与归一化值;
采用加权和法将多目标优化问题转化为单目标优化问题:
Figure 457230DEST_PATH_IMAGE033
Figure 378918DEST_PATH_IMAGE034
其中,
Figure 879432DEST_PATH_IMAGE035
Figure 911979DEST_PATH_IMAGE036
分别为目标函数对应的权重系数,按照实际情况进行调整;
约束条件计算公式如下:
线路潮流约束:
Figure 280250DEST_PATH_IMAGE037
Figure 638419DEST_PATH_IMAGE038
Figure 360649DEST_PATH_IMAGE039
Figure 931308DEST_PATH_IMAGE040
其中,
Figure 148226DEST_PATH_IMAGE041
Figure 411717DEST_PATH_IMAGE042
分别为支路ij的电阻、电抗;
Figure 621244DEST_PATH_IMAGE043
Figure 261173DEST_PATH_IMAGE044
分别为以j为末、首端节点的支路首、 末端节点的集合;
Figure 604036DEST_PATH_IMAGE045
Figure 38428DEST_PATH_IMAGE046
Figure 735251DEST_PATH_IMAGE047
分别为节点jt时段的DG注入有功功率、储能装置的发出 的有功功率、储能装置的吸收的有功功率;
Figure 913292DEST_PATH_IMAGE048
分别为节点jt时段的DG注入无功功率、储能装置的发出的无功功率、储能装置的吸收的无功功率、电 力负荷无功功率、切除的无功功率;
Figure 382100DEST_PATH_IMAGE049
Figure 721815DEST_PATH_IMAGE050
Figure 905933DEST_PATH_IMAGE051
Figure 622086DEST_PATH_IMAGE052
分别为节点和支路上的有功功率、无功 功率;
Figure 673962DEST_PATH_IMAGE053
分别为节点电压和支路电流;
节点电压、电流约束:
Figure 981315DEST_PATH_IMAGE054
Figure 121572DEST_PATH_IMAGE055
其中,
Figure 641415DEST_PATH_IMAGE056
Figure 830955DEST_PATH_IMAGE057
分别为节点电压幅值上下限,
Figure 778051DEST_PATH_IMAGE058
为支路电流幅值的上限;
储能装置运行约束:
Figure 671183DEST_PATH_IMAGE059
Figure 994717DEST_PATH_IMAGE060
Figure 286765DEST_PATH_IMAGE061
Figure 139183DEST_PATH_IMAGE062
其中,
Figure 519611DEST_PATH_IMAGE063
Figure 381257DEST_PATH_IMAGE064
分别为ESS充放电功率上限;
Figure 533670DEST_PATH_IMAGE065
为状态变量,取值为0和1,值为1时表示 充电,值为0时表示放电;
Figure 573302DEST_PATH_IMAGE066
Figure 673982DEST_PATH_IMAGE067
分别为充放电效率系数;
Figure 572274DEST_PATH_IMAGE068
为节点it时段的电量;
Figure 340379DEST_PATH_IMAGE069
Figure 301644DEST_PATH_IMAGE070
分别为考虑EES寿命因素后电量的上下限值;
分布式电源出力约束:
Figure 155199DEST_PATH_IMAGE071
其中,
Figure 975957DEST_PATH_IMAGE072
为DG在t时段的最大有功出力;
Figure 37716DEST_PATH_IMAGE073
为功率因数;
静止无功补偿约束:
Figure 402839DEST_PATH_IMAGE074
其中,
Figure 976646DEST_PATH_IMAGE075
Figure 203359DEST_PATH_IMAGE076
分别为SVC的无功功率的上下限;
可中断负荷约束:
Figure 883739DEST_PATH_IMAGE077
Figure 658578DEST_PATH_IMAGE078
Figure 706300DEST_PATH_IMAGE079
Figure 251550DEST_PATH_IMAGE080
其中,
Figure 347289DEST_PATH_IMAGE081
为可中断负荷最大中断量;
Figure 585372DEST_PATH_IMAGE082
为可中断负荷最大中断次数;
Figure 136702DEST_PATH_IMAGE083
为可中断负荷 最大中断持续时间;
Figure 220064DEST_PATH_IMAGE084
为可中断负荷最大中断时间间隔;
Figure 187887DEST_PATH_IMAGE086
为可中断负荷i的状态变量,值 为1时表示中断,值为0时表示不中断。
5.根据权利要求书1所述的基于事件触发机制的配电网分层分区切负荷协调控制方法,其特征在于,步骤S3中,将约束条件中含二次项的线路潮流约束进行变量替换并松弛,采用二阶锥规划对上述建立的切负荷数学模型进行优化求解,具体如下:
Figure 596872DEST_PATH_IMAGE087
Figure 635497DEST_PATH_IMAGE088
再将上式替换上述包含
Figure 256972DEST_PATH_IMAGE089
Figure 327302DEST_PATH_IMAGE090
的约束条件,得到线性的潮流约束:
Figure 641609DEST_PATH_IMAGE091
Figure 167531DEST_PATH_IMAGE092
Figure 123854DEST_PATH_IMAGE093
采用二阶锥松弛技术,将原模型转化为一个MINSOCP问题:
Figure 54551DEST_PATH_IMAGE094
等价变形为标准的二阶锥形式:
Figure 539759DEST_PATH_IMAGE095
CN202210786025.3A 2022-07-06 2022-07-06 基于事件触发机制的配电网分层分区切负荷协调控制方法 Active CN114844050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210786025.3A CN114844050B (zh) 2022-07-06 2022-07-06 基于事件触发机制的配电网分层分区切负荷协调控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210786025.3A CN114844050B (zh) 2022-07-06 2022-07-06 基于事件触发机制的配电网分层分区切负荷协调控制方法

Publications (2)

Publication Number Publication Date
CN114844050A true CN114844050A (zh) 2022-08-02
CN114844050B CN114844050B (zh) 2022-09-23

Family

ID=82575334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210786025.3A Active CN114844050B (zh) 2022-07-06 2022-07-06 基于事件触发机制的配电网分层分区切负荷协调控制方法

Country Status (1)

Country Link
CN (1) CN114844050B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117895498A (zh) * 2024-01-10 2024-04-16 华北电力大学 一种电力网络区块化目标失能的辅助决策和优化决策方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055191A (zh) * 2010-12-31 2011-05-11 重庆大学 一种考虑外网等值的静态电压稳定广域切负荷控制方法
CN106208160A (zh) * 2016-07-28 2016-12-07 东南大学 基于二阶锥优化的售电公司所辖区域配电网的调度方法
CN107330568A (zh) * 2017-08-16 2017-11-07 东南大学 基于Benders解耦的储能、分布式电源与配电网协调规划方法
CN108134394A (zh) * 2017-11-02 2018-06-08 国网江苏省电力公司电力科学研究院 一种考虑分布式电源影响的优化减载方法
CN108599157A (zh) * 2018-05-17 2018-09-28 东北电力大学 一种考虑电价型需求响应的交直流配合电网优化调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055191A (zh) * 2010-12-31 2011-05-11 重庆大学 一种考虑外网等值的静态电压稳定广域切负荷控制方法
CN106208160A (zh) * 2016-07-28 2016-12-07 东南大学 基于二阶锥优化的售电公司所辖区域配电网的调度方法
CN107330568A (zh) * 2017-08-16 2017-11-07 东南大学 基于Benders解耦的储能、分布式电源与配电网协调规划方法
CN108134394A (zh) * 2017-11-02 2018-06-08 国网江苏省电力公司电力科学研究院 一种考虑分布式电源影响的优化减载方法
CN108599157A (zh) * 2018-05-17 2018-09-28 东北电力大学 一种考虑电价型需求响应的交直流配合电网优化调度方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117895498A (zh) * 2024-01-10 2024-04-16 华北电力大学 一种电力网络区块化目标失能的辅助决策和优化决策方法
CN117895498B (zh) * 2024-01-10 2024-07-05 华北电力大学 一种电力网络区块化目标失能的辅助决策和优化决策方法

Also Published As

Publication number Publication date
CN114844050B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Zeraati et al. Distributed control of battery energy storage systems for voltage regulation in distribution networks with high PV penetration
Zhang et al. Islanding and scheduling of power distribution systems with distributed generation
Hatziargyriou et al. A decision tree method for on-line steady state security assessment
CN109361242B (zh) 一种光伏发电自动电压控制方法
CN103036230A (zh) 一种基于工程应用的交直流混联大电网的动态等值方法
CN108462210B (zh) 基于数据挖掘的光伏可开放容量计算方法
CN107134785B (zh) 一种考虑网络结构优化的输电网电压协调优化控制方法
Sarantakos et al. A reliability-based method to quantify the capacity value of soft open points in distribution networks
CN109149555B (zh) 考虑供电模式的配电网广义电源变电可信容量评价方法
CN114597969B (zh) 计及智能软开关和虚拟电厂技术的配电网双层优化方法
Artale et al. Real-time power flow monitoring and control system for microgrids integration in islanded scenarios
Pinthurat et al. Techniques for compensation of unbalanced conditions in LV distribution networks with integrated renewable generation: An overview
CN114844050B (zh) 基于事件触发机制的配电网分层分区切负荷协调控制方法
Li et al. Optimized energy storage system configuration for voltage regulation of distribution network with PV access
Liu et al. Optimal fuzzy logic control of energy storage systems for V/f support in distribution networks considering battery degradation
Hatata et al. Centralized control method for voltage coordination challenges with OLTC and D-STATCOM in smart distribution networks based IoT communication protocol
Zahedmanesh et al. Consensus-based decision making approach for techno-economic operation of largescale battery energy storage in industrial microgrids
Yao et al. Stochastic economic operation of coupling unit of flexi-renewable virtual power plant and electric spring in the smart distribution network
Wang et al. Decentralized and multi-objective coordinated optimization of hybrid AC/DC flexible distribution networks
CN113162056B (zh) 特高压电网自动电压控制方法和装置
Chi et al. Reserve and Inertia optimization of Power System with High Penetrated Renewables
CN108092278A (zh) 一种考虑低压设备影响的无功补偿方法及系统
CHIKWADO et al. Integrated Energy Marketing and Load Shedding Scheduling in Trans Amadi Port Harcourt Using Fuzzy Logic
Wang Evaluation of advanced voltage control algorithms for future smart distribution networks
Susanto Stability of microgrids and weak grids with high penetration of variable renewable energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant